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Frequency Analysis of Moderately Thick Composite Panels with Negative 

Gaussian Curvature 

 
İlke ALGÜL1 and Ahmet Sinan ÖKTEM1 

 
1Department of Mechanical Engineering, 

Gebze Technical University, 41400, Gebze-TURKEY 

 

ilkees@gtu.edu.tr 

sinan.oktem@gtu.edu.tr 

 

ABSTRACT 

 

This study explores the frequency analysis of moderately thick laminated cylindrical, 

spherical and negative Gaussian curvature panel for various combinations of boundary 

conditions. The analysis incorporates a first-order shear deformation theory along with an 

extension of linear strain-displacement relationships to account for transverse shear effects 

throughout the thickness direction. The equilibrium equations for laminated composite shells 

are derived using the virtual work principle. Generalized differential quadrature method is 

employed here to solve the free vibration of plates and panels shells made up from symmetric 

and antisymmetric cross-ply laminated composites. Utilizing the GDQ method in the 

governing differential equation transforms the problem into a generalized eigenvalue 

problem, leading to the determination of the frequency parameter. Natural frequencies are 

explained with tabular data by investigating the effect of various parameters such as effects 

of stacking lamination, boundary conditions and the effect of curvature. 

  

1. INTRODUCTION 

 

Curved composite panel with uniform thickness h, length a, and width b is given in Figure 1.1. 

The x, y and z stated the orthogonal curvilinear coordinate system attached to the middle surface 

of the shell (z=0). R1 and R2 are denoted the principal radius of the middle surface of the panel 

curvature.  

 
Figure 1.1. Negative Gaussian Curvature Panel (R1=R, R2=-R) 

mailto:sinan.oktem@gtu.edu.tr
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The displacement field at general point (x, y, and z) of the panel based on first-order shear 

deformation theory may be written as: 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑦, 𝑡) + 𝑧. 𝜃𝑥(𝑥, 𝑦, 𝑡) (1.1a) 

𝑣(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑦, 𝑡) + 𝑧. 𝜃𝑦(𝑥, 𝑦, 𝑡) (1.1b) 

𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤0(𝑥, 𝑦, 𝑡) (1.1c) 

where u0, v0, w0 are the displacement field of a point on the middle surface of the shell along 

the x, y and z axes. θx and θy are the rotations around the y and x axes, respectively. 

 The strain-displacement relations for the curved panels using the displacement fields in 

equations. (1.1a-c) from the theory of elasticity in curvilinear coordinates are given below for 

small elastic deformation. 

𝜀𝑥 =
𝜕𝑢0
𝜕𝑥

+ 𝑧
𝜕𝜃𝑥
𝜕𝑥

+
𝑤0
𝑅𝑥

 (1.2a) 

𝜀𝑦 =
𝜕𝑣0
𝜕𝑦

+ 𝑧
𝜕𝜃𝑦

𝜕𝑦
+
𝑤0
𝑅𝑦

 (1.2b) 

𝛾𝑥𝑦 =
𝜕𝑣0
𝜕𝑥

+
𝜕𝑢0
𝜕𝑦

+ 𝑧
𝜕𝜃𝑥
𝜕𝑦

+ 𝑧
𝜕𝜃𝑦

𝜕𝑥
+ 
1

2
(
1

𝑅𝑦
−
1

𝑅𝑥
) (
𝜕𝑣0
𝜕𝑥

−
𝜕𝑢0
𝜕𝑦

) (1.2c) 

𝛾𝑦𝑧 = 𝜃𝑦 +
𝜕𝑤0
𝜕𝑦

− 
𝑣0
𝑅𝑦

 (1.2d) 

𝛾𝑥𝑧 = 𝜃𝑥 +
𝜕𝑤0
𝜕𝑥

− 
𝑢0
𝑅𝑥

 (1.2e) 

For the sake of brevity, the derivation of equilibrium equations of the composite doubly curved 

panel using the virtual work principle is not explained here. Further explanations are given in 

[1-2]. With the use of the virtual work principle, five coupled fourth-order linear governing 

differential equations of a moderately thick laminated composite doubly curved panel are as 

given below: 

𝜕𝑁𝑥
𝜕𝑥

+
𝜕𝑁𝑥𝑦

𝜕𝑦
+
𝑄𝑥𝑧
𝑅𝑥

−
𝜕𝑀𝑥𝑦

𝜕𝑦
(
1

2
(
1

𝑅𝑦
−
1

𝑅𝑥
)) = 𝐼0

𝜕𝑢0
𝜕𝑡2

+ 𝐼1
𝜕2𝜃𝑥
𝜕𝑡2

 (1.3a) 

𝜕𝑁𝑦

𝜕𝑦
+
𝜕𝑁𝑥𝑦

𝜕𝑥
+
𝑄𝑦𝑧

𝑅𝑦
+
𝜕𝑀𝑥𝑦

𝜕𝑥
(
1

2
(
1

𝑅𝑦
−
1

𝑅𝑥
)) = 𝐼0

𝜕2𝑣0
𝜕𝑡2

+ 𝐼1
𝜕2𝜃𝑦

𝜕𝑡2
 (1.3b) 

−
𝑁𝑥
𝑅𝑥

−
𝑁𝑦

𝑅𝑦
+
𝜕𝑄𝑦𝑧

𝜕𝑦
+
𝜕𝑄𝑥𝑧
𝜕𝑥

= 𝐼0
𝜕2𝑤0
𝜕𝑡2

+ 𝑞(𝑥, 𝑦, 𝑡) (1.3c) 

𝜕𝑀𝑥

𝜕𝑥
+
𝜕𝑀𝑥𝑦

𝜕𝑦
− 𝑄𝑥𝑧 = 𝐼1

𝜕2𝑢0
𝜕𝑡2

+ 𝐼2
𝜕2𝜃𝑥

𝜕𝑡2
 (1.3d) 

𝜕𝑀𝑦

𝜕𝑦
+
𝜕𝑀𝑥𝑦

𝜕𝑥
− 𝑄𝑦𝑧 = 𝐼1

𝜕2𝑣0
𝜕𝑡2

+ 𝐼2
𝜕2𝜃𝑦

𝜕𝑡2
 (1.3e) 
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The explanation of the in-plane and transverse stress and moment resultants (𝑁𝑥, 𝑁𝑦, 𝑁𝑥𝑦, 

𝑀𝑥, 𝑀𝑦, 𝑀𝑥𝑦 , 𝑄𝑥𝑧 , 𝑄𝑦𝑧) for a laminated panel can be found in [1]. In equations (1.3a-e), laminate 

mass inertia terms are expressed as: 

(𝐼0 , 𝐼1, 𝐼2) = ∑ ∫ 𝜌𝑘(1, 𝑧, 𝑧2)
𝑧𝑘
𝑧𝑘−1

𝑑𝑧
𝑛
𝑘=1 . (1.4) 

where ρ(k) indicates the density of the k-th layer and  𝑞(𝑥, 𝑦, 𝑡) is the distributed lateral load at 

the top of the laminate given in Eq. (1.3c).  

The problem is solved for the boundary conditions below explained mathematically: 

Simply supported type 3 (SS3) boundary conditions identified at the edges, 

𝑥 = 0, 𝑎: 𝑢2 = 𝑢3 = Ɵ2 = 𝑀1 = 𝑁1 = 0 (1.5a) 

𝑦 = 0, 𝑏: 𝑢1 = 𝑢3 = Ɵ1 = 𝑀2 = 𝑁2 = 0 (1.5b) 

Mixed type simply supported type (SS1-SS2-SS3-SS4) boundary conditions identified at the 

edges, 

(𝑆𝑆2) 𝑥 = 0:  𝑢1 = 𝑢3 = Ɵ2 = 𝑀1 = 𝑁6 = 0 (1.6a) 

(𝑆𝑆1)𝑥 = 𝑎:  𝑢3 = Ɵ2 = 𝑀1 = 𝑁1 = 𝑁6 = 0 (1.6b) 

(𝑆𝑆4)𝑦 = 0:  𝑢1 = 𝑢2 = 𝑢3 = Ɵ1 = 𝑀2 = 0 (1.6c) 

(𝑆𝑆3)𝑦 = 𝑏:  𝑢1 = 𝑢3 = Ɵ1 = 𝑀2 = 𝑁2 = 0 (1.6d) 

SS3-RS4 boundary conditions defined in [4] identified at the edges, 

(𝑅𝑆4)𝑥 = 0, 𝑎: 𝑢1 = 𝑢2 = Ɵ2 = 𝑀1 = 𝑄1 = 0 (1.7a) 

(𝑆𝑆3)𝑦 = 0, 𝑏: 𝑢1 = 𝑢3 = Ɵ1 = 𝑀2 = 𝑁2 = 0 (1.7b) 

2. STATEMENT OF PROBLEM 

GDQ method [4] is employed to obtain numerical solution in order to solve the governing 

equation with the proposed boundary conditions. The GDQ provides a means to approximate 

derivatives of a smooth function, where the method evaluates the derivative of a given order at 

a specific point by combining the function values from all domain points. The proposed 

mathematical formulation starts with the displacement functions which involves the time 

variable (t) as well as position variables (𝑥, 𝑦). Displacement functions can be written as 

follows: 

𝑢(𝑇)(𝑥, 𝑦, 𝑡) = 𝑈𝑇(𝑥, 𝑦)𝑒𝑖𝜔𝑡 (2.1) 

where 𝑼(𝑻) is composed of function of spatial variables  and is written in matrix form as: 

𝑼(𝑻) = [𝑈1(𝑥, 𝑦) 𝑈2(𝑥, 𝑦)  𝑈3(𝑥, 𝑦) Ɵ1(𝑥, 𝑦) Ɵ2(𝑥, 𝑦)]
𝑇 (2.2) 

𝑈1, 𝑈2, 𝑈3, Ɵ1, Ɵ2 can be expressed in terms of nodal displacement components and Lagrange 

polynomials. 

𝑈𝑖(𝑥, 𝑦) = ∑ ∑ 𝐿𝑚(𝑥)𝑆𝑛(𝑦)
𝑁
𝑛=1

𝑀
𝑚=1 𝑢𝑖(𝑥, 𝑦) (i=1, 2, 3) (2.3a) 



6TH INTERNATIONAL CONFERENCE  

ON MATHEMATICAL AND RELATED SCIENCES 

 ICMRS 2023 

20-22 NOVEMBER, 2023 

 

Book of Proceedings-ICMRS 2023 

 
4 

Ɵ𝑖(𝑥, 𝑦) = ∑ ∑ 𝐿𝑚(𝑥)𝑆𝑛(𝑦)
𝑁
𝑛=1

𝑀
𝑚=1 Ɵ𝑖(𝑥, 𝑦) (i=1, 2) (2.3b) 

𝑢𝑖(𝑥𝑖 , 𝑦𝑗) are field variables at grid point (i , j) and  the first and 2nd derivatives of a two-

dimensional  field variable with respect to x or y is mentioned in [3].  Global assembling of 

governing equations and boundary conditions with the substitution of field variables 

(displacement functions) results in the matrix form as: 

𝑀𝑈̈ + 𝐾𝑈 = 0   (2.4) 

where K is the stiffness matrix, [m] is the mass matrix, {U} and {𝑈̈} are the nodal displacement 

and acceleration vector, respectively.  Written matrix in the way causes numerical instabilities 

and ill-conditioned matrices [5]. Thus, it is required to subdivide the matrix as boundary 

equations b and domain equations d. It is possible to write:  

[
[𝐾𝑏𝑏] [𝐾𝑏𝑑]

[𝐾𝑑𝑏] [𝐾𝑑𝑑]
] {
𝛥𝑏
𝛥𝑑
} − 𝜔2 [

[0] [0]
[0] [𝑀𝑑𝑑]

] {
𝛥𝑏
𝛥𝑑
} = {

0
0
} (2.5) 

It is possible to rewrite: 

(𝐾𝑑𝑑 − 𝐾𝑑𝑏(𝐾𝑏𝑏
−1)𝐾𝑏𝑑)𝛥𝑑 = 𝜔

2𝑀𝑑𝑑𝛥𝑑 (2.6a) 

(𝐾̂-𝜔2𝑀̂) 𝛥𝑑=0 (2.6b) 

  The natural frequencies of the structure, represented by 𝜔 can be found by solving the 

standard eigenvalue problem in equation (2.6b). To achieve this, the MATLAB software's built-

in eigs function is utilized, which yields the results in terms of the natural frequencies for the 

structures under investigation. 

3. NUMERICAL RESULTS AND DISCUSSION 

In this subsection, numerical examples for free vibration analysis of moderately thick plate and 

panels are presented by investigating the effect of various parameters such as effects of stacking 

lamination, material types, the effect of curvature, loading conditions, etc. The following 

dimension mechanical properties are assumed for validation of composite cross-ply laminate 

plate with [6]: 

Material Type 1: E1/ E2= 40, G12= G13 = 0.6E2, G23= 0.5E2, ν12 = 0.25 and ν21 = 0.00625. 

The non-dimensional frequency parameter, 𝜆 specified as 

𝜆 =
𝜔𝑏2

𝜋2
√
𝜌ℎ

𝐷0
 (3.1) 

where 

𝐷0 =
𝐸2ℎ

3

12(1 − 𝑣12𝑣21)
 (3.2) 

Table 6.1 presents the frequency parameters from the first validation along with the values from 

Liew [6]. The frequency results obtained by Srinivas et al. [7] and Liew et al. [6] were based 

on 3D elasticity theory. It is observed that at a/h=100, the frequency parameters from the 3D 

elasticity theory are in close agreement with the current results. However, at a higher thickness 

ratio (a/h=10), the first order shear deformation theory (FSDT) used in the proposed frequency 
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model tends to provide lower eigenvalues after the third mode sequence number compared to 

the 3D elasticity theory. Notably, the error between present results and shear deformation 

theories results becomes more significant for higher modes for a/h=10.The difference is 

ascribed to FSDT including a shear correction factor, thickness shear deformation, and rotary 

inertia, which results in a reduced estimation of plate stiffness.  

Table 6.2 validates the response of frequency parameters for the simply supported cross-ply 

[0°/90°/90°/0°] laminated plate at different length-to-thickness ratios (a/h). The comparison of 

our results with those of Reddy and Phan [8], who used a high order shear deformation theory, 

demonstrates good agreement. Notably, the fundamental frequencies in Table 6.2 show a 

significant impact from varying thickness, with a general trend of increasing fundamental 

frequency as the a/h ratio decreases. 

Table 6.1: Comparison of frequency parameter, 𝜆 for a simply supported square plate. (v=0.3, 

a/h= 10,100). 

a/h Results 
Mode sequence number 

1 2 3 4 5 6 

100 

Srinivas et al. 

[7] 
1.999 4.995 4.995 7.988 9.981 9.981 

Liew [6] 2.000 5.000 5.000 8.000 9.999 9.999 

Present Study 1.9993 5.0024 5.0024 7.9978 10.0279 10.0279 

10 

Srinivas et al. 

[7] 
1.9342 4.6222 4.6222 7.1030 8.6618 8.6618 

Liew [6] 1.931 4.605 4.605 7.064 8.605 8.605 

Present Study 1.9317 4.6109 4.6109 6.5234 6.5234 7.0747 

 

Table 6.2: Comparison of frequency parameter, 𝜆 of a simply supported cross-ply 

[0/90/90/0] laminated plate. 

a/h 0.01 0.02 0.04 0.05 0.08 0.10 0.20 0.25 0.50 

Reddy 

and 

Phan 

[8] 

6.578 6.475 6.330 6.196 5.708 5.355 3.854 3.331 1.956 

Present 

Study 
6.6061 6.5493 6.4582 6.1934 5.6769 5.3107 3.8066 3.2945 1.7069 

 

According to literature, shells with negative Gaussian curvature will exhibit the lowest 

frequencies compared with their non-negative Gaussian counterparts. Thus, it is intended 

further investigations about the curvature effects of composite shells with positive and negative 
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gaussian curvature. Thus, the proposed solution methodology with GDQ  is compared with the 

obtained FEM results (ANSYS)  in Table 6.3 for antisymmetric cross-ply [0/90] laminated 

negative Gaussian curvature panel, (R1= -R or R2= -R),and spherical panel (R1= R, R2= R)  

and plate for a/h=20 and 50. 

Table 6.3 : Comparison of frequency parameter, 𝜆  of  simply supported cross-ply [0/90] 

laminated plates and panels with positive and negative Gaussian curvature for different a/h 

ratios. 

 R1/a=R2/a =∞ R1/a=R2/a =10 
R1/a=10, 

R2/a=-10 

R1/a=-10, 

R2/a=10 

a/h GDQ FEA GDQ FEA GDQ FEA GDQ FEA 

20 7543.4 7360.7 7832.5 7657.2 7553.8 7341.1 7500.2 7358.5 

50 3076.4 3063.1 3758.7 3748.1 3074.2 3057.4 3065.1 3060.5 

 

As can be seen from Table 6.3, mathematical model with the GDQ can effectively calculate for 

panels with saddle shapes. Remarkably, the results are very similar between GDQ and FEM for 

all types of panels, indicating the theory's capability to handle these geometries accurately.  

The following mechanical properties [9] are assumed for convergence fundamental frequencies 

study of composite cross-ply laminate panel:  

 

Mat Type 2: E1 = 175.78 GPa, E1/ E2= 25, G12= G13 = 0.5E2, G23= 0.2E2, and ν12 = 0.25. 

 

Since the stability and accuracy are highly affected by the count of grid point, a convergence 

study is studied firstly. A rapid and monotonic convergence is observed for grid number m, 

n=9x9 for SS3 type boundary conditions as can be shown in Table 6.4. 

 

Table 6.4: Convergence study of first three natural frequencies (Hz) of cross-ply composite 

laminated [0/90]  panel according to different grid numbers (a/h=20) (SS3 Boundary 

Condition). 

 

 

Grid 

numbe

r 

7x7 9x9 11x11 13x13 15x15 17x17 19x19 21x21 23x23 

M
o
d
e 

se
q
u
en

ce
 

n
u
m

b
er

 

1 
3.450

6 

3.448

5 

3.448

5 

3.448

5 

3.448

5 

3.448

5 

3.448

5 

3.448

5 

3.448

5 

2 
8.768

4 

8.827

5 

8.821

6 

8.821

7 

8.821

7 

8.821

7 

8.821

7 

8.821

7 

8.821

7 

3 
8.815

9 

8.875

1 

8.869

2 

8.869

3 

8.869

3 

8.869

3 

8.869

3 

8.869

3 

8.869

3 

 

Table 6.5 provide outcomes for antisymmetric [0/90] and symmetric cross-ply [0/90/0] 

laminated negative Gaussian curvature panel, (R1= -R or R2= -R),and spherical panel (R1= R, 

R2= R)  and plate with varying boundary conditions for different a/h ratios. Insights drawn from 

Table 6.5 reveal the following: Shells characterized by negative Gaussian curvature ,exhibit 

lower frequencies compared to shells with non-negative Gaussian curvature for cross-ply 
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composite laminated [0/90]  for SS3, SS3-RS4, Mixed SS. However, panels with negative 

Gaussian curvature exhibit lower frequencies compared to shells with non-negative Gaussian 

curvature for cross-ply composite laminated [0/90/0] for SS3, SS3-RS4, Mixed SS. 

Regardless of boundary conditions, the nondimensional fundamental frequencies are increased 

by increasing the side-to-thickness ratio a/h.  

Table 6.5: Nondimensionalized frequency parameter of cross-ply laminated plates and panels 

with positive and negative Gaussian curvature for different a/h ratios. 

  R1/a=R2/a =∞ R1/a=R2/a =10 
R1/a=10, 

R2/a=-10 

R1/a=-10, 

R2/a=10 

B.C. a/h 
[0/9

0] 

[0/90/

0] 

[0/9

0] 

[0/90/

0] 

[0/9

0] 

[0/90/

0] 

[0/90

] 

[0/90/

0] 

SS3 

20 3.321 4.988 3.448 5.070 3.326 4.978 3.302 4.977 

50 3.386 5.276 4.137 5.779 3.383 5.265 3.374 5.267 

100 3.396 5.322 5.856 7.132 3.390 5.311 3.386 5.311 

SS3-

RS4 

20 2,963 2,459 3.178 3,867 2,974 3,856 4,023 3,856 

50 3,265 2,942 4.735 6,257 
4,304

8 
5,943 6,721 5,943 

100 3,332 3,075 8.300 9,127 7,027 8,231 8,716 8,231 

Mixed 

SS 

20 3,426 4,988 3,513 5,080 3,326 5,032 3,659 5,032 

50 3,503 5,276 4,255 5,879 3,545 5,618 4,387 5,618 

100 3,515 5,322 6,141 7,457 4,553 6,607 5,787 6,607 

4. CONCLUSIONS 

In this study, frequency analysis of moderately thick laminated cylindrical, spherical and 

negative Gaussian curvature panel for various combinations of boundary conditions was 

presented using GDQ method.  The governing equilibrium equations for laminated composite 

panels were obtained using the virtual work principle. Comprehensive tabular and graphical 

results were displayed to show the effects of curvature, stacking lamination and boundary 

conditions on the frequency response of plate and panel structures. The validity of the proposed 

model was authenticated with a review of the available literature, and the convergence 

characteristics 

were demonstrated. The numerical results could particularly be utilized during the early design 

stages of such laminated structures and as benchmark solutions for the future comparison of 

numerical results.  
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ABSTRACT 

In this study, we present a new generalization of the Hermite-Hadamard type inequalities for 

geometrically convex functions via Hadamard fractional integras. Also, we give some new 

inequalities for Hadamard fractional integrals by using two identities. 

 

INTRODUCTION 

 

 Definition 1.   The function ),0(),0(: Jf  is said to be GG -convex (geometrically 

convex) if the following inequality holds 

    )1()1( )()()(
   yfxfyxf  

for all  Jyx ,   and     in  ]1,0[  . 

In 2013, Iscan [8] also proved the following result: 

 Theorem 1.  Suppose that  f   RRI:   is geometrically convex and  Iba ,   with  

,ba    and   .,baLf    Then  

 
 

 

 
     

   
)1.1(

2
),(

lnln

1

lnln

1

bfaf
bfafL

z

dz
zf

ab

z

dz

z

ab
fzf

ab
abf

b

a

b

a






















      

where the logarithmic mean  ),( vuL   of two positive numbers  vu,   by 













. if,

 if,
:),(

lnln

vuu

vu
vuL

vu
vu

 

In addition to the convex function, many authors are working on geometric convexity, and with 

this definition, many new inequalities of the Hermite-Hadamard type are being studied, please 

see in the references [1], [8]-[14]. 

While fractional calculus has a rich historical background, recent developments in the field, 

particularly in the introduction of novel fractional derivative and integral operators by 

mailto:sarikayamz@gmail.com
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researchers, have revitalized interest in this area, particularly within applied sciences. This 

surge in interest has led to the introduction of numerous new fractional operators into the 

literature, driven by investigations into the properties of fractional derivative and associated 

integral operators, such as their singularity and locality, and modifications to their kernel 

structure. 

Another type of fractional derivative that is mentioned in the literature is the Hadamard 

fractional derivative, which was introduced by Hadamard in 1892, see [4] and [5]. It 

distinguishes itself from the Riemann-Liouville and Caputo derivatives in that the integral 

kernel contains a logarithmic function with an arbitrary exponent. More information about the 

Hadamard fractional derivative and its properties can be found in references. Recent literature 

has also featured results related to fractional integral inequalities employing the Hadamard 

fractional integral. Therefore, the study of fractional differential equations need more 

developmental of inequalities of fractional type, for some of them, please see ([2], [3], [6], [7], 

[14]-[16]). 

 Definition 2. Let  ].,[1 baLf    The left and righet Hadamard fractional integrals  fHa



   

and  fHb



   of order  0   with  1a   are defined by  

ax
t

dt
tf

t

x
xfH

x

a
a 














  ,)(ln
)(

1
)(

1




 

and 

bx
t

dt
tf

x

t
xfH

b

x
b 














  ,)(ln
)(

1
)(

1




 

respectively where  duue t 1

0
)( 

   . 

In this study, the following definitions will be made specifically: 

      

       .ln
)(

1

,ln
)(

1

1

1

z

dz

z
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fzf

z

b
afbfH

z

dz

z
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fzf
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z
afbfH

b

a

b

b

a

a


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
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




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



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
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
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
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
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










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








 

In this paper, we introduce a novel extension of the Hermite-Hadamard inequalities for 

geometrically convex functions via Hadamard fractional integrals. In order to exemplify its 

principal findings, a novel identity will be derived, and on the basis of said identity, some new 

integral inequalities will be presented. Additionally, we derive new inequalities that have strong 

connections with the right and left hand sides of the Hermite-Hadamard inequalities for 

Hadamard fractional integrals. 

MAIN RESULTS 

 

First, let's start our article by obtaining the Hermite-Hadamard inequality for the geometrically 

convex function. 
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 Theorem 2.  Let   ),0(),0(,: baf be a geometrically convex function on  .,ba   

If   ,,baLf   then the following inequalities hold: 

   

 
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Proof.  Since f  is geometrically convex function on  ba,  and using geometric-aritmatic 

inequality, we have 

       
   

.
2

yfxf
yfxfxyf


  

For  ,1,0t   ,,, 11 babaybax tttt     it follows that 
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tttt bafbaf
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By multiplying the result by 
1t  and integrates both sides of the inequality according to the 

parameter t  on  ,1,0   we get 

       
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Using the change of the variable, we obtain that  
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This is the first part of inequalities (2.1). On the other hand, since f  is geometrically convex 

function on   ba,  , we have 

             bftatfbfafbaf
tttt 

 1
11

, 

 

             bftatfbfafbaf
tttt 

 1
11

. 

By adding two these inequalites, we have 

      
 
 

 
 
 

   bfaf
af

bf
af

bf

af
bfbafbaf

tt

tttt 
















  11  

and multiplying the result by  
1t   and integrates both sides of the inequality according to the 

parameter t  on  ,1,0   it follows that 

   

 
 
 

 
 
 

     .1

1

0

1

1

0

1

1

0

11

1

0

11

1

0

dtbfaft

dtt
af

bf
afdtt

bf

af
bf

dtbaftdtbaft

tt

tttt










































 

Using the change of the variable, we get  
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1
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1

1

1
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1

11



















bfaf

dxx
af

dxx
bf

z

dz
zf

z

b

z

dz
zf

a

z

af

bf

af

bf

bf

af

bf

af

b

aa
b

b
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b
































 

Thus, we obtain desired the second part of inequalities (2.1). 

Remark 1.  In Theorem 2, if we choose 1 , then the inequality (2.1) becomes the 

inequality (1.1). 

To prove our other main results, we require the following lemma: 

Lemma 1.  Let f   RRI:   be differentiable function on I , the interior of the interval 

,I  where  Iba ,  with ,ba   and  .,baLf    Then the following identity holds, 

 

     

 
    

    .ln
2

ln
2

)2.2(
ln2

1

2

1

1

0

1

1

0

dtbaf
b

a
t

a

bb
dtbaf

a

b
t

a

ba

afHbfH
bfaf

tt

t

tt

t

ba

a
b

 


































 

Proof.  By integration by parts, we have 

   
 

 dtbaft
a

bf
a

dtbaf
a

b
t tt

a
b

a
b

tt

t



 






 11

1

0

1

1

0
lnln

1  
 

and 

   
 

  .
lnln

1 11

1

0

1

1

0

dtbaft
b

af
b

dtbaf
b

a
t tt

a
b

a
b

tt

t



 






  
 

By subtract by side to side these two integrals and using the change of the variable, we have 
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z

dz
zf

z

b

z
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zf

a

z
bfaf

dtbaf
b

a
tdtbaftbfaf

dtbaf
b

a
tbdtbaf

a

b
ta

b

a

b
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b

a
b
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t
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a
b

a
b

tt

t

tt

t














 

 

By multiplying this result by  ,ln
2
1

a
b   it is desired equality (2.2). 

 Remark 2. In Lemma 1, we choose  1   , then the equality (2.2) becomes the following 

equality,  

   
     



































 

 dtbaf
b

a
tbdtbaf

a

b
ta

z

dz
zf

ab

bfaf tt

t

tt

t

a
bb

a

1

1

0

1

1

0
2

ln1

2
 

which is proved by İşcan in [8]. 

 Theorem 3.  With the assumptations in Lemma 1. If  f   is geometrically convex on  ba,  , 

then we have the following inequality 

 

     

 
    

 
 

 
 

 

 
)3.2(ln

2

1

ln2

1

2





























































bfb

afa
Gbfb

afa

bfb
Gafa

a

b

afHbfH
bfaf

ba

a
b







 

 

where  G  is defined by 

 
  

  .ln
ln

1

1

1
duu

s
sG

s


 
  

Proof.  We take absolute value of (2.2) and by using the geometrically convexity of f  , we 

have 
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     
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0
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b
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a
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b
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a
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a

b
t

a
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afa

bfb
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t
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t

tt

t
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b



































































































 

This proves the inequality (2.3). 

Corollary 1. Under the conditions of the Theorem 3 with 1 , we ave the following 

inequality 

 

   
       )4.2(. ,ln

2

1

lnln

1

2
afabfbL

a

b

x

dx
xf

ab

bfaf
b

a







  

 

Proof.  In Theorem 3, if we choose 1 , then the inequality (2.3) becomes the following 

inequality  

   
 

 
 
   

 
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which is proved the inequality (2.4). 

Lemma 2.  Let f   RRI:  be differentiable function on I , the interior of the interval  

,I  where  Iba ,  with ,ba   and  .,baLf    Then the following identity holds, 

 

   
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Proof.  By integration by parts, we have 
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By adding by side to side these four integrals and using the change of the variable, we have 
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By multiplying this result by  ,ln
2
1

a
b   it is desired equality (2.5). 

Theorem 4.  With the assumptations in Lemma 2. If f   is geometrically convex on  ba,  , 

then we have the following inequality 
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










































 

afabfb

afabfb

a

b

bfb

afa
Y

bfb

afa
Tbfb

afa

bfb
Y

afa

bfb
Tafa

a

b

afHbfHabf
ba

a
b









 

where  T   and  Y   are defined by 

 
  

  duu
s

sT

s


 ln
ln

1

1

1 
  

 and 

 
  

  .ln
ln

1
1

duu
s

sY

s

s



 
  

 

Proof.  We take absolute value of (2.5) and by using the geometrically convexity of  f   , we 

have 
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This proves the inequality (2.6). 

Corollary 2. Under the conditions of the Theorem 4 with 1 , we have the following 

inequality 

         )7.2(. ,ln
4

1

lnln

1 2 afabfbL
a

b

x

dx
xf

ab
abf

b

a




   

Proof.  In Theorem 4, if we choose 1 , then the inequality (2.6) becomes the following 

inequality 

f ab    1

2 ln b
a

 Ha
 fb  Hb 

 fa

 1
2

ln b
a a 

0

1

2

t b
a

t

|f a|
1t

|f b|
t
dt  b 

0

1

2

t a
b

t

|f a|
t
|f b|

1t
dt

a 
1

2

1

1  t  b
a

t

|f a|
1t

|f b|
t
dt  b 

1

2

1

1  t  b
a

t

|f a|
t
|f b|

1t
dt

 a
2

|f a| ln b
a 

0

1

2

t
b|f b|

a|f a|

t

dt  
1

2

1

1  t 
b|f b|

a|f a|

t

dt

 b
2

|f b| ln b
a 

0

1

2

t
a|f a|

b|f b|

t

dt  
1

2

1

1  t 
a|f a|

b|f b|

t

dt

 a
2

ln b
a

|f a|

ln
b|f b |

a|f a |

1

1

b fb

a fa

lnudu  
b fb

a fa

b fb

a fa

ln
b|f b|

a|f a|



 lnu du

 b
2

|f b|

ln
a|f a |

b|f b |

1
ln b

a 
1

a fa

b fb

lnudu  
a fa

b fb

a fa

b fb

ln
a|f a|

b|f b|



 lnu du
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which is proved the inequality (2.7). 
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ABSTRACT 

 

Our research investigates a stochastic SIR epidemic model characterized by a saturation effect 

in the incidence rate. The core of our analysis is the threshold dynamics, revealing that a 

negative 𝜆 < 0 enhances the probability of disease eradication. In contrast, a positive 𝜆 > 0 

results in the model exhibiting a singular positive stationary distribution.  

 

1. INTRODUCTION 

In the early 1900s, epidemiology experienced a pivotal shift due to the influential work of 

renowned scientists like Anderson Gray McKendrick and Janet Leigh. They were instrumental 

in introducing mathematical modeling to epidemiology, an essential technique in the discipline. 

Mathematical models have significantly influenced how outbreaks and epidemics are managed, 

becoming a key factor in shaping data-driven public health strategies. The development of 

epidemiology, notably its transition into a formal scientific discipline, is marked by significant 

contributions from several key figures. Among them, Quinto Tiberio Angelerio is noteworthy 

for his adept handling of the plague in Alghero, Sardinia, in 1582. However, the birth of modern 

epidemiology is primarily attributed to the 19th century. John Snow, often hailed as the "father 

of modern epidemiology," played a crucial role in his detailed analysis of a cholera outbreak in 

London, tracing its source to the contaminated water of the Broad Street pump. This seminal 

investigation marks a turning point in epidemiology, establishing the foundations of the 

rigorous, data-driven discipline we know today. Mathematical models have become 

instrumental in revealing the complex dynamics of disease development and spread. A 

significant advancement in this area was the development of the SIR (Susceptible-Infected-

Removed) epidemic model by Kermack and McKendrick in 1927 [1]. The incidence rate, a 

critical metric, quantifies new infections over a defined period. Various incidence rates have 

been explored to reflect the nuances of transmission dynamics accurately. These include the 

bilinear incidence rate (see, e.g., [2, 3, 4, 5, 6, 7] for more information and the references cited 

therein), saturation infection rate [8], and several nonlinear incidence rates (refer to [9, 10, 11] 

for further insights), each contributing to a more nuanced understanding of epidemiological 

patterns. Infectious diseases are sensitive to environmental variations, including temperature 

shifts, humidity, and broader climatic conditions. As a result, using stochastic differential 

mailto:soulaimane.aznague@etu.uae.ac.ma
mailto:adel@yahoo.fr
mailto:lahrouzadil@gmail.com
mailto:mourad.elidrissi@etu.uae.ac.ma
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equations has gained prominence in modeling disease transmission. These equations offer a 

more authentic portrayal of how stochastic elements influence the dynamics of infectious 

diseases. Our study focuses on a stochastic SIR epidemic model that incorporates a saturated 

incidence rate, offering insights into the complex interplay of disease transmission under 

stochastic influences. 

 

 

{
 
 

 
 𝑑𝑆 = [Λ − 𝜇𝑆 −

𝛽𝑆𝐼

1+𝛼𝑆
] 𝑑𝑡 + 𝜎1𝑆𝑑𝐵1,

𝑑𝐼 = [−(𝜇 + 𝛾)𝐼 +
𝛽𝑆𝐼

1+𝛼𝑆
] 𝑑𝑡 + 𝜎2𝐼𝑑𝐵2,

𝑑𝑅 = [𝛾𝐼 − 𝜇𝑅]𝑑𝑡 + 𝜎3𝑅𝑑𝐵3.

  (1.1) 

 

 At a given moment, the variables 𝑆(𝑡), 𝐼(𝑡), and 𝑅(𝑡) represent the number of susceptible, 

infected, and recovered individuals, respectively, in the population. Within this model, the 

positive parameters have specific interpretations: 𝛾 is the rate at which infected individuals 

recover, 𝛽𝑆/(1 + 𝛼𝑆) describes the incidence rate with 𝛽 as the rate of disease transmission, 

and 𝛼 as the half-saturation constant. Additionally, 𝜇 signifies the natural mortality rate of the 

population, while Λ indicates the rate at which new individuals are added to the people. In our 

model, there are independent Brownian motions, represented by 𝐵𝑖(𝑡) where 𝑖 = 1,2,3, each 

accompanied by a corresponding intensity of white noise, denoted as 𝜎𝑖, and all these intensities 

are positive. Given that the final equation in system (1.1) operates independently of the first 

two, our analysis is concentrated exclusively on the subsequent equations: 

 

              {

𝑑𝑆 = [Λ − 𝜇𝑆 −
𝛽𝑆𝐼

1+𝛼𝑆
] 𝑑𝑡 + 𝜎1𝑆𝑑𝐵1,

𝑑𝐼 = [−(𝜇 + 𝛾)𝐼 +
𝛽𝑆𝐼

1+𝛼𝑆
] 𝑑𝑡 + 𝜎2𝐼𝑑𝐵2.

 (1.2) 

 

2. PRELIMINARIES 

 Throughout this paper, we consider the following notations: ℝ+
2 = {(𝑠, 𝑖): 𝑠 ≥ 0, 𝑖 ≥ 0}, 

ℝ+
2,𝑜 = {(𝑠, 𝑖): 𝑠 > 0, 𝑖 > 0}. We establish (Ω, 𝒯, {𝒯𝑡}𝑡≥0, ℙ) as a complete probability space, 

accompanied by a filtration {𝒯𝑡}𝑡≥0 that adheres to standard conditions. Our research focuses 

on the analysis of a 𝑑-dimensional Itô process governed by the following stochastic differential 

equation (SDE):  

 

 𝑑𝑋 = 𝑓(𝑋)𝑑𝑡 + 𝑔(𝑋)𝑑𝐵,     𝑓𝑜𝑟  𝑒𝑎𝑐ℎ     𝑡 ≥ 𝑡0. (2.1) 

 

 Here, 𝐵(𝑡) represents a 𝑑 − dimensional white noise, and the starting value 𝑋(0) ∈ ℝ𝑑. 

According to Itô formula, the stochastic equation verified by 𝑉(𝑋(𝑡), 𝑡) where 𝑉 is a function 

that is continuously twice differentiable and defined on ℝ𝑑 × ℝ+, is given by:  

 

 𝑑𝑉(𝑋) = ℒ𝑉(𝑋)𝑑𝑡 + ∇𝑉(𝑋)𝑔(𝑋)𝑑𝐵(𝑡), 
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 where ∇𝑉 = (
∂𝑉

∂𝑥1
, . . . ,

∂𝑉

∂𝑥𝑑
) is gradient of 𝑉 and ℒ is the differential operator with system (2.1), 

defined by  

 ℒ =
∂

∂𝑡
+ ∑𝑑𝑖=1 𝑓𝑖(𝑋)

∂

∂𝑋𝑖
+
1

2
∑𝑑𝑖,𝑗=1 [𝑔

𝑇(𝑋) ⋅ 𝑔(𝑋))]𝑖𝑗
∂2

∂𝑋𝑖 ∂𝑋𝑗
. 

 

Theorem 2.1.  For each 𝑋(0) ∈ ℝ+
2 , there exists a unique positive solution 𝑋 of SDE (1.2) for 

every 𝑡 ≥ 0 such that  

                        ℙ𝑠,𝑖{𝑋(𝑡) ∈ ℝ+
2 } = 1. 

  

Proof. The proof of positivity of solutions follows a methodology similar to that in [11], which 

we omit for brevity.  

Next, we establish the threshold that governs the dynamics of the model (1.2). To proceed, we 

consider the following equation obtained by setting 𝐼(𝑡) = 0 in the first equation of model (1.2) 

and denote the solution of this equation as 𝑆̂(𝑡). Thus  

 

 𝑑𝑆̂(𝑡) = [Λ − 𝜇𝑆̂(𝑡)]𝑑𝑡 + 𝜎1𝑆̂(𝑡)𝑑𝐵1, (2.2) 

 

 with initial value 𝑆(0). It follows from the comparison theorem [12] that for all 𝑡 ≤ 0  

 𝑆(𝑡) ≤ 𝑆̂(𝑡),    a. s.. 
 As shown in [13], the process 𝑆̂(𝑡) exhibits a unique stationary distribution 𝝅 where the 

expression of its density is given, using Fokker-Planck equation by  

 𝑓∗(𝑥) =
(2Λ𝜎1

−2)
2𝜇𝜎1

−2+1

Γ(1+
2𝜇

𝜎1
2)

𝑥−(2+2𝜇𝜎1
−2)exp (

−2Λ

𝜎1
2𝑥
) ,    𝑥 ∈ (0,∞), 

 where Γ(⋅) is a Gamma function. Therefore, one has  

 lim
𝑡→∞

1

𝑡
∫
𝑡

0
𝑆̂(𝑥) d𝑥 = ∫

∞

0
𝑠𝑓∗(𝑠) d𝑠 =

Λ

𝜇
     𝑎. 𝑠.. 

 In the following, we shall show that the long-time behavior of 𝐼(𝑡) is determined by  

 

 𝜆 = ∫
∞

0

𝛽𝑠

1+𝛼𝑠
𝝅 (d𝑠) − 𝜇 − 𝛾 −

𝜎2
2

2
. 

 

 

3. MAIN RESULTS 

The focal outcome of this section is the identification of nearly necessary and sufficient 

conditions determining the persistence and extinction of the disease. 

 

Theorem 3.1.  Consider 𝑋 as the solution to SDE (1.2) with an initial value 𝑋0. Assume that 

 𝜆 < 0, then  

                    limsup
𝑡→∞

1

𝑡
ln 𝐼(𝑡) ≤ 𝜆 < 0,     𝑎. 𝑠.. (3.1) 

 If 𝜆 > 0, then, the model (1.2) possesses a unique stationary distribution 𝜐∗(. ) and is ergodic. 

Moreover,  

(i) for any 𝜐∗-integrable 𝑓: ℝ+
2,𝑜 → ℝ, we have  

             ℙ {lim
𝑡→∞

1

𝑡
∫
𝑡

0
𝑓(𝑋(𝜏))d𝜏 = ∫

𝐑+
2,𝑜 𝑓(𝑥)𝜐∗(d𝑥)} = 1. 
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 (ii) For each (𝑠, 𝑖) ∈ ℝ+
2,𝑜

, lim
𝑡→∞

∥ 𝑃(𝑡, (𝑠, 𝑖),⋅) − 𝜐∗(⋅) ∥= 0, where 𝑃(𝑡, (𝑠, 𝑖),⋅) is the transition   

probability.  

 

Proof. The case 𝜆 < 0. Using the Itô formula to function ln𝐼(𝑡), we obtain  

 

 𝑑(ln 𝐼) = [
𝛽𝑆

1+𝛼𝑆
− (𝛾 + 𝜇 +

𝜎2
2

2
)] 𝑑𝑡 + 𝜎2𝑑𝐵2, 

               ≤ [
𝛽𝑆̂

1+𝛼𝑆̂
− (𝛾 + 𝜇 +

𝜎2
2

2
)] 𝑑𝑡 + 𝜎2𝑑𝐵2. 

 

 By applying the strong law of large numbers and from the ergodicity of 𝑆̂(𝑡), we obtain  

 

 limsup
𝑡→∞

1

𝑡
ln 𝐼(𝑡) ≤ lim

𝑡→∞

1

𝑡
∫
𝑡

0

𝛽𝑆̂

1+𝛼𝑆̂
 d𝑥 − 𝜇 − 𝛾 −

𝜎2
2

2
, 

                           ≤ ∫
∞

0

𝛽𝑠

1+𝛼𝑠
𝝅(d𝑠) − 𝜇 − 𝛾 −

𝜎2
2

2
, 

                           : = 𝜆    a. s.. 
 This implies that  

                            lim
𝑡→∞

𝐼(𝑡) = 0    a. s.. 

 The proof is completed.  

 

 

Proof. The case 𝜆 > 0. In view of system (1.2), we define  

 𝑉1 = −ln 𝐼 +
𝛽

𝜇
(𝑆̂ − 𝑆) −

𝛽

𝜇
𝐼. 

 Applying the Itô formula, we get  

 ℒ𝑉1 = (𝜇 + 𝛾 +
𝜎2
2

2
) −

𝛽𝑆

1+𝛼𝑆
− 𝛽(𝑆̂ − 𝑆) +

𝛽(𝜇+𝛾)

𝜇
𝐼, 

        ≤ −𝜆 + ∫
∞

0

𝛽𝑠

1+𝛼𝑠
𝝅 (d𝑠) −

𝛽𝑆̂

1+𝛼𝑆̂
+

𝛽𝑆̂

1+𝛼𝑆̂
−

𝛽𝑆

1+𝛼𝑆
− 𝛽(𝑆̂ − 𝑆) +

𝛽(𝜇+𝛾)

𝜇
𝐼, 

         ≤ −𝜆 + ∫
∞

0

𝛽𝑠

1+𝛼𝑠
𝝅 (d𝑠) −

𝛽𝑆̂

1+𝛼𝑆̂
+
𝛽(𝜇+𝛾)

𝜇
𝐼. (3.2) 

 Define  

 𝑉2(𝑆) = −ln 𝑆,    𝑉3(𝑋) =
1

𝑚+1
(𝑆 + 𝐼)𝑚+1, 

 

 where 𝑚 > 0 satisfying  

 𝜃:= 𝜇 −
𝑚

2
(𝜎1

2 ∨ 𝜎2
2) > 0. 

 Applying the Itô formula to 𝑉2 and 𝑉3, respectively, we get  

 ℒ𝑉2 ≤ −
Λ

𝑆
+ 𝛽𝐼 + 𝜇 +

𝜎1
2

2
, (3.3) 

 and  

 ℒ𝑉3 = (𝑆 + 𝐼)𝑚[Λ − 𝜇𝑆 − (𝜇 + 𝛾)𝐼] +
𝑚

2
(𝑆 + 𝐼)𝑚−1(𝜎1

2𝑆2 + 𝜎2
2𝐼2), 

         ≤ (𝑆 + 𝐼)𝑚Λ − 𝜇(𝑆 + 𝐼)𝑚+1 +
𝑚

2
(𝑆 + 𝐼)𝑚+1(𝜎1

2 ∨ 𝜎2
2), 

         ≤ 𝐵 −
𝜃

2
(𝑆 + 𝐼)𝑚+1, (3.4) 

 where  
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 𝐵 = sup
𝑋∈ℝ+

2,𝑜
{(𝑆 + 𝐼)𝑚Λ −

𝜃

2
(𝑆 + 𝐼)𝑚+1}. 

 We define  

 𝑉̃(𝑆, 𝐼) = 𝐶𝑉1(𝑆, 𝐼) + 𝑉2(𝑆) + 𝑉3(𝑋), 
 where 𝐶 > 0 is adequately large to fulfill the following condition:  

 −𝐶𝜆 + 𝐹 ≤ −2, (3.5) 

 where  

 𝐹 = sup
𝑆∈(0,∞)

{𝛽𝐼 −
Λ

𝑆
+ 𝐵 + 𝜇 +

𝜎1
2

2
−
𝜃

2
𝑆𝑚+1 −

𝜃

2
𝐼𝑚+1}. 

 Furthermore, it is essential to remark that 𝑉̃(𝑆, 𝐼) has a minimum value point (𝑆∗, 𝐼∗). Then, 

we consider a non-negative 𝒞2-function 𝑊(𝑆, 𝐼) as follows:  

 

            𝑊(𝑆, 𝐼) = 𝑉̃(𝑆, 𝐼) − 𝑉̃(𝑆∗, 𝐼∗). 
 In view of (3.2), (3.3) and (3.4), we obtain  

 ℒ𝑊 ≤ −𝐶𝜆 + 𝐶 (∫
∞

0

𝛽𝑠

1+𝛼𝑠
𝝅 (d𝑠) −

𝛽𝑆̂

1+𝛼𝑆̂
) +

𝐶𝛽(𝜇+𝛾)

𝜇
𝐼 −

Λ

𝑆
+ 𝛽𝐼 + 𝜇 +

𝜎1
2

2
+

𝐵 −                                             
𝜃

2
𝑆𝑚+1 −

𝜃

2
𝐼𝑚+1, 

         = 𝐺(𝑆, 𝐼) + 𝐶 (∫
∞

0

𝛽𝑠

1+𝛼𝑠
𝝅 (d𝑠) −

𝛽𝑆̂

1+𝛼𝑆̂
), 

 where  

 𝐺(𝑆, 𝐼) = −𝐶𝜆 +
𝐶𝛽(𝜇+𝛾)

𝜇
𝐼 −

Λ

𝑆
+ 𝛽𝐼 + 𝜇 +

𝜎1
2

2
+ 𝐵 −

𝜃

2
𝑆𝑚+1 −

𝜃

2
𝐼𝑚+1. 

 Now, we can formulate a bounded open set 𝒰𝜀 as follows:  

 𝒰𝜀 = {(𝑆, 𝐼) ∈ ℝ+
2,𝑜/    𝜀 < 𝑆 <

1

𝜀
,    𝜀 < 𝐼 <

1

𝜀
}, 

 where 0 < 𝜀 < 1 is a sufficiently small. Furthermore, by using the explicit formulation of 

𝐺(𝑆, 𝐼), one has  

Case 1. Letting 𝑆 → 0+ or 𝑆 → ∞ or 𝐼 → ∞, we get  

 𝐺(𝑆, 𝐼) = −𝐶𝜆 +
𝐶𝛽(𝜇+𝛾)

𝜇
𝐼 −

Λ

𝑆
+ 𝛽𝐼 + 𝜇 +

𝜎1
2

2
+ 𝐵 −

𝜃

2
𝑆𝑚+1 −

𝜃

2
𝐼𝑚+1, 

               ≤ −∞. 
 Case 2. Assume that 𝐼 → 0+, we obtain  

 𝐺(𝑆, 𝐼) = −𝐶𝜆 −
Λ

𝑆
+ 𝛽𝐼 +

𝐶𝛽(𝜇+𝛾)

𝜇
𝐼 + 𝜇 +

𝜎1
2

2
+ 𝐵 −

𝜃

2
𝑆𝑚+1 −

𝜃

2
𝐼𝑚+1, 

               ≤ −𝐶𝜆 +
𝐶𝛽(𝜇+𝛾)

𝜇
𝐼 + 𝐹 → −𝐶𝜆 + 𝐹, 

               ≤ −2, 
 which follows from (3.5).  

As a result, for a sufficiently small 𝜀 > 0, we obtain  

 𝐺(𝑋) ≤ −1,     𝑓𝑜𝑟  𝑎𝑙𝑙     (𝑆, 𝐼) ∈ ℝ+
2,𝑜\𝒰𝜀 . (3.6) 

 In addition, there is also 𝑇 > 0 such that  

 𝐺(𝑋) ≤ 𝑇,     𝑓𝑜𝑟  𝑒𝑎𝑐ℎ     (𝑆, 𝐼) ∈ ℝ+
2,𝑜 . (3.7) 

 Hence, by the ergodicity of 𝑆̂, combining (3.6) and (3.7), we obtain  

 

 0 ≤ liminf
𝑡→∞

1

𝑡
∫
𝑡

0
𝔼(𝐺(𝑋(𝜏)))d𝜏, 
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     = liminf
𝑡→∞

1

𝑡
∫
𝑡

0
[𝔼 (𝐺(𝑋(𝜏))𝕀{𝑋(𝜏)∈𝒰𝜀𝑐}) + 𝔼(𝐺(𝑋(𝜏))𝕀{𝑋(𝜏)∈𝒰𝜀})] d𝜏, 

     ≤ liminf
𝑡→∞

1

𝑡
∫
𝑡

0
[𝑇𝑃(𝑋(𝜏) ∈ 𝒰𝜀) − 𝑃(𝑋(𝜏) ∈ 𝒰𝜀

𝑐)]d𝜏, 

     = −1 + (𝑇 + 1)liminf
𝑡→∞

1

𝑡
∫
𝑡

0
𝑃(𝑋(𝜏) ∈ 𝒰𝜀)d𝜏, 

 

 which implies  

 

 liminf
𝑡→∞

1

𝑡
∫
𝑡

0
𝑃(𝜏, (𝑠, 𝑖), 𝒰𝜀) d𝜏 ≥

1

𝑇+1
, (3.8) 

 

 for all 𝑋0 = (𝑠, 𝑖) ∈ ℝ+
2,𝑜

. Given that ℝ+
2,𝑜

 is an invariant set according to (1.2), we can examine 

𝑋(𝑡) within the state space ℝ+
2,𝑜

. Additionally, leveraging the invariance of ℝ+
2,𝑜

 and the 

inequality (3.8), it follows that there exists an invariant probability measure 𝜐∗ on ℝ+
2,𝑜

, as 

established in [14]. Moreover, the independence of 𝐵𝑖(𝑡), 𝑖 = 1,2, as indicated in [15, 16], 

implies that ℝ+
2,𝑜

 serves as the support of 𝜐∗. In consideration of the results presented in 

references [17, 18, 19], it can be demonstrated that assertions (𝑖) and (𝑖𝑖) are substantiated. 

This completes the proof.  

 

4. CONCLUSION 

In epidemiological research, exploring stochastic dynamics offers a nuanced perspective on 

disease spread and control. Our study, "Stochastic Dynamics in Epidemic Modeling: Long-

Term Analysis of a SIR Model Featuring Incidence Capping," delves into the intricate interplay 

between random environmental factors and disease transmission. By integrating stochastic 

elements into the classical SIR (Susceptible-Infected-Recovered) model, this research sheds 

light on the long-term behavior of infectious diseases under varying conditions. A key feature 

of our model is the incorporation of incidence capping, which provides a more realistic 

representation of how external limitations and behavioral changes in a population may 

influence disease transmission. This approach allows for a deeper understanding of the 

unpredictable nature of epidemics and aids in developing more effective, data-driven public 

health strategies. 
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ABSTRACT 

This study deals with obtaining an optimal solution for the optimal control of the 

parabolic initial-boundary value problem. We show that the optimal control problem is 

well-posed and prove that the cost functional is differentiable. In this paper, a variational 

method for the optimal control problem is suggested. A necessary condition for the 

optimal solution is given.   

1. INTRODUCTION 

The control problems of the parabolic equations have attracted many mathematicians since 

these problems are of paramount importance in heat conduction processes. Bushuyev [15] has 

controlled the function 𝑓(𝑥) in the parabolic problem 𝑢𝑡 + 𝐴𝑢 = 𝜎(𝑥, 𝑡)𝑓(𝑥) with Dirichlet 

boundary conditions. Münch and Periago [4] have studied the optimal distribution of the 

support of the internal null control of minimal 𝐿2-norm for the 1-D heat equation. In [5], the 

numerical approximation of an optimal control problem for a linear heat equation has been 

presented. Yu [14] has established the equivalence of minimal time and minimal norm control 

problems for the semi-linear heat equations.  Zheng, Guo and Ali [12] have investigated the 

stability of the optimization problem for a multidimensional heat equation. Zheng and Yin [13] 

have studied the optimal time for the time optimal control problem governed by an internally 

controlled semi-linear heat equation. 

There are some studies about the initial control for parabolic problems [7-8,16,20] and for 

hyperbolic problems [2-3,23]. Klibanov [20] obtained logarithmic stability estimates for the 

unknown initial condition. Lions [16] has examined the optimal control problem of the initial 

condition for the parabolic systems from the measured temperature at the final time when the 

control function belongs to the space 𝐿2. Hao and Oanh worked on the determination of the 

initial condition in parabolic equations from boundary observations in [7] and from integral 

observations in [8]. In both studies, the control function belongs to the space 𝐿2.  

In this study, we consider a thin rod of length 𝑙 with an initial temperature 𝑣(𝑥), and a heat 

source 𝑓(𝑥, 𝑡). We control the initial temperature in a parabolic problem from a given target 

function 𝑦(𝑥, 𝑡). Moreover, the initial data is an element of the space 𝐻1. More precisely, we 

consider the following optimal control problem: 
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Choose a control 𝑣(𝑥) ∈ 𝐻1(0, 𝑙) and a corresponding u such that the pair (𝑣, 𝑢) minimizes the 

functional 

 𝐽𝛼(𝑣) = ∫ ∫ [𝑢(𝑥, 𝑡; 𝑣) − 𝑦(𝑥, 𝑡)]2𝑑𝑥
𝐿

0
𝑑𝑡

𝑇

0
+ 𝛼‖𝑣 − 𝑤‖𝐻1(0,𝑙)

2  (1.1) 

subject to the parabolic problem: 

 

𝑢𝑡 − 𝑘𝑢𝑥𝑥 = 𝑓(𝑥, 𝑡),    (𝑥, 𝑡) ∈ Ω ≔ (0, 𝑙) × (0, 𝑇]

𝑢(𝑥, 0) = 𝑣(𝑥),   𝑥 ∈ (0, 𝑙)

𝑢𝑥(0, 𝑡) = 0,   𝑢𝑥(𝑙, 𝑡) = 0 ,    𝑡 ∈ (0, 𝑇]
 (1.2) 

where 𝑘 > 0 is a constant, 𝑦 ∈ 𝐿2 (Ω)  is a given target function, 𝑓 is a given function and 

𝑤 ∈ 𝐻1(0, 𝑙) is an initial guess for the optimal control. 

𝐽𝛼(𝑣) is called the objective function. With the choice of the functional in (1.1), we mention 

the observation of 𝑢(𝑥, 𝑡; 𝑣) in 𝐿2(Ω) for the control 𝑣(𝑥) ∈ 𝐻1(0, 𝑙). In (1), 𝛼 > 0 is the 

parameter of regularization and it can be found by the Tikhonov regularization method [6]. Let 

admissible set 𝑉𝑎𝑑 be closed, convex and bounded subset of the space 𝐻1 (0, 𝑙). We denote by 

𝑢(𝑥, 𝑡; 𝑣) the solution of the parabolic problem (1.2), corresponding to the given element v∈
𝑉𝑎𝑑.  

The parabolic boundary value problem (1.2) admits a unique solution 𝑢 ∈ 𝐻1,1(𝛺) for every 

𝑣(𝑥) ∈ 𝐻1(0, 𝑙) and 𝑓 ∈ 𝐿2(Ω). This solution holds the following estimate [9,17]: 

 ‖𝑢‖𝐻1,1
2 ≤ 𝑐1(‖𝑓‖𝐿2(Ω)

2 + ‖𝑣‖𝐻1(0,𝑙)
2 ) (1.3) 

where 𝑐1 is a constant independent from 𝑓 and 𝑣.  

2. MAIN RESULTS 

In this section, we show the existence and uniqueness of the optimal solution and get the 

gradient of the cost functional (1.2). Then we give a necessary condition in the integral form 

for the optimal solution. 

 

Now, we give the difference problem of the optimal control problem (1.1)-(1.2). Let’s give the 

increment ∆𝑣 to 𝑣 such that 𝑣 + ∆𝑣 ∈ 𝑉𝑎𝑑  and show the solution of (1.2) corresponding  𝑣 +
∆𝑣  by  𝑢∆ = 𝑢(𝑥, 𝑡; 𝑣 + ∆𝑣) . Then the function  ∆𝑢 = 𝑢∆ − 𝑢 will be the solution of the 

following difference problem: 

 

 

∆𝑢𝑡 − 𝑘∆𝑢𝑥𝑥 = 0,    (𝑥, 𝑡) ∈ Ω

∆𝑢(𝑥, 0) = ∆𝑣(𝑥),   𝑥 ∈ (0, 𝑙)

∆𝑢𝑥(0, 𝑡) = 0,   ∆𝑢𝑥(𝑙, 𝑡) = 0 ,    𝑡 ∈ (0, 𝑇]
 (2.1) 

 

 Lemma 1. Let ∆u be the solution of the problem (2.1). Then the following estimate is valid: 

 ‖∆𝑢(𝑥, 𝑡)‖𝐿2(0,𝑇)
2 ≤ 𝑐2‖∆𝑣‖𝐻1(0,𝑙)

2 . (2.2) 

Here 𝑐2 is independent from ∆𝑣.                                               
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Theorem 1 (Goebel Theorem).  Let H be a uniformly convex Banach space and the set V be 

a closed, bounded and convex subset of 𝐻. If 𝛼 > 0 and 𝛽 ≥ 1 are given numbers and the 

functional 𝐽(𝑣) is lower semi continuous and  bounded from below on the set 𝑉 then there is a 

dense set 𝐺 of 𝐻 that the functional 

𝐽𝛼(𝑣) = 𝐽(𝑣) + 𝛼‖𝑣‖𝐻
𝛽

 

takes its minimum on the set 𝑉. If 𝛽 > 1 then minimum is unique [19].  

We can easily prove that the optimal control problem (1.1)-(1.2) holds the conditions of the 

Theorem 1. So, we have a unique optimal solution for the optimal control problem (1.1)-(1.2). 

Let us introduce the Lagrangian  𝐿(𝑢, 𝑣, 𝜓)  given by  

 𝐿(𝑢, 𝑣, 𝜓) = 𝐽𝛼  (𝑣) + 〈𝜓, 𝑢𝑡 − 𝑘𝑢𝑥𝑥 − 𝑓(𝑥, 𝑡)〉𝐿2 (𝛺)  (2.3) 

where the functional 𝐽𝛼  (𝑣) is defined by (1.1) and the function 𝜓(𝑥, 𝑡) is the Lagrange 

multiplier.  

Using the 𝛿𝐿 = 0 stationarity condition, we have the following adjoint problem:  

 

𝜓𝑡 − 𝑘𝜓𝑥𝑥 = 2[𝑢(𝑥, 𝑡) − 𝑦(𝑥, 𝑡)],    (𝑥, 𝑡) ∈ Ω

𝜓(𝑥, 0) = 0,   𝑥 ∈ (0, 𝑙)

𝜓𝑥(0, 𝑡) = 0,   𝜓𝑥(𝑙, 𝑡) = 0 ,    𝑡 ∈ (0, 𝑇]
 (2.4) 

Now, we investigate the variation of the functional 𝐽𝛼(𝑣). The difference functional  ∆𝐽𝛼(𝑣) =
𝐽𝛼(𝑣 + ∆𝑣) − 𝐽𝛼(𝑣) is such as 

 

∆𝐽𝛼(𝑣) = ∫ ∫ [2𝑢(𝑥, 𝑡; 𝑣) − 2𝑦(𝑥, 𝑡)]∆𝑢(𝑥, 𝑡)𝑑𝑥
𝐿

0
𝑑𝑡

𝑇

0

              + ∫ ∫ [∆𝑢(𝑥, 𝑡)]2𝑑𝑥
𝐿

0
𝑑𝑡

𝑇

0
+ 𝛼 ∫ (2𝑣 − 2𝑤 + ∆𝑣)∆𝑣𝑑𝑥

𝑙

0

              +𝛼 ∫ (2𝑣′ − 2𝑤′ + ∆𝑣′)∆𝑣′𝑑𝑥
𝑙

0
.

 (2.5) 

Using the identity between the difference problem and the adjoint problem, the equation (2.5) 

can be rewritten as follows: 

 
∆𝐽𝛼(𝑣) = ∫ −𝜓(𝑥, 0)∆𝑣𝑑𝑥

𝑙

0
+ 2𝛼 ∫ ((𝑣 − 𝑤)∆𝑣 + (𝑣′ − 𝑤′)∆𝑣′)𝑑𝑥

𝑙

0

              + ∫ ∫ [∆𝑢(𝑥, 𝑡)]2𝑑𝑥
𝐿

0
𝑑𝑡

𝑇

0
+ 𝛼 ∫ {(∆𝑣)2 + (∆𝑣′)2}𝑑𝑥

𝑙

0

 (2.6) 

In order to obtain the inner product in the space 𝐻1(0, 𝑙) we consider the function 𝜂(𝑥). Here, 

the function 𝜂(𝑥) is the solution to the following second adjoint problem: 

 
𝜂′′ − 𝜂 = 𝜓(𝑥, 0)

𝜂′(0) =  𝜂′(𝑙) = 0.
 (2.7) 

We can write that 
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∆𝐽𝛼(𝑣) = ∫ 𝜂′∆𝑣′𝑑𝑥
𝑙

0
+ ∫ 𝜂∆𝑣𝑑𝑥

𝑙

0

               +2𝛼 ∫ ((𝑣 − 𝑤)∆𝑣 + (𝑣′ − 𝑤′)∆𝑣′)𝑑𝑥
𝑙

0

               + ∫ [∆𝑢(𝑥, 𝑇)]2
𝑙

0
𝑑𝑥 + 𝛼 ∫ {(∆𝑣)2 + (∆𝑣′)2}𝑑𝑥

𝑙

0
.

 (2.8) 

After some transformation, we have 

 

∆𝐽𝛼(𝑣) = ∫ {𝜂 + 2𝛼(𝑣 − 𝑤)}∆𝑣𝑑𝑥
𝑙

0

                + ∫ {𝜂′ + 2𝛼(𝑣′ − 𝑤′)}∆𝑣′𝑑𝑥
𝑙

0

                + ∫ [∆𝑢(𝑥, 𝑇)]2
𝑙

0
𝑑𝑥 + 𝛼 ∫ {(∆𝑣)2 + (∆𝑣′)2}𝑑𝑥

𝑙

0
.

 (2.9) 

From the estimate (2.2), we get the Frechet derivation for the cost functional 

 𝐽𝛼
′ (𝑣) = 𝜂 + 2𝛼(𝑣 − 𝑤). (2.10) 

 

Theorem 2.  Let the assumptions of Theorem 1 remain valid and 𝑣∗ of 𝑉𝑎𝑑 is the solution of 

the optimal control problem (1.1)-(1.2). In this case, the following inequality is provided 

 〈𝜂∗ + 2𝛼(𝑣∗  − 𝑤), 𝑣 − 𝑣∗ 〉𝐻1(0,𝑙) ≥ 0 

for ∀𝑣 ∈ 𝑉𝑎𝑑. Here 𝜂∗ is the solution to the second adjoint problem (2.7) corresponding to the 

optimal solution 𝑣∗[10]. 

We use the conjugate gradient method that is known to be very successful in linear 

optimization problems in order to compute a numerical approximation of the optimal control. 

According to this method the minimizing sequence is set by 

 𝑣𝑘+1 = 𝑣𝑘 − 𝛽𝑘𝐽𝛼
′ (𝑣𝑘),    𝑘 = 0,1,2,⋯ (2.11) 

where 𝑣0 ∈ 𝑉𝑎𝑑 is a given initial iteration and 𝛽𝑘 is a small enough relaxation parameter and 

assures that 

 𝐽𝛼(𝑣𝑘+1) < 𝐽𝛼(𝑣𝑘). 

Concerning the choice of the parameter 𝛽𝑘, there are several possibilities and these can be 

found in any optimization books. 
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ABSTRACT 

In this paper, we obtained some integral inequalities via Atangana-Baleanu fractional 

integral operators for  s-convex functions and  P-functions using the identity by proved 

Set et al.. Some of the inequalities proved are reduced to existing inequalities in the 

literature for some special values of the parameters. And also, the inequalities obtained 

produce new results for some special values of the parameters. 

1. INTRODUCTION 

The convex function, whose definition is based on the condition that an inequality is satisfied, 

has made important contributions to the development of inequality theory. The definition of 

this function is as follows. 

 

Definition 1.1 The function RR ],[: baf , is said to be convex if the following inequality 

holds  

 )()(1)())(1( yfxfyxf    (1.1) 

 for all ],[, bayx   and [0,1] . We say that f  is concave if )( f  is convex. 

  

One of the most important results obtained for convex functions is the Hermite-Hadamard 

inequality and this inequality has helped researchers to obtain many new results in inequality 

theory. This important inequality is given follow.  

 

Assume that RR If :  is a convex function defined on the interval I  of R  where .< ba  

The following statement; 

 
2

)()(
)(

1

2

bfaf
dxxf

ab

ba
f

b

a













 
  (1.2) 

holds and known as Hermite-Hadamard inequality. Both inequalities hold in the reversed 

direction if f  is concave. 

mailto:aocakakdemir@gmail.com
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We recall the definitions of s convex function in the second sense.  

Definition 1.2 (see [4],[7]) Let 1<0 s . A function R)[0,:f , is said to be s-Breckner 

convex or s-convex in the second sense, if for every )[0,, yx  and 0,   with 1=  , 

we have 

 

 ).()()( yfxfyxf ss    (1.3) 

 The set of all s-convex functions in the second sense is denoted by 
2

sK .  

 

It can be easily seen that for 1=s , s-convexity reduces to the ordinary convexity of functions 

defined on )[0, . 

 

In [6] Dragomir and Fitzpatrick proved a variant of Hadamard¡¦s inequality which holds for s-

convex functions in the second sense. 

  

Theorem 1.1 Suppose that R)[0,:f  is an s-convex function in the second sense, where 

(0,1]s , and let )[0,, ba , ba < . If ],[ baLf  , then the following inequalities hold  

 .
1

)()(
)(

1

2
2 1















 




s

bfaf
dxxf

ab

ba
f

b

a

s  

  

The definition of P function is given as follow. 

  

Definition 1.3 [8] A function RR If :  is P function or that f  belongs to the class of 

)(IP , if it is nonnegative and, for all Iyx ,  and [0,1] , satisfies the following inequality;  

 ).()())(1( yfxfyxf    (1.4) 

  

 

The use of operators defined in fractional analysis in inequality theory has brought a new 

perspective to the field. Researchers have obtained many new results using these operators and 

one of the operators defined recently is the Atangana-Baleanu fractional integral operators. 

Atangana and Baleanu described this fractional integral operator with the help of Laplace 

transform and convolution theorem as follows. 

 

Definition 1.4 [2] The fractional integral associate to the new fractional derivative with non-

local kernel of a function ),(1 baHf   as defined:  

   dyytyf
B

tf
B

tfI
t

a

AB

a

1))((
)()(

)(
)(

1
=)( 
















 

 where [0,1].,> ab  
  

In [1], Abdeljawad and Baleanu introduced right hand side of integral operator as following; 

The right fractional new integral with Mittag-Leffler kernel of order [0,1]  is defined by  
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   .))((
)()(

)(
)(

1
=)( 1dytyyf

B
tf

B
tfI

b

t
b

AB 















 

For more results related to different kinds of fractional operators, we suggest to the interested 

readers the papers [3, 5, 9, 10, 11, 12, 13, 14].  

 

In this paper, we will denote normalization function as )(B  with 1=(1)=(0) BB . 

 

The Gamma function )(z  developed by Euler is usually defined as follow. 

  

Definition 1.5 [16] Assume that 0>)(z , the Gamma function is denoted by )(z  and defined 

as follow.  

 .=)( 1

0
dttez zt 



  

  

The definition of Beta function is as follow. 

  

Definition 1.6 [16] Assume that 0>)(  and 0>)( , the Beta function is denoted by 

),(   and defined as  

     .1=,
11

1

0
dttt

 
  

  

Set et al. in [15] proved identity that we using to obtained our main results via Atangana-

Baleanu fractional integral operators as following. 

  

Lemma 1.1  R],[: baf  be differentiable function on ),( ba  with ba < . Then we have the 

following identity for Atangana-Baleanu fractional integral operators  

    
)(

)()2(1

)()(

)()()()(
)()(










B

tf

B

bftbafat
tfItfI b

ABAB

a







  

    dktkkbfk
B

tb
dkakktfk

B

at '' )(1
)()(

)(
)(1)(1

)()(

)(
=

1

0

1
1

0

1





















 

where ],[(0,1], bat , [0,1]k , 0>)(B  is normalization function and (.)  is gamma 

function. 

  

The main purpose of this article is to obtain some integral inequalities that includes the 

Atangana-Baleanu fractional integral operators for s  convex functions and P functions with 

the help of the identity by proved Set et al. in [15]. 

2. MAIN RESULTS 

In this part, we obtained some fractional integral inequalities for s convex functions in the 

second sense and P functions with help of identity by proved Set et al. in [15] as following: 
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Theorem 2.1 Let R],[: baf  be differentiable function on ),( ba  with ba <  and 

],[1 baLf '  . If || 'f  is a s convex function in the second sense, then the following inequality 

for Atangana-Baleanu fractional integral operators hold 

   
)(

)()2(1

)()(

)()()()(
)()(










B

tf

B

bftbafat
tfItfI b

ABAB

a







  (2.1) 

























1

)(
1)1,()(

)()(

)( 1

s

af
sBtf

B

at
'

'








 























1)1,()(
1

)(

)()(

)( 1

sBtf
s

bf

B

tb '

'






 

where ],[ bat , (0,1] , (0,1]s , 0>)(B  is normalization function and (.)  is gamma 

function. 

 

Proof. By using the identity that is given in Lemma 1.1, we can write 

   
)(

)()2(1

)()(

)()()()(
)()(






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B
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B

bftbafat
tfItfI b
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a



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   dktkkbfk
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=

1
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



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





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    .)(1
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)(
)(1)(1
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)( 1

0

1
1

0

1

dktkkbfk
B

tb
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B
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







 








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By using s convexity in the second sense of || 'f , we get 

   
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and the proof is completed. 
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Corollary 2.1 In Theorem 2.1, if we choose 
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Remark 2.1 In Theorem 2.1, if we choose 1=s , the inequality (2.1) reduces to the inequality 

in Theorem 2.2 in [15]. 

 

Theorem 2.2 Let R],[: baf  be differentiable function on ),( ba  with ba <  and 
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where 1=11   qp , ],[ bat , (0,1] , (0,1]s , 1>q , 0>)(B  is normalization function 

and (.)  is gamma function. 
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By using s convexity in the second sense of q'f || , we obtain 
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So, the proof is completed. 
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Remark 2.2 In Theorem 2.2, if we choose 1=s , the inequality (2.2) reduces to the inequality 

in Theorem 2.5 in [15]. 
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Theorem 2.3 Let R],[: baf  be differentiable function on ),( ba  with ba <  and 

],[1 baLf '  . If q'f ||  is a s convex function in the second sense, then the following inequality 

for Atangana-Baleanu fractional integral operators hold 
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where ],[ bat , (0,1] , (0,1]s , 1q , 0>)(B  is normalization function and (.)  is 

gamma function. 
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By applying power mean inequality, we get 
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and the proof is completed. 
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Remark 2.3 In Theorem 2.3, if we choose 1=s , the inequality (2.3) reduces to the inequality 

in Theorem 2.10 in [15]. 

 

Theorem 2.4 Let R],[: baf  be differentiable function on ),( ba  with ba <  and 
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where 1=11   qp , ],[ bat , (0,1] , (0,1]s  1>q , 0>)(B  is normalization function 

and (.)  is gamma function. 
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By applying the Young inequality, we get 
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and the proof is completed. 
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Remark 2.4 In Theorem 2.4, if we choose 1=s , the inequality (2.4) reduces to the inequality 

in Theorem 2.8 in [15]. 

 

Theorem 2.5 Let R],[: baf  be differentiable function on ),( ba  with ba <  and 

],[1 baLf '  . If || 'f  is a P-function, then the following inequality for Atangana-Baleanu 

fractional integral operators hold 
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where ],[ bat , (0,1] , 0>)(B  is normalization function and (.)  is gamma function. 
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Since || 'f  is P function, we get 
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and the proof is completed. 
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Corollary 2.6 In Theorem 2.5, if we choose 1=  we obtain 
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Theorem 2.6 Let R],[: baf  be differentiable function on ),( ba  with ba <  and 

],[1 baLf '  . If q'f ||  is a P-function, then the following inequality for Atangana-Baleanu 

fractional integral operators hold 

   
)(

)()2(1

)()(

)()()()(
)()(










B

tf

B

bftbafat
tfItfI b

ABAB

a







  

qq
'

q
'

p

aftf
pB

at
1

1
1

)()(
1

1

)()(

)(





 




















 

qq
'

q
'

p

tfbf
pB

tb
1

1
1

)()(
1

1

)()(

)(





 




















 

where 1=11   qp , ],[ bat , (0,1] , 1>q , 0>)(B  is normalization function and (.)  

is gamma function. 
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By applying Hölder inequality, we have 
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Since q'f ||  is a P function, we obtain 
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So the proof is completed. 
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Corollary 2.8 In Theorem 2.6, if we choose 1=  we obtain 
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Since q'f ||  is P  function, we obtain 
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So, the proof is completed. 
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Theorem 2.8 Let R],[: baf  be differentiable function on ),( ba  with ba <  and 

],[1 baLf '  . If q'f ||  is a P function, then the following inequality for Atangana-Baleanu 

fractional integral operators hold 
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where 1=11   qp , ],[ bat , (0,1] , 1>q , 0>)(B  is normalization function and (.)  

is gamma function. 
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   
)(

)()2(1

)()(

)()()()(
)()(










B

tf

B

bftbafat
tfItfI b

ABAB

a







  

    .)(1
)()(

)(
)(1)(1

)()(

)( 1

0

1
1

0

1

dktkkbfk
B

tb
dkakktfk

B

at '' 








 










 

By using the Young inequality, we have 
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and the proof is completed. 
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Corollary 2.12 In Theorem 2.8, if we choose 1=  we obtain 
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ABSTRACT 

The study examines special Viviani’s curve and its Darboux vector to construct 

corresponding Sabban frame for the curve. Then, as an application, new Smarandache 

curves are derived with respect to these Sabban vectors. The geodesic curvature for each 

curve is expressed by the curvature and the torsion of Viviani’s curve. Graphical 

illustrations for each curve and their geodesic curvatures are presented to support their 

relationships. 

1. INTRODUCTION 

In differential geometry, it is often interest to derive new curves and discuss their 

characteristics. Smarandache geometry is a useful method of deriving new curves from a given 

specific curve. It exploits the orthonormal vectors moving along the given curve according to a 

specific frame. Thus, a curve whose position vector is a linear combination of for example 

Frenet vectors is called a Smarandache curve [3, 20]. By using different frames apart from 

Frenet, various curves are constructed by using this method, and their properties are well studied 

in many research papers (see e.g. [2-5, 18-19]). Sabban frame, as defined in [8], is one of these 

frames that can be used to generate new curves. By its definition which depends on a specific 

spherical indicatrix curve, different types of Sabban frames can be formed. By considering these 

forms of Sabban frame, new Smarandache curves are defined and their geodesic curvatures are 

examined in [14-15]. The Smarandache curves of some special curves such as Mannheim, 

Salkowski, involute-evolute, etc. are also discussed with respect to different frames in [6, 9-

13]. More recently, the Smarandache curves that is obtained by Sabban frame according to the 

tangent indicatrix of the helix curve has been examined in [16], while Viviani’s curve is 

discussed in [17]. Furthermore, by considering the principal normal vector of the special 

Viviani’s curve, new Smarandache curves are introduced in [achakara]. Motivated by these 

papers, in this study, a new form of Sabban frame is constructed by using the unit Darboux 

vector of Viviani’s curve as a spherical indicatrix curve. Then, according to this frame, new 

Smarandache curves are obtained. Before starting, we recall some basic notations: 

Let 3: I R R     be a differentiable curve and denote the set of its Frenet frame as  , ,T N B .  

The calculation of the very famous Frenet formulas is given as following 

= , = ,   = ,T N B T B
  

  

  


  
    (1.1) 

mailto:davutcanli46@gmail.com
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 
3 2

det , ,
= ,   = ,

    
 

  

    

  
    (1.2) 

 ( ) ,  N'( ) ,  '( )' ,T N T B B s Ns s            (1.3) 

where '  is for the derivative operator   is vector product sign, ( )s  ,   is the curvature 

function, and   is the torsion of the curve. The motion of the Frenet frame along the curve 

( )s   follows an instantaneous rotation vector which is called Darboux vector defined by 

Gaston Darboux as follows [1, 7] 

 

W T B   . 

If  , ,B W   then the unit Darboux vector denoted by C  can be given as 

sin( ) cos( )C T B   ,     (1.4) 

where 
2 2

cos( )



 




, 
2 2

sin( )



 




, and 
2

2
1

 


 

   
    

   
 [7]. 

Frenet frame is not the only frame to characterize the curves. There are other frames, one of 

which is known to be Sabban frame. The frame is defined as follows: 

Let 3( ) :s R R   be a unit vector with its arclength parameter s . Denote '   as the tangent 

vector of the curve whose position vector ( )s  on 2S . By using vector product, another unit 

vector is computed as     . These three vectors construct an orthonormal frame denoted 

by { , , }   . This new frame is known as Sabban frame [8]. The following relations are Frenet 

like formulas for Sabban frame 

' ,  ' ,   ' ,g g                (1.5) 

where 

',g     [8, 19].     (1.6) 

In addition, the locus of the intersection points of a unit sphere centered at origin with a given 

cylinder tangent to this sphere form a special curve namely Viviani’s curve (see Figure 1). 

 

Figure 1: The special Viviani’s curve as an intersection of sphere and cylinder 
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The parametric representation of the curve is as follows 

 2( ) cos ,cos sin ,sin , [ , ]s s s s s s      [1]. 

The Frenet apparatus and the corresponding unit Darboux vector for Viviani’s curve is given 

as follows: 

 

   2 sin 2 ,cos 2 ,cos cos 4 12cos 2 3,sin 4 12sin 2 ,4sin
( ) , ( ) ,

2cos 2 6 6cos 4 88cos 2 162

s s s s s s s s
T s N s

s s s

   
  

  
 

 sin 3 3sin , cos3 3cos ,4
( ) ,

6cos 2 26

s s s s
B s

s

  



 

 
 

 

      

2

22 2

3 2 4 2 2

4 3 2

3cos 5 6cos
, ,

3cos 5cos 1 cos 1

2 2 sin( ) 6cos( ) 5 ,4 2 cos( ) 3cos( ) 2cos( ) 3 , 2 3cos(2 ) 18cos(2 ) 35
( ) .

18cos(2 ) 207cos(2 ) 999cos(2 ) 2493cos(2 ) 2683

s s
s s

ss s

s s s s s s s
C s

s s s s

 


 
 

    


   

 

 

2. ON SABBAN FRAME OF VIVIANI’S CURVE BY UNIT DARBOUX VECTOR 

AND SOME APPLICATIONS 

This is the main section of the paper where we first construct Sabban frame by considering the 

pol-indicatrix curve drawn by the unit Darboux vector of the Viviani’s curve. Then, we provide 

the relationship among the Frenet and Sabban vectors. Second, by using the vectors of Sabban 

frame as position vectors, some special Smarandache curves are defined. Finally, the geodesic 

curvatures of new curves are expressed by the curvature and the torsion of Viviani’s curve. 

 

Definition 1. Let 3: s I R R     be a space curve twice differentiable everywhere in its 

domain and denote its unit Darboux vector by ( )C s . The curve traced out by the vector C  of 

centered at unit sphere is called pol- or Darboux- indicatrix curve ( ) ( )C s C s  (see Figure 2). 

Theorem 1. Let ( ) ( )C s C s   be the pol-indicatrix curve of   and denote { , , }C C CT N B  as the 

Frenet frame of it. Then, the relationship among the actual Frenet frame of   and its pol-

indicatrix curve can be given as follows  

 

 

 

 

2 2

2 2 2 2

2 2

2 2 2 2

cos sin ,

sin cos
,

2

sin cos
.

2

C

C

C

T T B

T B N
N

T B N
B

 

     

   

     

   

 

   


 

  


 

     (2.1) 

Proof.  From Definition 1. of pol-indicatrix curve as ( ) ( )C s C s  , by taking derivatives with 

consideration to the relations (1.3), we compute the followings 
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 

   

 

2 2 2 2

2 2 2 2 2 2 3

2 2 2 2 2

cos sin ,

cos sin sin cos ,

sin cos ,

2 .

C

C

C C

C C

T B

T N B

T B N

   

            

            

      

  

          

         

      

   (2.2) 

By referring the relations (1.1) to substitute these relations, the proof is completed. 

Theorem 2.  The curvatures of the pol-indicatrix curve ( ) ( )C s C s   denoted by C  and C , 

respectively can be expressed by the curvatures of   as follows:  

   
 

2 2 2 22 2 2 2

2 2 2 2

2
,  .

2
C C

        
 

    


    

 
  

   (2.3) 

Proof.  By taking the third derivative of the pol-indicatrix curve and using triple product, we 

have 

   

 

   

2 2 2 2 2 2 2 2

2 2 2 2

3 2 2 2 2

cos sin +

      sin cos ,

det , , .

C

C C C

T N

B

                

       

           

                    

       
 

 
          

 

 

As we refer the relations given in (1.2) and (2.2), and by using the latter ones above, the proof 

is completed. 

The following Figure 2 illustrates the pol-indicatrix curve, its view on unit sphere and its 

curvatures, respectively. 

 

( ) ( )C s C s   

 

( ) ( )C s C s   on 2S  
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C  

 

C  

Figure 2. The pol-indicatrix curve and its curvatures 

 

Now, let  CT  denote the tangent vector of pol-indicatrix curve ( ) ( )C s C s  and compute 

C C CD T  . Then the corresponding Sabban vectors can be obtained as follows: 

cos , cos , .C C Csin T B T T sin B D N            (2.4)

  

 

Furthermore, by using (1.5), Sabban derivative formulas can be given by  

 

 

 

2 2

cos sin ,

sin cos ,

.

c

C

C

T B

T T B N

D T N

   

     

  

  

     

   

    (2.5) 

Definition 2. The curve whose position vector is the unit combination of C  and CT  is called 

1  Smarandache curve which is given by the following parameterization 

   1

1

2
C Cs T   .     (2.6) 

Note that, from (2.4), we can re-express the 1  Smarandache curve as 

 
   

1

cos sin cos sin
.

2

T B
s

   


  
  

Theorem 2.  The geodesic curvature  1 s

gK
  of the 1  Smarandache curve is given by the 

following relation 

    
  

1

2 2 3 2 2 2 2 2

2 2 2 2

2 2 2 2
.

2 2 sin 2
gK


             

    


          


 

 

Proof.  From Definition 2, by taking the derivative of (2.6) and considering the given relations 

(2.5), the tangent of the 1  Smarandache curve denoted by 
1

T  can be obtained as 
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   

 

   

1

2 2

2 2 2 2

2 2

cos sin cos sin

2 sin 2

cos sin cos sin
    ,

T N B
T

T N B

X



        

    

        

     


 

     


 

where  2 2 2 22 sin 2X        . By using the cross product of 1  and 
1

T , we have 

   
1

2 2 2 2

1

sin cos 2 sin cos
.

2

T N B
T

X


          


     
   

Moreover, the derivative of 
1

T  is 

   

    

 

1

2 2 2 2 2 2 2 2 2 2

2 2 2 2

2

2 2

cos sin cos sin

cos sin cos sin
    

T T N B
X X X X X X

X X X X
T

X

X X X



                   

          

    

                                              

        
 

  
 
 

   


 

    

2 2 2 2

2

2 2 2 2

2

cos sin cos sin

X
N

X

X X X X
B

X

     

          

 
   

 
 
 
 

        
 

  
 
 

 

 

Finally, by recalling (1.6), we have 

     

     

   

1

3 2 22 2 2 2 2

3 2

3 2 22 2 2 2 2

3 2

2 2 2 2
2 2

3

sin cossin 1 cos 2

2 2

sin cossin 1 cos 2
       

2 2

2 2
2

        
2

g

X X X
K

X X

X X X

X X

X X X

X


               

               

           

         
  
 
 

          
  
 
 


       

 

    

2

2

3 2 2 2 2 2 2 2

2

2

2 2 2 2
.

2

X

X



             

 
 
 
 
 
 


          



 

Upon substitution X  into the latter, we complete the proof. 
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1   

 

1

gK


 

Figure 3. The 1  Smarandache curve (left) and its geodesic curvature (right) for 

[ 2 , 2 ]s     

 

Definition 3. The curve whose position vector is the unit combination of C  and CD  is called 

2  Smarandache curve which is given by the following parameterization 

   2

1

2
C Cs D   .     (2.7) 

Note that, from (2.4), we can re-express the 2  Smarandache curve as 

 2

sin cos
.

2

T N B
s

 


 
  

Theorem 3.  The geodesic curvature  2 s

gK
  of the 2  Smarandache curve is given by the 

following relation 

     
2

2 2 2 3 2 2 2 2 2

2 2
.

2
gK


             

 

           



 

Proof.  From Definition 3, by taking the derivative of (2.7) and considering the given relations 

(2.5), the tangent of the 2  Smarandache curve denoted by 
2

T  can be obtained as 

   

 
2

2 2 2 2 2 2

cos sin
.

2

T B
T

     

      

    


    

 

By using the cross product of 2  and 
2

T , we have 

     

 
2

2 2

2
2 2 2 2 2 2

sin cos
.

2 2

T N B
T

         


      

       
 

    

 

Besides, the derivative of 
2

T  is 



6TH INTERNATIONAL CONFERENCE  

ON MATHEMATICAL AND RELATED SCIENCES 

 ICMRS 2023 

20-22 NOVEMBER, 2023 

 

Book of Proceedings-ICMRS 2023 

 
57 

   

 

 

2
2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2

2 2 2 2 2 2

cos sin

2 2

      .

2

T T B

N



     

             

      

      

    
      

     
             
   

 
    

  
     
 

 

 

By using (1.6), we have 

     
2

2 2 2 3 2 2 2 2 2

2 22
gK


             

 

           



, 

which completes the proof. 

 

 

2   

 

2

gK


 

Figure 4. The 2  Smarandache curve (left) and its geodesic curvature (right) for 

[ 2 , 2 ]s     

 

Definition 4. The curve whose position vector is the unit combination of CT  and CD  is called 

3  Smarandache curve which is given by the following parameterization 

   3

1

2
C Cs T D   .     (2.8) 

Note that, from (2.4), we can re-express the 3 Smarandache curve as 

 3

cos sin
.

2

T N B
s

 


 
  

Theorem 4.  The geodesic curvature  3 s

gK
  of the 3  Smarandache curve is given by the 

following relation 
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   

  
3

3 2 2 2 2 2

2 2 2 2

2 2 2
.

2
gK
               

   


           


  

 

Proof.  By taking the derivative of (2.8) from Definition 4, and by considering the given 

relations (2.5), the tangent of the 3 Smarandache curve denoted by 
3

T  can be obtained as 

   
3

2 2sin cos
,

T N B
T

Y


               
  

where  2 2 2 2 .Y        By using the cross product of 3  and 
3

T , we have 

   
3

2 2 2 2

3

cos sin sin cos
.

2

T N B
T

Y


              


          
   

Furthermore, the derivative of 
3

T  is 

 

   

 

3

2 2 22 2 2 2 2 2 2 2

2
2 2 2

2

2 2 2

sin cos

sin cos sin

       

T T N B
Y Y Y Y Y Y

Y Y

T
Y Y

Y



                  

       
   

  

                                             

               
  
 


 

   

2 2 2 2 2 2

2

2
2 2 2

2

cos sin cos

      .

Y Y

N
Y

Y Y

B
Y Y

        

       
   

         
  

 
 
 
 

                
  
 

 

Last, from (1.6), we have 

 

   

   
3

2 2 2

2 2 2 2 2 2 2

2

   cos sin sin cos

sin cos cos sin

2
gK

Y



           

                  

       

                
 



, 

and therefore 

   
3

3 2 2 2 2 2

2

2 2 2
.

2
gK

Y

               


           
  

Upon substitution of Y  into above relation we complete the proof. 
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3   

 

3

gK


 

Figure 5. The 3 Smarandache curve (left) and its geodesic curvature (right) for 

[ 2 , 2 ]s     

 

 

Definition 5. The curve whose position vector is the unit combination of C , CT  and CD  is 

called 4  Smarandache curve which is given by the following parameterization 

   4

1

3
C C Cs T D    .    (2.9) 

Note that, from (2.4), we can re-express the 3 Smarandache curve as 

 

 
   

4

cos cos
.

3

sin T N sin B
s

   


   
  

Theorem 5.  The geodesic curvature  4 s

gK
  of the 4  Smarandache curve is given by the 

following relation 

    
 

  
 

    
 

4

2 2

3

2 2

3

2 2

3

2 3

      2
2 3

       ,
2 3

g

W F F

K W
F

F W W W F WF
W

F

W F F

W
F



      

  

    
 

      

  

            
     

  
 

      
 

  
 
 

            
    

  
 

 

where 2 2 2 2 2cos sin ,  cos sin ,  ,  .W F W W                      
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Proof.  By differentiating (2.9) of Definition 5, and by referring the relations (2.5), the tangent 

vector 
4

T of the 4  Smarandache curve is obtained  

 

     

 

   

4

2 2

2 2 2 2 2 2

cos  cos
,

2

 
.

2

sin T N sin B
T

T WN B

F



          

       

    

       


    

      


 

 

By using the cross product of 4  and 
4

T , we have 

      
    

     

4

2 2 2 2

2 2

4

  cos sin cos 2

cos cos

6

  2
.

6

sin T N

sin sin B
T

F

W T W N W B

F



            

        


       

        

     
 

           


 

 

Furthermore, the derivative of 
4

T  is 

 

 

         

  

4

2 22 2

2 2 2 2

2

2 2 2 2 2 2 2

2 2 2 2 2 2

cos cos cos

2

     

WW W W
T T N B

F F F F F F

sin sin F sin F

T
F

F



         

              

         

                                           
     

           



 
      

 


         

2 2

2

2 2 2 2

2

2

cos cos cos

     ,
2

F F

N
F

sin sin F sin F

B
F

  

              

 

           



 

or equivalently 

 

       

    

4

2 2 2 2

2 2

2 2

2

2 2

.
2

W F F F W W W F WF
T T N

F F

W F F

B
F



           

      

                
  

          



 

 

Finally, from (1.6), we can obtain the expression given in theorem, which completes the proof. 
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4   
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Figure 6. The 4  Smarandache curve (left) and its geodesic curvature (right) for 

[ 2 , 2 ]s     
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ABSTRACT 

In this study, we first prove two new identities for differentiable functions. Then by using 

these equalities, we obtain some Simpson type inequalities involving fractional integrals 

with respect to another function. For this aim, we use the functions whose derivatives in 

absolute value are convex and Hölder inequality. 

 

1. INTRODUCTION 
 
It is well known that the considerable number of inequalities have been established in the case 

of convex functions but the most famous is Simpson’s inequality. The classical Simpson’s 

inequality for four times continuously differentiable functions are expressed as follows: 

 

Theorem 1. Let us note that 𝑓: [𝑎, 𝑏] →  ℝ is a four times continuously differentiable function 

on (𝑎, 𝑏), and let us consider ‖𝑓(4)‖
∞
= 𝑠𝑢𝑝

𝑥∈(𝑎,𝑏)
|𝑓(4)(𝑥)| < ∞. Then, the following inequality 

holds: 

 

         .
2880

1
)(

1

2
4

6

1 44 abfdxxf
ab

bf
ba

faf
b

a
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
















 


  

  

Since the convex theory is an effective and useful way to solve a large number of problems 

from different branches of mathematics, many mathematicians have investigated the Simpson-

type inequalities the case of convex function. More precisely, some inequalities of Simpson’s 

type for 𝑠 -convex functions are established by using differentiable functions in the paper [3]. 

Furthermore, the new variants of Simpson’s type inequalities based on differentiable convex 

functions are established in the papers [34, 36]. The reader is referred to [8, 14, 19, 21, 24-26, 

35] and the references therein for more information and unexplained subjects about Simpson 

type inequalities for various convex classes. 

Many mathematicians have investigated the twice differentiable convex functions for obtaining 

significant inequalities. For example, Sarikaya et al. proved several Simpson-type inequalities 

for functions whose second derivatives are convex in the paper [33]. In addition, some 

mailto:hsyn.budak@gmail.com
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Simpson’s type inequalities are given for functions whose absolute values of derivatives are 

convex in the paper [31]. Moreover, it is proved new estimates on the generalization of 

Hadamard, Ostrowski, and Simpson type inequalities in the case of functions whose second 

derivatives in absolute value at certain powers are convex and quasi–convex functions in the 

paper [29]. Furthermore, Simpson type inequalities are established for 𝑃 -convex functions in 

the paper [28]. It can be referred to [2, 11, 13, 37, 38] for further pieces of informations and 

unexplained subjects about these type of inequalities including twice differentiable functions. 

Mathematical preliminaries about fractional calculus theory, which will be used throughout this 

paper, will be given as follows: 

 

Definition 1. Let us consider 𝑓 ∈ 𝐿1[𝑎, 𝑏]. The Riemann–Liouville integrals fJ a



  and fJb



  

of order 𝛼 > 0 with 𝑎 ≥ 0 are defined by  

   axdttftxxfJ
x

a
a >,)(

)(

1
=)(

1

 
 




 (1.1) 

and 

   ,<,)(
)(

1
=)(

1
bxdttfxtxfJ

b

x
b



 
 




 (1.2) 

 

respectively. Here, 𝛤(𝛼) is the Gamma function and its described as follows:  

 

 .=)( 1

0
duue u 



   

 

Let us also note that ).(=)(=)( 00 xfxfJxfJ ba    

 

Remark 1. If we choose 𝛼 = 1 in Definition 1, then the fractional integral reduces to the 

classical integral.  

 

Definition 2. Let 𝑓 ∈ 𝐿1[𝑎, 𝑏]. The Hadamard fractional integrals fa



J  and fb



J  of order 

0>  with 𝑎 ≥ 0 are defined by  
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x
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=)(
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and 

 bx
t

dt
tf

x

t
xf

b

x
b

<,)(ln
)(

1
=)(

1

 








 





J  (1.4) 

 

respectively.  

 

In the paper [15], the Simpson inequalities for differentiable functions are extended to Riemann-

Liouville fractional integrals. In addition to these, several papers are focused on fractional 
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Simpson inequalities for fractional and various fractional integral operators [1, 7, 12, 17, 20, 

22, 30, 32]. For further information and several properties of Riemann–Liouville fractional 

integrals, please refer to [4, 5, 9, 18, 23, 27]. 

 

In the paper [6], the authors proved some new inequalities of Simpson’s type based on 

𝑠 −convexity by fractional integrals. If it is chosen 𝑠 = 1 in the paper [6, Theorem 2.3], then it 

yields: 

 

Theorem 2. [6] Let 𝑓: 𝐼 ⊂ 0,∞) → ℝ denote a differentiable mapping on 𝐼0 so that 𝑓 ′ ∈

𝐿1[𝑎, 𝑏]. Here, 𝑎, 𝑏 ∈ 𝐼 with 𝑎 < 𝑏. and if |𝑓 ′| is convex on [𝑎, 𝑏]. Then, the following inequality 

for Riemann-Liouville fractional integrals holds:  

 

    
 

  














 







 




















 
 



22

12

2
4

6

1 1 ba
fJ

ba
fJ

ab
bf

ba
faf ba





 
 

  

       .
2

bfaf
ab '' 


   

 

Here, 

  
 

.
3

1

12

1

13

2
=

1
1































 

  

Theorem 3. [10] If we consider the assumptions of Theorem 2, then the following inequalities 

hold: 

    
 

 
   





























 










afJbfJ
ab

bf
ba

faf baba





 

22

1 12

2
4

6

1
 

  

      














 





2
)(2)(

12
12

ba
fCafbfC

ab '''   

  

       ,)()(
12

21 bfafCC
ab '' 


   

where 

 ,
2

1

2

3

2

1

2

1

3

1
2=)(

2

1 



























C  

 

 
  

.
2

1

21

3

2

1

2

1

3

1
2

1

1
1

3

1
2=)(

21

2 















































C  

  



6TH INTERNATIONAL CONFERENCE  

ON MATHEMATICAL AND RELATED SCIENCES 

 ICMRS 2023 

20-22 NOVEMBER, 2023 

 

Book of Proceedings-ICMRS 2023 

 
66 

Iqbal et. al. [15] established new Simpson’s type inequalities for Riemann–Liouville fractional 

integral using the convexity for the class of functions whose derivatives in absolute value at 

certain powers are convex functions proposed in the following theorem. 

 

Theorem 4. [15] Let us note that the assumptions of Theorem 2 are valid. Then, the following 

inequality holds:  
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The definitions of the following 𝜓 -Hilfer fractional integrals are given in [18]. 

 

Definition 3. Let 𝜓: [𝑎, 𝑏] → ℝ be an monotone increasing function on (𝑎, 𝑏], having a 

continuous derivative 𝜓′(𝑥) on (𝑎, 𝑏). The left-sided fractional integral of 𝑓 with respect to the 

function 𝜓 on [𝑎, 𝑏] of order 𝛼 > 0 is defined by 

  

   axdttfttxxfI '
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provided that the integral exists. The right-sided fractional integral of f with respect to the 

function   on  ba,  of order 𝛼 > 0 is defined by  
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   (1.6) 

 

respectively. Here, 𝛤(𝛼) is the Gamma function.  

 

Remark 2. If we choose 𝜓(𝑡) = 𝑡, then the operators (1.5) and (1.6) reduce the Riemann-

Liouville fractional operators (1.1) and (1.2), respectively.  
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Remark 3. If we choose 𝜓(𝑡) = 𝑙𝑛 𝑡, 0>t , then the operators (1.5) and (1.6) reduce the 

Hadamard fractional operators (1.3) and (1.4), respectively.  

 

Jlelli and Samet gave the following Hermite–Hadamard inequality for 𝜓 -Hilfer fractional 

integrals in [16]. 

 

Theorem 5. Let 𝜓: [𝑎, 𝑏] → ℝ be an monotone increasing function on (𝑎, 𝑏], having a 

continuous derivative 𝜓′(𝑥) on (𝑎, 𝑏). Let 𝑓 is a convex function on [𝑎, 𝑏] and 𝛼 > 0, then the 

following inequalities hold: 
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where 𝐹(𝑡) = 𝑓(𝑡) + 𝑓(𝑎 + 𝑏 − 𝑡).  
 

The purpose of this paper is to show that some Simpson’s type inequalities for 𝜓 -Hilfer 

fractional integrals by convex functions. The general outline of the paper consists of three 

sections including the introduction. The remaining part of the paper proceeds as follows: In 

Section 2, we will establish two types of the Simpson’s inequalities for 𝜓 -Hilfer fractional 

integrals fractional integral operators by using functions whose derivatives are convex. 

Moreover, we also give the relations of our main findings and previous studies. In the last 

section, some conclusions and further directions of research are presented. 

 

 
2. SIMPSON TYPE INEQUALITIES TYPE FOR  -HILFER FRACTIONAL 

INTEGRALS 

For the sake of brevity, we denote 
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Lemma 1. Let 𝜓: [𝑎, 𝑏] → ℝ be an monotone increasing function on (𝑎, 𝑏], having a 

continuous derivative 𝜓′(𝑥) on (𝑎, 𝑏). Let 𝑓: [𝑎, 𝑏] → 𝑅 be a differentiable function on (𝑎, 𝑏). 
Then we have the following identity 
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Proof. By using integration by parts, we have  
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Similarly, we get 
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If we multiply both sides of (2.2) and (2.3) by 
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Theorem 6. Let consider that the assumptions of Lemma 1 hold. If the function |𝑓 ′| is convex 

on [𝑎, 𝑏], then one has the following Simpson inequality 

 

    














 
 bf

ba
faf

2
4

6

1
 

 
 



















 








 
 

2),(

1

2),(

1

2

1
;;

ba
fI

baN

ba
fI

baM
ba












 

    




 



 af

baN

AA
bf

baN

AAab ''

),(

),(),(

),(

),(),(

4

2121








 

     ,
),(

),(),(

),(

),(),( 2121









 bf

baM

BB
af

baM

BB ''








 

 

where 

 ,)(=),( ,

1

0

1 dttA    

 

 ,)(=),( ,

1

0

2 dtttA    

 

 dttB )(=),( ,

1

0

1  ô  

 

and 

 

 .)(=),( ,

1

0

2 dtttB  ô  

  

Proof. Let us take modulus in Lemma 1. Then, we have  
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Using the fact that |𝑓 ′| is convex, we obtain 
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This finishes the proof of Theorem 6.  

 

Remark 4. Let us consider 𝜓(𝑡) = 𝑡 for all 𝑡 ∈ [𝑎, 𝑏] in Theorem 6. Then, we obtain 
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This result equivalent to Theorem 2.  

 

Theorem 7. Let consider that the assumptions of Lemma 1 hold. If the function |𝑓 ′|
𝑞
, 𝑞 > 1, is 

convex on [𝑎, 𝑏] then one has the following Simpson inequality 
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1
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+

1

𝑞
= 1.  

 

Proof. By well-known Hölder inequality and convexity of |𝑓 ′|
𝑞
, we have 
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Similarly, we get 
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By substituting the inequalities (2.6) and (2.7) in (2.4), we obtain  
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which finish the proof of first inequaty in (2.5). For the proof of second inequality, let 𝑎1 =

|𝑓 ′(𝑎)|
𝑞
, 𝑏1 = 3|𝑓

′(𝑏)|
𝑞
, 𝑎2 = 3|𝑓

′(𝑎)|
𝑞
 and 𝑏2 = |𝑓 ′(𝑏)|

𝑞
. Using the facts that, 
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and 1 + 3
1

𝑞 ≤ 4, then the desired result can be obtained straightforwardly. This completes the 

proof of Theorem 7. 

 

3. CONCLUSION 

 

In this paper, we have delved into the concept of 𝜓-Hilfer fractional integrals, which serves as 

a generalized framework encompassing well-known fractional integrals such as Riemann-

Liouville and Hadamard fractional integrals, among others. Our main objective was to establish 

Simpson-type inequalities for 𝜓-Hilfer fractional integrals, focusing on functions with convex 

derivatives. 

Throughout the course of our study, we successfully proved two fundamental identities 

concerning 𝜓-Hilfer fractional integrals for differentiable functions. These identities played a 

crucial role in enabling us to derive the Simpson-type inequalities. The tools we employed in 

our investigation included the concept of convexity and the well-known Hölder inequality. 

Our findings contribute to the growing body of knowledge surrounding fractional integrals and 

their properties, particularly in the context of 𝜓-Hilfer fractional integrals. The established 

Simpson-type inequalities not only deepen our understanding of this mathematical concept but 

also open avenues for future research in this area. 

Furthermore, we emphasized the significance of connections between our main discoveries and 

prior studies. By doing so, we ensured that our work was firmly grounded in the existing 

literature and built upon previous contributions to the field. 

The three sections of this paper have been dedicated to introducing the topic, establishing the 

Simpson-type inequalities for 𝜓-Hilfer fractional integrals based on functions with convex 

derivatives, and finally, discussing the implications of our results in relation to prior research. 

In conclusion, our study has shed light on the fascinating world of 𝜓-Hilfer fractional integrals 

and their associated Simpson-type inequalities. We hope that this work will inspire further 

exploration and research in this area, potentially leading to new applications and insights in 

various scientific disciplines and real-world problem-solving. 
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ABSTRACT 

This research presents a new refinement method for Hermite-Hadamard inclusions in the 

context of interval-valued convex functions, utilizing the weighted Jensen inclusion 

approach. Furthermore, the study demonstrates that special choices can lead to extensions 

of the Hermite-Hadamard inclusion. A practical example is provided to illustrate the 

principal outcomes of this approach. The proposed method offers a more accurate 

refinement of Hermite-Hadamard inclusions, which can facilitate the development of new 

mathematical techniques for interval-valued convex functions. 

1. INTRODUCTION 

 

Over the last century, integral inequalities have attracted the interest of a good many researchers 

because of the importance of applied and pure mathematics. For instance, Hermite–Hadamard 

inequalities, based on convex mappings, have an important place in many areas of mathematics, 

specifically optimization theory. These inequalities, described by C. Hermite and J. Hadamard, 

express that if 𝑓: 𝐼 → ℝ is a convex mapping on the interval 𝐼 of real numbers and 𝑎, 𝑏 ∈ 𝐼 with 

𝑎 < 𝑏, then  

 
 

.
2

)(
)(
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bfaf
dxxf
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ba
f
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



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


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

 
  (1.1) 

If 𝜛 is concave, both of the inequalities hold in the opposite direction. The best-known results 

associated with these inequalities are Midpoint and Trapezoid inequalities which are frequently 

used in special means and estimation errors (see [10, 16]). Afterward, many authors acquired 

new results related to these inequalities under various conditions of the functions. Besides, some 

researchers examined generalizations, refinements and counterparts, and generalizations of the 

inequalities (1.1). 

This article consists of four sections, including the introduction. In this section, we give 

Hermite–Hadamard inequality for real-valued functions and Hermite–Hadamard inclusion for 

interval-valued functions. We also mention some related works in the literature. In Section 2, 

we present some fundamental information about interval-valued functions. Before we begin our 

main conclusions, we clarify the definitions required and the concepts needed. In Section 3, we 

derive some new improvements in weighted inclusions of the Hermite–Hadamard type through 

mailto:hsyn.budak@gmail.com
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interval-valued convex functions. We acquire new results in the case of special choices. An 

example is given to illustrate these results. The correctness of the inequality obtained with this 

example is clearly demonstrated. In the last section, we note that the opinion and technique of 

this work may inspire new research in this area. 

On the other side, interval analysis handled as one of the methods of solving interval uncertainty 

is an important material that is used in mathematical and computer models. Although this theory 

has a long history which may be dated back to Archimedes’ calculation of the circumference 

of a circle, a considerable study was not published in this field until the 1950s. The first book 

[19] about interval analysis was published by Ramon E. Moore known as the pioneer of interval 

calculus in 1966. Thereafter, a great many researchers started to investigate theories and 

applications of interval analysis. Recently, many authors have focused on integral inequalities 

obtained by using interval-valued functions. For example, Sadowska [25] established Hermite–

Hadamard inequality for set-valued functions which is the more general version of interval-

valued mappings as follows: 

 

Theorem 1.1 [25] Suppose that 𝐹: [𝑎, 𝑏] → ℝ𝐼
+ is interval–valued convex function such that 

𝐹(𝑡) = [𝐹(𝑡), 𝐹(𝑡)]. Then, we have 
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)()(
)()(
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Furthermore, well-known inequalities such as Ostrowski, Minkowski Beckenbach, and their 

applications were presented by considering interval-valued mappings in [5, 6, 11, 12]. More 

precisely, some inequalities including interval-valued Riemann-Liouville fractional integrals 

were derived by Budak et al. in [1]. In [17], Liu et al. gave the description of interval-valued 

harmonically convex mappings, and so they established some Hermite–Hadamard type 

inequalities including interval-valued fractional integrals. On the other hand, Budak et al. prove 

some weighted Fejer type inclusions in [3]. For more details about this topic, one can refer to 

[2, 7, 8, 13, 14, 15, 18, 20, 21, 22, 27, 28, 26] 

 

2. PRELIMINARIES 

 

Before we begin our principal outcomes, the following definitions and concepts need to be 

clarified. The notion of integral of the interval-valued mappings is mentioned. Before we can 

understand the definition of integrals of interval-valued functions, we need to give some 

concepts in the following. 

A function 𝜙 is said to be an interval-valued function of 𝑡 on [𝑎, 𝑏] if it assigns a non-empty 

interval to each 𝑡 ∈ [𝑎, 𝑏].  
 

  .)(),(=)( ttt   

 

A partition of [𝑎, 𝑏] is any finite ordered subset 𝐷 having the form  

 

 .=<...<<=: 10 btttaD n  
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The mesh of a partition 𝐷 is indicated by  

 

  .1,2,...,=:max=)( 1 nittDmesh ii   

 

We denote by 𝐷([𝑎, 𝑏]) the set of all partition of [𝑎, 𝑏]. Suppose that 𝐷(𝛿, [𝑎, 𝑏]) is the set of 

all 𝐷 ∈ 𝐷([𝑎, 𝑏]) such that 𝑚𝑒𝑠ℎ(𝐷) < 𝛿. We take an arbitrary point 𝜉𝑖 in interval [𝑡𝑖−1, 𝑡𝑖], 
𝑖 = 1,2, . . . , 𝑛, and we define the sum 

 

  ,)(=),,( 1

1=

 iii

n

i

ttDS   

 

where 𝜙: [𝑎, 𝑏] → ℝ𝐼 . The sum 𝑆(𝜙, 𝐷, 𝛿) is said to be a Riemann sum of 𝜙 corresponding to 

𝐷 ∈ 𝐷(𝛿, [𝑎, 𝑏]). 
 

Definition 2.1. ([9],[23],[24]) 𝜙: [𝑎, 𝑏] → ℝ𝐼 is said to be an interval Riemann integrable 

function (𝐼𝑅-integrable) on [𝑎, 𝑏] if there exist 𝐴 ∈ 𝑃 and 𝛿 > 0, for each 𝜀 > 0, such that 

  

    <),,,( ADSd  

 

for every Riemann sum 𝑆 of 𝜙 corresponding to each 𝐷 ∈ 𝐷(𝛿, [𝑎, 𝑏]) and independent of 

choice of  iii tt ,1 , 1 ≤ 𝑖 ≤ 𝑛. In this case, A  is called as the 𝐼𝑅-integral of 𝜙 on [𝑎, 𝑏] and 

is denoted by 

  

 .)()(= dttIRA

b

a

  

 

The collection of all functions that are 𝐼𝑅-integrable on [𝑎, 𝑏] will be denote by 𝐼𝑅([𝑎,𝑏]).  

 

The next theorem explains connection between 𝐼𝑅-integrable and Riemann integrable (𝑅-

integrable): 

 

Theorem 2.2. Assume that 𝜙: [𝑎, 𝑏] → ℝ𝐼 is an interval-valued function such that 𝜙(𝑡) =

[𝜙(𝑡), 𝜙(𝑡)]. 𝜙 ∈ 𝐼𝑅([𝑎,𝑏]) if and only if 𝜙(𝑡), 𝜙(𝑡) ∈ 𝑅([𝑎,𝑏]) and  

 

 ,)()(,)()(=)()( 







 dttRdttRdttIR

b

a

b

a

b

a

  

 

where 𝑅([𝑎,𝑏]) denotes the all 𝑅-integrable function.  

It is easy to see that if 𝜙(𝑡) ⊆ 𝜓(𝑡) for all 𝑡 ∈ [𝑎, 𝑏], then (𝐼𝑅) ∫ 𝜙(𝑡)𝑑𝑡
𝑏

𝑎
⊆ (𝐼𝑅) ∫ 𝜓(𝑡)𝑑𝑡

𝑏

𝑎
. 

The inequality obtained by Budak and Kara to establish the theorem in the section on principal 
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outcomes is as follows: 

 

Theorem 2.3 (Weighted Jensen Inclusion). [4] Let 𝑔: [𝑎, 𝑏] → [𝑎, 𝑏] be a function from 

𝐿∞[𝑎, 𝑏] and 𝑤: [𝑎, 𝑏] → ℝ be non-negative functions from 𝐿1[𝑎, 𝑏] such that ∫ 𝑤(𝑡)𝑑𝑡 ≠ 0
𝑏

𝑎
. 

If 𝐹: [𝑎, 𝑏] → 𝑅𝐼 is an interval–valued convex function such that 𝐹(𝑡) = [𝐹(𝑡), 𝐹(𝑡)], then we 

have, 
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3. PRINCIPAL OUTCOMES 

 

In this part, we establish some weighted Hermite–Hadamard type inclusions with the help of 

the interval valued convex functions. 

Theorem 3.1. Let 𝐹: [𝑎, 𝑏] → ℝ𝐼
+ be an interval-valued convex function, such that 𝐹(𝑡) =

[𝐹(𝑡), 𝐹(𝑡)]. Then we acquire 
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Proof. With the aid of the right side of Hermite–Hadamard inclusion (1.2), we derive 
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Taking into account the interval-valued convexity of 𝐹, we get 
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On the other hand, by the left side of inclusion (1.2), we obtain 
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By utilizing the interval-valued convexity property of the function 𝐹 and Jensen inclusion (2.3), 

we establish 
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So, the proof is accomplished.  

 

Remark 3.1. Clearly, for 𝑛 = 0, Theorem 3.1 corresponds to (1.2).  

Corollary 3.2. In Theorem 3.1, if we assign 𝑛 = 1, we obtain 
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Let’s take the following example to demonstrate the correctness of the Corollary 3.2. 

 

Example 3.3. Define a function 𝐹: [0,1] → ℝ𝐼
+ by 𝐹(𝑡) = [𝑡2, 2 − 𝑡2], Then 𝐹(𝑡) is an interval-

valued convex function such that 𝐹(𝑡) = [𝐹(𝑡), 𝐹(𝑡)] for 𝑡 ∈ [0,1]. By applying Corollary 3.2, 
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the first expression of (3.1) becomes 
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The second expression of (3.1) becomes 
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By using definition of integral for interval valued function, the third expression of (3.1), we 

acquire 
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And the fourth expression of (3.1), we obtain, 
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And then fifth expression of (3.1), we get 
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Consequently, 
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which demonstrates the result described in Corollary 3.2.  

 

4. CONCLUSION 

We have investigated a new extension of the Hermite–Hadamard inclusion in this paper. In this 

version we obtained, we showed that it turns into classic Hermite–Hadamard inclusion by 

special choices. In the other of these special choices, we got a new corollary. To demonstrate 
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the correctness of the corollary, we have supplemented it with an example. In the future, the 

authors may examine fractional approaches to these inclusions. Also, interested researchers can 

obtain new inclusions with the help of different types of convexity. To the best of our 

knowledge, these results are new in the literature. We hope that the ideas and techniques of this 

paper will inspire interested readers working in this field. The ideas and techniques of this 

article may be the starting point for further research in this field. 
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ABSTRACT 

 

The present abstract considers Milne-type inequalities for various function classes. Firstly, we 

give some Milne-type inequalities for bounded functions by fractional integrals. Moreover, we 

present several fractional Milne-type inequalities for the case of Lipschitzian functions. 

 

1.  INTRODUCTION 

Fractional calculus is a branch of mathematics that investigates the properties of derivatives 

and integrals with fractional orders. It generalizes the classical calculus of integers, which is 

useful in in physics, engineering, and other fields. The commonly used definitions of fractional 

integrals include the Riemann-Liouville fractional, conformable fractional, and tempered 

fractional integrals, and more. The bounds of new formulas can be established by utilizing not 

only Hermite-Hadamard and Simpson-type inequalities but also Newton and Milne-type 

inequalities. 

Let’s introduce some initial concepts that will be utilized in the subsequent sections. 

• Simpson’s quadrature formula, commonly referred to as Simpson’s 1/3 rule, is formulated as 

follows:  
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• Simpson’s second formula, also referred to as the Newton-Cotes quadrature formula or 

Simpson’s 3/8  rule (cf. [6]), is described as follows: 
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 Formulas (1) and (2) are suitable to any function f  that includes a continuous fourth derivative 

on the closed interval ].,[ ba  

One of the most widely used Newton-Cotes quadrature methods including a three-point 

Simpson-type inequality is expressed as follows: 

 

Theorem 1. If 𝑓: [𝑎, 𝑏] → ℝ is a four times continuously differentiable function on  ,,ba  and 
 

 

  ,<)(sup= 4

,

4 



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bax

 then one has the following inequality 

mailto:fatihezenci@gmail.com
mailto:hsyn.budak@gmail.com


6TH INTERNATIONAL CONFERENCE  

ON MATHEMATICAL AND RELATED SCIENCES 

 ICMRS 2023 

20-22 NOVEMBER, 2023 

 

Book of Proceedings-ICMRS 2023 

 
86 

     .
2880

1
)(

1
)(

2
4)(

6

1 44 abfdxxf
ab

bf
ba

faf
b

a



















 


  

 

Simpson-type inequalities and their application to quadrature inequalities in numerical analysis 

were presented in paper [1]. Moreover, in paper [2], some variants of Simpson-type inequalities 

are established for the case of differentiable convex functions by using generalized fractional 

integrals. Furthermore, in paper [3], fractional Simpson-type inequalities are investigated for 

the case of function whose second derivatives in absolute value are convex. For further 

information, please refer to Reference [4, 5] and the references cited within that source. 

 

One of the classical closed-type quadrature rules is the Simpson 3/8  rule, which is based on 

the Simpson 3/8  inequality, formulated as follows: 

 

Theorem 2 (See [6]). Let us consider that 𝑓: [𝑎, 𝑏] → ℝ is a four times continuously 

differentiable function on  ,,ba  and  
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 Then, the following inequality 

holds:  
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Simpson’s second rule is a consequence of the three-point Newton-Cotes quadrature rule, 

leading to the frequent designation of evaluations including three-step quadratic kernels as 

Newton-type results. In the literature, these results are known as Newton-type inequalities. 

Considerable number of mathematicians have been investigated Newton-type inequalities. For 

example, some Newton-type inequalities were established for the case of functions whose first 

derivative in absolute value at certain power are arithmetically-harmonically convex in paper 

[7]. In addition, some Riemann-Liouville fractional Newton-type inequalities for functions of 

bounded variation were presented in paper [8]. Newton-type inequalities are further discussed 

in papers [9-11] and the referenced works within those papers provide additional information 

on this topic. 

The open-type Milne formula, using Newton-Cotes formulas, is similar to the closed-type 

Simpson formula in that it is valid under the same conditions. 

 

Theorem 3 (See [12]). Let 𝑓: [𝑎, 𝑏] → ℝ be a four times continuously differentiable mapping 
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 Ali et al. computed the error bounds by one of the open Newton–Cotes formulas, namely 

Milne’s formula for differentiable convex functions in fractional and classical calculus in paper 

[13]. Ali et al. is proved integral equality to demonstrate the main findings as follows: 

 

Lemma 1 (See [13]). Let us consider that 𝑓: [𝑎, 𝑏] → ℝ is an absolutely continuous function 
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),( ba  so that  baLf ' ,1 . Then, the following equality holds:  
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 The well-known Riemann-Liouville fractional integrals that are given as follows: 

 

Definition 1 (See [14]).  The Riemann-Liouville integrals )(xfJ a
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respectively for ],[1 baLf  . The gamma function is defined   dtetx tx 



 1

0

:=  for 𝑥 ∈ ℝ+. The 

Riemann-Liouville integrals are equals to the classical integrals for the case of 1= .  

Djenaoui and Meftah [15] proved some estimates of Milne’s quadrature rule for the case of 

functions whose first derivative is s -convex. In addition, Alomari and Liu [16] established 

error estimations for Milne’s rule for functions of bounded variation and for absolutely 

continuous mappings. Moreover, Budak et al. [17] obtained fractional versions of Milne’s 

formula by using the differentiable convex functions. 

 

2.  MILNE-TYPE INEQUALITIES FOR BOUNDED FUNCTIONS INVOLVING 

FRACTIONAL INTEGRALS 

 

In this section, we present some Milne-type inequalities for bounded functions by using 

fractional integrals. 
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Theorem 4.  Suppose that the conditions of Lemma 1 hold. If there exist 𝑚,𝑀 ∈ ℝ such that 
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Corollary 3.  If we assign 1=  in Corollary 2, then the following inequality holds:  
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𝐿{𝛺5(𝛼) + 𝛺2(𝛼) − 2𝛺6(𝛼) + 2𝛺3(𝛼)−𝛺7(𝛼) + 2𝛺4(𝛼)−𝛺8(𝛼)}. 

  

Corollary 4. If we choose 1=  in Theorem 5, then the following Milne-type inequality holds:  
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5.  CONCLUSION 

 

The present extended abstract considers Milne-type inequalities for various function classes. 

Firstly, we present several Milne-type inequalities for bounded functions by fractional integrals. 

Moreover, we present several fractional Milne-type inequalities for the case of Lipschitzian 

functions.  

In future investigations, the exploration of concepts and strategies connected to our findings 

regarding Milne-type inequalities through Riemann-Liouville fractional integrals has the 

potential to pave the way for innovative pathways in the field of mathematics. Moreover, one 

may consider generalizing our findings by exploring alternative classes of convex functions or 

different types of fractional integral operators. Moreover, one can obtain Milne-type 

inequalities by Riemann-Liouville fractional integrals for convex functions by using quantum 

calculus. 
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ABSTRACT 

 

Several extensions, generalizations and new variant of different types of inequalities for 

different kinds of convex functions obtained by researchers. In this paper, we establish 

the Bullen, Midpoint, Trapezoid and Simpson type inequalities, respectively, for  𝜂-

convex function, with the help of identities existing in the literature. 

INTRODUCTION 

Convexity theory is an astonishing and compelling methodology for contemplating the 

enormous and beautiful issues that arise in many different fields of the pure and applied 

sciences. Numerous new structures have been presented and explored, including convex sets 

and related functions. This theory has a rich history and has been the focus and motivation of 

outstanding mathematical research for more than a century. Also, convexity theory has a critical 

place in the advancement of the idea of inequality. Inequalities have an interesting mathematical 

model due to their important applications in traditional calculus, fractional calculus, quantum 

calculus, interval-valued, stochastic, time-scale calculus, fractal sets, etc. 

 

One of the functions defined in the class of convex functions is the 𝜂-convex function. In [9], 

Gordji et al. introduced the idea of 𝜂-convex functions as generalization of ordinary convex 

functions and gave the following definition for 𝜂-convexity of functions.  

 

Definition 1 A function R],[: baf  is said to be  convex (or convex with respect to  ) if 

the inequality  

 ))(),(()())(1( yfxftyfyttxf   

holds for all ],[, bayx  , [0,1]t  and   is defined by R ]),([]),([: bafbaf .  

 

In the above definition if we set yxyx =),( , then we can directly obtain the classical 

definition of a convex function. Too see more results and details on 𝜂-convex functions see [3, 

10, 11]. 
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Recently, a large number of researchers, including mathematicians, engineers and scientists, 

have devoted themselves to studying the inequalities and properties associated with convexity 

in certain different directions. Many integral inequalities have been developed so far by 

different researchers in the due course of time. In the literature, we have many types of 

inequalities that involve convex functions, such as Bullen inequality [2], Hermite-Hadamard-

Fejer inequality [8], Simpson type inequality [18], and Ostrowski type inequalities [17]. 

Likewise, there are a lot of well-known integral inequalities but the most notable one is the 

Hermite-Hadamard integral inequality. 

 

Let RR If :  be an integrable convex function with ba < . Then, the Hermite-Hadamard 

inequality is expressed as follows: (see [12]):  

 

 .
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In [9], Gordji et al. proved some important results but here we give only one of them in the 

following theorem based on the above definition, which is also known as 𝜂-convex version of 

Hermite-Hadamard inequality.  

 

Theorem 1 [9] Suppose that R],[: baf  is a  convex function such that   is bounded 

above on ]),([]),([ bafbaf  . Then the following inequalities hold.  
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 ,
22

)()( Mbfaf



  (1.2) 

where M  is the upper bound of  .  

 

There has also been research focusing on the Simpson-type inequality. Many researchers have 

studied Simpson-type inequalities in the literature (see, [1, 4, 7, 13, 14]). 

 

Bullen [2] obtained the well-known Bullen-type inequalities. Bullen-type inequalities for 

generalized convex functions were obtained by SarÄ±kaya and Budak [16]. The local fractional 

version of Bullen-type inequality were presented in [6]. Du et al. [5] obtained Bullen-type 

inequalities using fractional integrals. 

 

In the last few decades, many mathematicians and research scholars have focused their great 

contributions and attention to the study of this inequality. The aim of this paper, is to establish 

some new Hermite-Hadamard type inequalities and Simpson-type inequalities for 𝜂-convex 

function. 
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GENERALIZED BULLEN TYPE INEQUALITIES 

Theorem 2  Suppose that )[0,)[0,: f  is an  -convex function, where let )[0,, ba , 

ba < . If ],[ baLf  , then the following inequalities hold  
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for ),( bax .  

Proof. Since f  is a  -convex function on ],[],[ baxa  , by using the inequalities (1.1) we get  
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By similar way for ],[],[ babx  , it follows that  
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Consequently, by adding (2.2) and (2.3), we have  
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which completes the proof of (2.1). 

TRAPEZOID TYPE INEQUALITIES 

 

Lemma 1 [15] Let R],[: baf  be a differentiable mapping on ),( ba  with ba < . If 

],[ baLf '  , then the following equality holds:  
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for ],[ bax .  

Theorem 3  Let R )[0,],[: baf  be a differentiable mapping on ),( ba  with ba < . If 

|| 'f  is  -convex, then  
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8
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for ],[ bax .  

Proof. From Lemma 1, by using the properties of modulus and || 'f  is  -convex, we have  
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which completes the proof of the inequality (3.1).  

Theorem 4  Let R )[0,],[: baf  be a differentiable mapping on ),( ba  with ba < . If 
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where ],[ bax  and 1=
11

qp
 .  

Proof. From Lemma 1, by using Hölder inequality and q'f ||  is  -convex, we have  
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MIDPOINT TYPE INEQUALITIES 
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Proof. From Lemma 2, by using Hölder inequality and q'f ||  is  -convex, we have  
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So, the proof is completed.  

SIMPSON TYPE INEQUALITIES 

 

Lemma 3 [15] Let R],[: baf  be a differentiable mapping on ),( ba  with ba < . ],[ baLf ' 
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Proof. From Lemma 3, by using the properties of modulus and || 'f  is  -convex, we have  

 






 








 







 

2

)()(
)(

2
2

2
2

3

1
|

bfaf
xf

xb
f

xa
f  

 |)(
1

)(
1














  dttf

xb
dttf

ax

b

x

x

a
 

  dxafaxfax '' |]))(1(||))(1([|
6

1
)( 2

1

0
   

  dxbfbxfxb '' |]))(1(||))(1([|
6

5
)(

1

2

1    

 dxfafxfafxfafax '''''' |])(||,)((||)(||))(||,)((||)([|
6

1
)( 2

1

0
   

 dxfbfxfbfxfbfxb '''''' |])(||,)((||)(||))(||,)((||)([|
6

5
)(

1

2

1    

 
36

|])(||,)()[|5(|])(||)()[|5(
=

xfbfxbxfafax '''' 
 

 
648

|))(||,)((|)61(|))(||,)((|)29( xfbfxbafxfax ''''  
  

which completes the proof of the inequality (5.1).  
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Theorem 8  Let R )[0,],[: baf  be a differentiable mapping on ),( ba  with ba < . If 
q'f ||  is  -convex for some 1>q , then  
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Proof. From Lemma 3, by using Hölder inequality and q'f ||  is  -convex, we have  
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So, the proof is completed.  
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ABSTRACT 

 

In this paper, some novel integral inequalities for different kinds of convex functions have been 

proved by using Caputo-Fabrizio fractional integral operators. The findings includes several 

new integral inequalities P-functions. We have used the properties of Caputo-Fabrizio 

fractional operator, definitions of different kinds of convex functions and elemantery analysis 

methods. 

 

INTRODUCTION 

 

The concept of convexity, which has an important place in inequality theory, has been used by 

many researchers and has been used extensively, especially in the field of inequality theory. 

The definition of the convex functions can be given as follow. 

 

Definition 1 (See [1]) Let I  be on interval in .R  Then RI:  is said to be convex, if  

 

         yxyx   11  

 

 holds for all Iyx ,  and  .0,1   

The definition of the P-functions can be given as follow. 

 

Definition 2 (See [2]) Let I  be on interval in .R  Then RI:  is P  function or f  belongs 

to the class of )(IP , if it is nonnegative and for all Iyx ,  and [0,1] , satisfies the following 

inequality  

       yxyx   1  

 

For more information on the P function, we recommend readers the following articles (see[3]-

[9]). 

 

Definition 3 (See [10], [11], [12]) Let  baH ,1  , ba < ,  0,1 , then the definition of 

the left fractional derivative in the sense of Caputo and Fabrizio becomes  
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   
 

 
 

dxex
B

D
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'
t
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a



 




 




1

1
=  

and the associated fractional integral is  

   
 

 
 

 dxx
BB

I
t

a

CF

a 








 

1
=  

where   0>B  is a normalization function satisfying     1.=1=0 BB  For the right fractional 

derivative we have  

   
 

 
 

dxex
B

D

tx

'
b

t
b

CFC 


 




 






1

1
=  

 and the associated fractional integral is  

   
 

 
 

  .
1

= dxx
BB

I
b

t
b

CF 








 


 

  

For more information related to different kinds of fractional operators, we recommend to the 

readers the following papers (See [13]-[28]) 

 

2  NEW INEQUALITIES FOR P-FUNCTIONS 

 

Theorem 1 Let .RI   Suppose that   RIbaf ,:  is a P function on  ba,  such that 

 .,1 baLf   Then, we have following inequality for Caputo-Fabrizio fractional integrals:  

  

     
          

 


B

bfafabkf
kfIkfI b

CFCF

a




12
 

where   0>B  is normalization function  .0,1   

 

Proof. By using the definition of P function, we can write  

 

       .1 bfafbttaf   

 

By integrating both sides of the inequality over  0,1  with respect to ,t  we get  

 

        .1
1

0

1

0
dtbfafdtbttaf    

 

By changing of the variable as  bttax  1=  and calculating the right hand side, we obtain  

 

      bfafdxxf
ab

b

a


 
1

 

By multiplying both sides of the above inequality with 
 
 



B

ab 
 and adding 

 
 

 ,
12

kf
B 


 we 

have  
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 
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 
 

 
      

 
.

1212

















B

bfafab
kf

B
dxxf

B
kf

B

b

a








  

 

 By simplfying the inequality, we get the result.  
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 Namely  
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Theorem 2 Let .RI   Suppose that   RIbaf ,:  is a P function on  ba,  such that 

 .,1 baLf   Then, we have following inequality for Caputo-Fabrizio fractional integrals:  
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where   0>B  is normalization function 1=
11

1,>
qp

q   and  .0,1   

 

Proof. By using the definition of P function, we can write  

 

       .1 bfafbttaf   

 

By integrating both sides of the inequality over  0,1  with respect to ,t  we get  

 

        .1
1

0

1

0
dtbfafdtbttaf    

 

If we apply the Young’s inequality to the right-hand side of the inequality, we get  
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By changing of the variable as  bttax  1=  and calculating the right hand side,we obtain  
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ABSTRACT 

 

1  INTRODUCTION 

 

The concept of convexity, which has an important place in inequality theory, has been 

widely used by many researchers, especially in the field of inequality theory. The definition of 

convex functions can be given in reference([2]) as follows. 

 

Definition 1 (See [2]) Let I  be on interval in .R  Then Rô I:  is said to be convex, if  

 

         2121 11  ôôô   

 

 holds for all I21,  and  .0,1   

 

The main goal of studies on different types of convexity is to optimize the bounds and 

generalize some known classical inequalities. Based on this basic purpose, an important class 

of convex functions whose definition is given is exponential convex functions and whose 

definition ([1]) is given as follows. 

 

Definition 2 (See [1]) A function RRô I:  is said to be exponential convex function, if  

 

   
2

2

2

1
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)()(
)(11









ee

ôô
ô   

 

 for all R  ,, 21 I  and  .0,1   

 

In [3], the concept of log-convex functions was introduced as follows. 

 

Definition 3 A function )(0,: Iô  is said to be a log-convex function, if  

 

     





1

2121 )()())(1( ôôô  
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 for all I21,  and  .0,1   

For some recent results connected with log-convex functions, (See [4]-[10]). 

 

Aslan and Akdemir gave the definition of exponentially convex functions on co-ordinates as 

follows: 

 

Definition 4 (See [11]) Let us consider the bidimensional interval ],],[= 4321    in 2R  

with 21 <   and 43 <  . The mapping R:ô  is exponential convex on the co-ordinates 

on  , if the following inequality holds, 

  

     
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),(
1,1
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








ee

ôô
ô  

 

 for all ,,),(),,( 4321 R  and  .0,1   

 

Aslan and Akdedmir gave an equivalent definition of the exponential convex function 

definition on the coordinates as follows: 

 

Definition 5 (see [11]) The mapping Rô :  is exponential convex on the co-ordinates on 
 , if the following inequality holds,  

 

     4321 1,1  ô  
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 for all         R  ,,,,,,,, 42324131  and  .0,1,    

 

Expressing convex functions in coordinates brought up the question that it is possible for 

Hermite-Hadamard inequality to expand into coordinates. The answer to this motivating 

question has been found in Dragomir’s paper (see [12]) and has taken its place in the literature 

as the expansion of Hermite-Hadamard inequality to a rectangle from the plane 2R  stated 

below. 

 

Theorem 1 (see [12])  Suppose that Rô  ],],[=: 4321   is convex on the co-ordinates 

on  . Then one has the inequalities;  
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 The above inequalities are sharp.  
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Aslan and Akdemir extended Dragomir’s result in Theorem 1 to exponantially convexity on the 

coordinates 

 

Theorem 2 (See [11]) Let Rô  ],],[=: 4321   be partial differentiable mapping on 

],],[= 4321    and ),(Lô  .R  If ô  is exponential convex function on the co-

ordinates on ,  then the following inequality holds;  
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For some recent results connected with exponentially convex functions and exponentially 

convex functions on the co-ordinates, (See [13]-[21]). 

 

Anderson et al. gave the following definition in (See [22]) 

 

Definition 6 A function       0,0,0,:M  is called a Mean function if  

 

 1     1221 ,=,  MM , 

 2    111 =, M , 

 3    2211 <,<  M , whenever 21 <  , 

 4     2121 ,=,  aMaaM  for all 0>a  . 

Let us recall special means (See [22], [23] and [24]) 

1. Arithmetic Mean:    
2

=,=, 21
2121





AM . 

2. Geometric Mean:     212121 =,=,  GM . 

3. Harmonic Mean:     








21

2121

1
,

1
1/=,=,


 AHM . 

4. Logarithmic Mean:        21212121 loglog/=,=,  LM  for 21    and 

111 =),( L . 

5. Identric Mean:         
21

1/
2

2
1

12121 /1/=,=,





eIM  for 21    and 

111 =),( I . 

 

Now we are in a position to put in order as:   

 

            .,,,,,, 212121212121  KAILGH   

 

In [22], authors also gave a definition which is called MN convexity as the following: 
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Definition 7 Let   0,: Iô  be continuous, where I  is subinterval of  .0,  Let M  and N  

be any two Mean functions. We say ô  is MN -convex (concave) if  

 

          2121 ,,  ôôô NM   

 

 for all ., 21 I   

 

In this study, AG convex functions on the co-ordinates have been introduced and a 

fundamental integral inequality of Hadamard-type has been proved for AG exponentially 

convex functions on the co-ordinates. 

 

2  MAIN RESULTS 

 

Definition 8 Let us consider the bidimensional interval ],],[= 4321    in 2R  with 21 <   

and 43 <  . The mapping 
 R:ô  is AG exponentially convex on the co-ordinates on 

, if the following inequality holds,  
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 for all     R  ,,,, 4321  and  .0,1   

 

An equivalent definition of the AG exponentially convex function definition on the 

coordinates can be done as follows: 

 

Definition 9 The mapping 
 R:ô  is AG exponential convex on the co-ordinates on ,  

if the following inequality holds,  
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 for all         R  ,,,,,,,, 42324131  and  .0,1,    

 

Lemma 1 A function 
 R:ô  will be called AG exponential convex on the co-ordinates 

on ,  if the partial mappings R],[: 21
2

ô  , ),(=)( 2
2

2




 ufeuô  and R],[: 43
1

ô  , 

  ),(= 1
1

1
vfev 



ô  are AG exponential convex on the co-ordinates on ,  where defined for 

all ], 432    and ]., 211     

 

Proof. From the definition of partial mapping 
1
ô  we can write  
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 Similarly, one can easily see that  
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 The proof is completed.  

 

Proposition 1 If R :,ô  are two AG exponential convex functions on the co-ordinates 

on ,  then ô  is AG exponential convex functions on the co-ordinates on .   

 

Proof. It is easy to see that   
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 Therefore ô  is AG exponential convex functions on the co-ordinates on  .  

 

Theorem 3  Let 
 R],],[=: 4321 ô  be partial differentiable mapping on 

],],[= 4321    and ),(Lô  .R  If ô  is AG exponential convex function on the co-

ordinates on , then the following inequality holds;  
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 where ],[ 211    and ],[ 432    dir.  

 

Proof. By the definition of the AG exponential convex functions on the co-ordinates on ,  

we can write  
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 By integrating both sides of the above inequality with respect to  ,  on ,[0,1]2  we have  
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If the 432211 )(1=,)(1=    variable is changed and the    2121 ,<,  AL  

feature is taken into account, the following result is obtained. 
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 By computing the above integrals, we obtain the desired result.  
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Corollary 1 If we choose 0=  in Theorem 3, the result agrees AG exponential convex on 

the coordinates with AG convexity on the coordinates 
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co-ordinates on ,  1>p  then the following inequality holds;  
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Proof. By the definition of the AG exponential convex functions on the co-ordinates on ,  

we can write  
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The absolute value property is used in integral and by integrating both sides of the above 

inequality with respect to  ,  on 2[0,1]  , we can write  
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If the 432211 )(1=,)(1=    variable is changed and If we apply the Hölder’s 

inequality to the right-hand side of the inequality, we get  
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 Because of the    2121 ,<,  AL  property, we can write  
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 Proof is completed.  
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Corollary 2 If we choose 0=  in Theorem 4, the result agrees AG exponential convex on 

the coordinates with log-convexity on the coordinates. 
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Proof. By the definition of the AG exponential convex functions on the co-ordinates on ,  

we can write  
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The absolute value property is used in integral and by integrating both sides of the above 

inequality with respect to  ,  on 2[0,1]  , we can write  
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If the 432211 )(1=,)(1=    variable is changed and If we apply the Young’s 

inequality to the right-hand side of the inequality, we get  
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 Because of the    2121 ,<,  AL  property, we can write  
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 Proof is the completed.  

 

Corollary 3 If we choose 0=  in Theorem 5, the result agrees AG exponential convex on 

the coordinates with log-convexity on the coordinates. 
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 where ],[ 211   , ],[ 432    and 1=11   qp  dir.  
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ABSTRACT 

 

In this study, general information about hash functions is given, and the classification and usage 

areas of cryptographic hash functions are examined. Additionally, Diffie-Hellman style key 

exchange protocols and their working principles were analyzed. 

 

 

INTRODUCTION 

 

Hash Functions 

One of the most important issues of cryptographic systems is security. In messages sent between 

two parties, the recipient must understand the message and third parties must not be able to 

understand or decipher it. For this reason, functions that convert messages into an unreadable 

form are needed. Hash functions are one of them. 

Hash functions produce a fixed-length output by processing data inputs with a mathematical 

calculation or algorithm. This process is called hash, and hashing is the process of converting 

data of any size into a fixed-size output. 

In general, hash functions are used to ensure the integrity and security of data. Whether the data 

has been changed or not can be checked with hash functions. Additionally, the size of large data 

is reduced to a smaller size with a fixed length. Thus, the size of the data to be sent to the target 

is reduced. 

Areas where the hash function is used are Digital Signature, Authentication and Blockchain. 

There are two properties that a hash function has. These are; 

1. Compression: Enter an input x of arbitrary finite bit length into n-bit. It converts the 

output to the constant h(x) of length. 

2. Easy Computation: Given h and an input x, you can calculate h(x). It should be easy to 

calculate. 

 

Cryptographic hash functions are generally divided into keyed and unkeyed hash functions. 

Keyed hash functions are divided into Message Authentication Codes (MACs) and other 

applications, and unkeyed hash functions are divided into Modification Detection Codes 

(MDCs) and other applications. In addition, MDCs are divided into two groups: One-Way Hash 

Functions and Collision-Resistant Hash Functions. 
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Key Exchange Protocols 

Individuals are increasingly concerned about protecting their private conversations and online 

activity. This is why they want to encrypt their data using a cryptographic system. One of these 

cryptosystems is called a symmetric cryptosystem. The shared key is the cornerstone of 

symmetric cryptography, enabling both encryption and decryption of messages, but only if both 

parties possess it beforehand. Coordinating shared keys in symmetric cryptography poses 

logistical and security challenges, as they must be either securely exchanged beforehand or 

distributed via costly, protected channels. less to obtain and more expensive to maintain. 

Therefore, the communicating parties need a protocol to exchange keys. These protocols are 

often called key exchange protocols. 

Key exchange protocols play a crucial role in securing modern communication. By enabling 

the secure establishment of shared keys, they underpin the confidentiality, integrity, and 

authenticity of sensitive information exchanged over digital networks. Their importance in 

safeguarding online privacy and security cannot be overstated. 

Key exchange protocols use mathematical approaches to obtain session keys for both sides 

without transferring them. This approach prevents anyone other than the legitimate parties from 

obtaining the session key by listening to the data transfer channel between the two sides. 

Even when using a symmetric cryptosystem, the key exchange protocol must use a public-

private key pair because the public-private key pair is used for session key calculations and not 

for encryption purposes. The key pair is created from distinctive domain parameters on both 

sides. These domain parameters and public keys are not secret. Only the private keys of both 

parties are secret. Whereas, because it uses a mathematical protocol, it is very difficult to renew 

the private key from the domain parameters and public key. 

 

HASH FUNCTIONS AND KEY AGREEMENT 

In the realm of cryptography, key agreement protocols are formally defined as interactive, two-

party (A and B) processes that establish a shared secret key between them. The parties initiate 

the protocol with security parameter 1𝜆, guiding their message exchanges towards key 

agreement. Additionally it has a random string 𝑟𝐴 (for A) and 𝑟𝐵 (for B) of sufficient length on 

both sides. Traditionally, we can say that A sends the first message 𝑚1, B sends the second 

message 𝑚2, A sends the third message 𝑚3, and so on, B sends the last message 𝑚𝑡. We can 

safely assume that any necessary adjustments to align protocols with our format—such as A 

sending a redundant value in their first message or B doing so in their last—don't fundamentally 

alter their functionality. As long as the number of communication rounds remains within a 

polynomial range, these adjustments don't invalidate the impossibility result. 
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Each party's outgoing message is a function of their input, the transcript of previously received 

messages, and their local random tape. We formally model the protocol's execution as a 

sequence of algorithm invocations, with algorithms A(1𝜆,𝑟𝐴, 𝑚1, 𝑚2, ...) and B(1𝜆,𝑟𝐵, 𝑚1, 𝑚2, 

...) taking the partial transcripts as input and generating the subsequent message as output, 

defining a deterministic state transition model. Protocol execution terminates with each party 

deriving and outputting local keys 𝑘𝐴 and 𝑘𝐵 , based on the shared transcript. We represent this 

process within our model by having algorithms A and B return both a key and a designated 

symbol. We denote by transc = (𝑚1, 𝑚2,..., 𝑚𝑡) the transcript of the execution, consisting of 

the sequence of exchanged messages, where t is polynomial but may depend on the parties’ 

inputs. The table below visually depicts the key exchange protocol's steps and interactions 

(Mittelbach, 2021). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To specify that the key exchange protocol involves parties 𝐴 and 𝐵, we express it as 𝐾𝐸 =
〈𝐴, 𝐵〉. Similarly, we define  

(𝑘𝐴, transc, 𝑘𝐵) ←〈𝐴(1𝜆),𝐵(1𝜆)〉 
a random variable (symbol) to model the outcome of a key exchange protocol execution, with 

its probability distribution dependent on the random tapes of 𝑟𝐴 and 𝑟𝐵. The outcome captures 

the keys and the transcript, revealing both the final results and the path taken to reach them. If 

we consider the execution for fixed random tapes 𝑟𝐴 and 𝑟𝐵. We get a deterministic output,  

(𝑘𝐴, transc, 𝑘𝐵) ←〈A(1𝜆; 𝑟𝐴),B(1𝜆; 𝑟𝐵)〉 
While we haven't yet specified requirements for the parties' keys 𝑘𝐴 and 𝑘𝐵, successful key 

exchange protocols ensure they always match (𝑘𝐴 = 𝑘𝐵), enabling reliable communication using 

a shared key. This property is known as perfect correctness. Accepting a negligible error rate 

allows for more efficient protocols, but necessitates careful analysis of potential security 

implications. We'll restrict our attention to perfectly correct protocols to simplify the exposition 

of our impossibility findings. Having established perfect correctness, we must now move on to 

the cornerstone of all cryptographic protocols: security. The paramount objective of a key 

exchange protocol is to safeguard the shared key, ensuring it's accessible only to A and B. The 

protocol's security model formally captures the threat of an eavesdropping adversary E (Eve) 
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who passively observes the communication channels during the key exchange. Even with the 

full transcript in hand, Eve (the adversary) shouldn't be able to glean any information about A's 

key 𝑘𝐴, like its value or structure. Under the assumption of almost-sure key identicality, we can 

model the adversary's goal as predicting key 𝑘𝐴, as any successful prediction of key 𝑘𝐵 would 

also reveal key 𝑘𝐴 with overwhelming probability. 

 

Diffie-Hellman Key Exchange Protocol 
Diffie-Hellman's security hinges on the intractability of discrete logarithms in finite fields. The 

discrete logarithm can be defined as: 

“Given a prime 𝑝, a generator 𝛼 of 𝑍𝑃
∗   and an element 𝛽 ∈  𝑍𝑃

∗ , find the integer 𝑥, 0 ≤  𝑥 ≤
 𝑝 − 2, such that         𝛼𝑥 ≡  𝛽” (Akalp, 2008). 

Now let us explain the Diffie-Hellman key agreement protocol by making use of this definition. 

Parties A and B begin by establishing a common mathematical foundation: a group G, its 

generators g, and security parameter λ, ensuring a shared understanding for secure 

communication. By selecting a prime number q as the group's order, we introduce a level of 

mathematical elegance and security that can enhance the robustness of the cryptographic 

protocol. Now each side chooses a secret power x for A and y for B. Then it sends 𝑔𝑥→X and 

𝑔𝑦→Y to the other party respectively. Then, in the group, A computes the 𝑦𝑥→𝑘𝐴  and B 

computes it as 𝑥𝑦 →𝑘𝐵. Let's not forget that for well-formed data we have equality A which 

means both parties agree on the same value. 

 

𝑘𝐴 = 𝑌
𝑥 = (𝑔𝑦)𝑥 = 𝑔𝑥𝑦 = (𝑔𝑥)𝑦 = 𝑋𝑦 = 𝑘𝐵   ……….  (A) 

 

It's essential to note that the key derivation function doesn't simply equate 𝑘𝐴 = 𝑘𝐵 . Instead, it 

leverages the shared Diffie-Hellman value as a starting point to meticulously construct a key 

with desirable cryptographic properties, including a uniform bit distribution. Diffie-Hellman 

protokolü, güvenliğini ustaca görünüşte basit ama son derece zorlayıcı bir matematiksel 

bilmeceye dayandırıyor: ayrık logaritma problemi. Doğasında var olan zorluk, yetkisiz anahtar 

alımına karşı zorlu bir bariyer oluşturarak iletişimin gizliliğini sağlar. That is, if an adversary 

can compute the discrete logarithm of X or Y, he can also compute the shared key of both 

parties. However, it is not known whether the discrete logarithm assumption is also sufficient 

to demonstrate security. The Diffie-Hellman protocol's security rests upon a crucial assumption: 

the intractability of the discrete logarithm problem. While no attacks have exploited this 

assumption directly, the possibility of unforeseen weaknesses within the protocol itself cannot 

be entirely dismissed. Although assuming Diffie-Hellman's security is reasonable based on its 

enduring resistance to attacks, caution dictates ongoing vigilance and a readiness to adapt 

should novel vulnerabilities emerge. So it should not be possible to calculate 𝑔𝑥𝑦 from 𝑔𝑥 and 

𝑔𝑦. 

 

The Diffie-Hellman protocol ingeniously leverages intricate mathematical properties of the 

underlying number-theoretic structure to establish secure key exchange. Due to the 

mathematical harmony within the cyclic group G, the order of exponentiation doesn't affect the 

outcome, enabling A and B to independently reach a shared secret key. The current approach 

offers limited guidance for designing secure key exchange protocols using random oracles 

when those crucial mathematical properties are absent, highlighting a significant challenge for 

cryptographic innovation. 
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Hash-based Key Agreement 

Recently, studies on the use of hash functions in key agreement protocols have gained intensity 

(Wang, 2021; Lee 2010; Guo, 2010; Yoon, 2011). 
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ABSTRACT 

 

Our aim in this study is to investigate hash functions and their various applications in 

cryptography. For this purpose, some information is given about the properties of traditional 

hash functions. Additionally, the types of attacks that these functions may encounter are also 

mentioned. Potential vulnerabilities and risks associated with hybrid functions were examined 

and information was provided regarding the vulnerabilities they encountered. 

 

INTRODUCTION 

 

Cryptography is concerned with the formulation and creation of robust cryptosystems and 

ciphers to ensure secure communication. The discipline focuses on developing intricate 

mechanisms that safeguard sensitive information from unauthorized access or interception. 

Cryptanalysis is the practice of systematically examining and analyzing cryptosystems and 

ciphers, with the primary objective of deciphering or "cracking" them. This specialized field 

focuses on a thorough investigation of cryptographic algorithms, aiming to identify and exploit 

potential weaknesses to gain unauthorized access to encrypted data. 

Cryptography and cryptanalysis come together to form cryptology. Cryptology is dedicated to 

enabling secure communication within insecure channels. It involves the development of 

methods and systems to safeguard information integrity and confidentiality when transmitted 

over channels susceptible to unauthorized access or interception. 

As early as 1900 BC, cryptography has a historical footprint, with ancient Egypt employing 

rudimentary encryption methods to maintain message confidentiality. In this era, cryptographic 

practices included altering the letters or words within a message and concealing specific parts 

of the communication to ensure secrecy. 

Around 100 BC, Julius Caesar devised a cipher, now named after him, where each letter in the 

message is replaced by the next three letters in the alphabet.1 

In the 5th century BC, Spartans employed permutation ciphers for secure message transmission. 

In military and diplomatic communications of the Middle Ages, cryptography gained extensive 

usage. 

With the rise of computers in the 19th century, cryptography entered a new era, experiencing a 

significant evolution. 

                                                           
1History of cryptography - Wikipedia 
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In 2008, Bitcoin emerged onto the scene as a cryptocurrency, its foundation resting on the SHA-

256 hash function. 

Cryptography is a field in constant flux, with the continuous emergence of innovative 

algorithms and techniques. Future developments in cryptography will be strongly influenced 

by the progress of technologies such as artificial intelligence, quantum computers, and 

blockchain. 

 

CRYPTOGRAPHIC HASH FUNCTIONS 

 

Definition 1. A cryptographic hash function is a function that takes bit strings of arbitrary length 

and converts them into bit strings of a specific (𝑛 bits) length. 

Cryptographic hash functions are expected to provide the following properties. 

1. Front Image Durability: Given an output 𝑦, it should be difficult to find an input 𝑥 

that gives that output.  

2. Second Front Image Durability: Given an output 𝑦 and an input 𝑥1 that satisfies 

ℎ(𝑥1)  =  𝑦, it should be difficult to find a second input 𝑥2 that satisfies ℎ(𝑥2)  =  𝑦. 

3. Collision Resillience: It should be difficult to find inputs 𝑥1 and 𝑥2 that satisfy the 

equation ℎ(𝑥1) =  ℎ(𝑥2) =  𝑦. 

In addition, the outputs should be random. 

Hash functions are used extensively in cryptography. Some of them are : 

      Digital Signatures 

      Message Verification Codes 

      Random Number Generators 

      Key Generation Functions 

 

ITERATIVE HASH FUNCTIONS 

 

Definition 2. Several keyless hash functions follow an iterative procedure, where inputs of 

varying lengths are condensed by subjecting fixed-size blocks of the input to consecutive 

operations. An iterative hash function is formulated through a compression function, denoted 

as f, which transforms a (t + n)-bit input into an n-bit output.2 

 

 
Figure 1 Merkle-Damgard Structure 3 

                                                           
2 S. Lucks, “Design Principled for Iterated Hash Functions”, in IACR Cryptology ePrint Archive, 2004, pp.253. 
3 Illustration by David Göthberg, Sweden. 
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Until Sha-3, all hash functions are constructed using the Merkle-Damgard structure. The 

process begins by initializing the function with an initialization vector, taking the first message 

block as input. Subsequently, the function iterates, taking the output along with the next 

message block as inputs, producing a new output. This loop continues until all blocks are 

processed, and the resulting output is termed the summary code. 

 

KEYLESS HASH FUNCTIONS 

 

Definition 3. MDC keyless cryptographic hashing designed to ensure data integrity function 

resistance to which of the three problems defined in the previous section shows that one way 

hash functions (one way hash functions) (OWHF) and as collision resistant hash functions 

(CRHF) is divided into two. 

1. The definition of the hash function H is well known. 

2. Given 𝑥, 𝐻(𝑥) is easy to calculate. 

3. The front image must have durability. 

4. The second front image must have durability. 

5. It must be collision resistant. 

Functions that satisfy the first 4 properties are called one-way hash functions (OWHF), while 

functions that satisfy all properties are called collision-resistant hash functions (CRHF). 

 

 

 
Figure 2 Davies-Meyer, Matyas-Meyer-Oseas, Miyaguchi-Preneel (Illustration by David 

Göthberg, Sweden.)  

 

Hash functions can also be generated using block ciphers, and in the literature, three of them 

are acknowledged for their security. Take the Davies-Meyer method as an example: consider 

the initial vector as a plaintext block, treat the first message block to be summarized as the key, 

encrypt it, and output the resulting ciphertext block. If there's a second block, use this output as 

a new plaintext block. Repeat this process until all message blocks are processed to obtain the 

final version. 



6TH INTERNATIONAL CONFERENCE  

ON MATHEMATICAL AND RELATED SCIENCES 

 ICMRS 2023 

20-22 NOVEMBER, 2023 

 

Book of Proceedings-ICMRS 2023 

 
133 

Conventional Hash Functions 

MD4 
It was designed by Ronald Rivest in 1990.  

Block Length: 512 bits.  

Hash Length: 128 bits.  

Number of Cycles: 48 

Type: Merkle-Damgard 

A,B,C,D are 32-bit state values and 𝑚𝑖 is part of your message. 

Collision Resilience: Collision generation takes microseconds. 

Front Image Durability: 295 operations. 4 

It has influenced many subsequent designs. MD5, SHA-1, 

RIPEMD 

 

 

 

MD5 

It was designed by Ronald Rivest in 1991 as a replacement for 

MD4. 

Block Length: 512 bits 

Hash Length: 128 bits 

Number of Cycles: 64 

Type: Merkle-Damgard 

A,B,C,D are 32-bit state values and m_i is part of your 

message. 

Each of the 16 loops uses F, G, H, I as the f function. 

• F(B, C, D) = ( B ∧ C) ⋁ (¬B ∧ D) 

• G(B, C, D) = ( B ∧ D) ⋁ (C ∧ ¬D) 

• H(B, C, D) =  B ⊕ C ⊕ D 

• I(B, C, D) = C ⊕ ( B ⋁ ¬ D) 

Collision Resilience: It takes 218 operations to generate a collision  (less than 1 second)  

Front Image Durability: 2123.4 operations 5 

 

2004: It is shown how to create two different files that will give the same MD5 digest. 

2005: Lenstra-Wang-Weger demonstrated how to generate X.509 certificates with two different 

public keys with the same MD5 hash. 

2008: It was shown that it was possible to create fake SSL certificates and certificate authorities 

were advised to stop using MD5. 

2012: Flame malware used forged Windows code signing certificates using MD5 conflicts. 

 

                                                           
4 R. Rivest, “The MD4 Message Digest Algorithm”, IETF RFC 1320, 1992. 
5 R. Rivest, “The MD5 Message Digest Algorithm”, IETF RFC 1321, 1992. 

Figure 3 MD4 (Illustration by Matt 

Crypto) 

Figure 4 MD5 (Illustration by 

Surachit) 
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Figure 5 MD5 Collision 

 

Most places are the same, differences are shown in blue. Both inputs generate the same hash 

value. 

 

 

SHA-1 

It was designed by the NSA in 1993. 

This version is now known as SHA-0. 

In 1995 it was published as SHA-1 with only one bit operation 

rotation. 

Block length: 512 bits 

Hash length: 160 bits 

Number of cycles: 80 

Type: Merkle-Damgard 6 

 

 

 

Years ago, academic texts mentioned that a collision could be found, but it was not possible to 

do so with the processing power available at the time. In 2017, Marc Stevens and his team at 

Google, using their graphics cards, found a conflict for SHA-1.  

 

The message consists of 2 blocks. The 

differences are shown in red and blue. When you 

process both of them with SHA-1, it gives the 

same output. 

 

 

 

 

 

 

 

 

 

                                                           
6 FIPS180-3, Secure Hash Standard (SHS), National Institute of Standards and Technology, US Department of Commerce, Washington D. 
C., 2008. 

Figure 6 SHA-1 

(Illustration by Matt 

Crypto) 

Figure 7 SHA-1 Collision 



6TH INTERNATIONAL CONFERENCE  

ON MATHEMATICAL AND RELATED SCIENCES 

 ICMRS 2023 

20-22 NOVEMBER, 2023 

 

Book of Proceedings-ICMRS 2023 

 
135 

SHA-2 

Prepared by the NSA in 2001. 

Block length: 512 veya 1024 bits 

Hash length: 224, 256, 384 veya 512 bits 

Number of cycles: 64 veya 80 

Type: Merkle-Damgard 

 

 

 

 

 

 

 

SHA-3 Competition 

All functions before Sha-2 are broken. The only function we have left is the Sha-2 function. It's 

very similar to the previous designs. So NIST thought we should have a plan b, we should have 

a second summary function.  And organized a competition. 4 of the 64 applicants were Turkish 

designers. Keccak algorithm won the competition. So the Keccak algorithm was named Sha-3. 

• Designers: Guido Bertoni, Joan Daemen, Michael Peeters and Gilles Van Assche 

• Block length: 1152, 1088, 832 or 576 bits 

• Hash length: 224, 256, 384 or 512 bits 

• Number of cycles: 64 or 80  

• Type: Sponge 

 

KEYED HASH FUNCTIONS (MACs) 

 

Definition 3. Keyed hash whose purpose is to guarantee the integrity of the message, to prove 

the message functions are also called Message Authentication Code algorithms. 

The sender and receiver of a message need to agree on the same key before initiating 

communication. 

 

 
Figure 9 MACs (Illustration by Twisp) 

 

To protect the message, the sender calculates the MAC of the m - bit length bit stripe appropriate 

to the message and appends this stripe to the message.  MAC is a complex function of each bit 

Figure 8 SHA-2 (Illustration by Kockmeyer) 
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of the message and the key. On receipt of the message, the receiver recalculates the MAC and 

verifies whether it corresponds to the MAC value sent. 7 

 

CBC-MAC  
The most widely used MAC algorithm is CBC-MAC, which is based on a block cipher that 

enables the use of cipher block chaining (CBC-Cipher Block Chaining). 

Block length: 64 bits (E-block password) 

Key: 56-bit DES key 

 

 
Figure 10 CBC-MAC8 

 

If necessary, m is filled. The padded text is divided into n-bit blocks 𝑚1, 𝑚2,..., 𝑚𝑥. The 𝐻1 

blog is computed using the key k and E. MAC is the n-bit 𝐻𝑥 block. 

 

TYPES OF ATTACK 

 

Dictionary Attack: Precomputed summaries of words from a dictionary and numerical 

combinations are calculated and systematically stored in a table. If an attacker identifies 

matching summary values in the database and their own table, they can gain access to the 

corresponding passwords. 

Solution: Instead of the password digest, a randomly generated salt value is appended to the 

end of the password and the password ∥ salt digest is stored in the database. The attacker would 

therefore need to create a separate table for each salt value, but this is not possible due to 

computational and memory requirements. 

 

Brute Force Attack: Once the digest value is captured, each password is tried one by one. This 

works well when users choose short and easy-to-remember passwords. 

Solution: Instead of using the digest of a password, we can use the last digest value obtained 

by repeatedly passing that digest output to the digest function. For example, if we do this 1000 

times, the attacker's job will be 1000 times harder. 
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ABSTRACT 

 

In this notes Aschbacher’s Thorem will be given and the Aschbacher’s  
classical group classes will be defined. We will do some reduction algorithm 
analysis for the maximal C_6 class of classical groups with dimensions 6 
and 8. 

INTRODUCTION 

 

In this section, we present some preliminaries. 

Let 𝑛 ∈ 𝑁 and 𝔽𝑞 be the field with 𝑞 = 𝑝𝑒  elements. Let 𝑉 ≔ 𝔽𝑞
1×𝑛 be the 𝔽𝑞-vector space of 

row vectors. 

 

Theorem 1 (Aschbacher 1984): Let 𝐺 ≤ 𝐺𝐿𝑛(𝔽𝑞) and 𝑛 ≥ 2. Then 𝐺 lies in at least one of 

the classes 𝒞1 to 𝒞9 of subgroups of 𝐺𝐿𝑛(𝔽𝑞) [1]. 

 

One of the classes of Aschbacher’s Theorem is 𝐶6 and definition of this clas as follows: 

 

Class 𝓒𝟔: 𝐺 ≤ 𝐺𝐿𝑛(𝔽𝑞)  lies in 𝒞6 if the natural module 𝑉 is irreducible 𝑛 = 𝑟𝑚 for a prime 𝑟 

and either 𝑟 is odd and 𝐺 has a normal subgroup 𝐸 that is an extraspecial 𝑟 -group of 

order 𝑟(1+2m) and exponent 𝑟 ,or 𝑟 = 2 and 𝐺 has a normal subgroup 𝐸 that is either 

extraspecial of order 21+2𝑚 or a central product of a cyclic group of order 4 with an extraspecial 

group of order 21+2𝑚and in both cases the linear action of 𝐺 on the 𝔽𝑟-vector space 𝐸/𝑍(𝐸) of 

dimension 2𝑚 is irreducible. 

 

This class is in practice computationally under control. 

 

A reduction algorithm and analyses for 𝑛 = 𝑟2 is given for 𝒞6 class in [3] and some other 

analyses for 𝑛 = 𝑟3 is given in [4]. In this note, we give some analyses of this algorithm for 𝑟3 

and 𝑟4. Fort his purpose, some preliminaries as follows: 

mailto:kadirhanpolat@agri.edu.tr
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Definition 1: Let 𝐺 and 𝐻 be groups and let's assume that 𝐺 has an action on 𝐻. Depending on 

this action, the commutator subgroup is defined as: 

 𝛤𝐺(𝐻) = 〈𝑔ℎ 𝑘ℎ−1 𝑘−1 |𝑔 ∈ 𝐺 𝑣𝑒 ℎ, 𝑘 ∈ 𝐻〉 
where 𝑔ℎ is the action of 𝑔 on ℎ [8]. 

 

Definition 2: Let 𝐺 be a group. The lower central series { 𝛤𝑖(𝐺)}(𝑖∈ℕ) of 𝐺 is defined inductively 

as follows: 𝛤1(𝐺) = 𝐺 and for all  𝑖 ∈ ℕ, 𝛤𝑖+1(𝐺)=[𝐺, 𝛤𝑖(𝐺)]. Similarly, the derived series 

{𝐺(𝑖)}
𝑖∈ℕ∪{0}

 of 𝐺 is defined as 𝐺(0) = 𝐺 and 𝐺(𝑖) = [𝐺(𝑖−1), 𝐺(𝑖−1)] for every 𝑖 ∈ ℕ. Note here 

that 𝛤2(𝐺)= 𝐺(1) = 𝐺′ [9]. 

 

For any group-theoretic property 𝒫 if there exist a group 𝐻 with property 𝒫 for any nontrivial 

element 𝑥 ∈ 𝐺 and a surjective homomorphism 𝜑: 𝐺 → 𝐻  such that 𝜑(𝑥) ≠ 1, 𝐺 is said to be 

residually 𝒫. It is well known that ⋂𝑖≥1𝛤𝑖(𝐺) = {1} (respectively ⋂𝑖≥0𝐺
(𝑖) = {1} is a necessary 

and sufficient condition for a group 𝐺 to be residually nilpotent (resp. residually solvable).  

 

Proposition 1: Let 𝐺 and 𝐻 be groups, and let 𝜑:𝐺 → 𝐴𝑢𝑡(𝐻) be an action of 𝐺 on 𝐻. Let 𝐻̂ 

be the subgroup of 𝐻 generated by elements of the form 𝜑(𝑔)(ℎ) ⋅ ℎ−1,  where  𝑔 ∈ 𝐺 and ℎ ∈
𝐻, and let 𝐿 be the subgroup of 𝐻 generated by 𝛤2(𝐻) and 𝐻̂. In this case, 𝜑  induces an action 

of 𝛤2(𝐺) on 𝐿, also denoted by 𝜑, and 𝐿 ⋊𝜑 𝛤2(𝐺)  = 𝛤2(𝐻 ⋊𝜑 G). Specifically, 𝛤2(𝐻 ⋊𝜑 G) is 

the subgroup generated by 𝛤2(𝐻), 𝛤2(𝐺)  and  𝐻̂ [9]. 

 

Reminder 1: The group 𝐿 is actually the commutator subgroup 𝛤𝐺(𝐻).  
 

Proposition 2:  If 𝑝 > 3, the derived subgroup of 𝑆𝐿(2, 𝑝) is equal to itself [6].  

 

Proposition 3: If 𝑛 = 2, 𝑆𝐿(𝑛, 𝑝) = 𝑆𝑝(𝑛, 𝑝) [6]. 

 

Proposition 4: If 𝑝 = 3 and 𝑛 ≥ 2, the derived subgroup of 𝑆𝑝(2𝑛, 𝑝) is equal to itself [6]. 

 

Proposition 5: If 𝑝 ≥ 4, the derived subgroup of 𝑆𝑝(2𝑛, 𝑝) is equal to itself [6]. 

 

Proposition 6: If 𝑛 ≥ 3 or 𝑛 = 2 and 𝑝 ≥ 3, the derived subgroup of 𝐺𝐿(𝑛, 𝑝) is equal to itself 

[7].  

 

Theorem 2: Let 𝐺 be a group, and let 𝐷1, 𝐷2, … , 𝐷𝑛 be its subgroups. If 𝐺 = 𝐷1 × 𝐷2 × …× 𝐷𝑛 

the solvable residue of 𝐺 is the direct product of the solvable residue of subgroups 𝐷𝑖 (1 ≤ 𝑖 ≤
𝑛) [5]. 

MAIN RESULTS 

 

The following auxiliary theorem in [3] forms the basis for the analyses.  

 

Lemma 1: Let 𝐻 be a finite group and 𝐴 be the elementary abelian normal 𝑟 (𝑟 prime) subgroup 

of 𝐻. In this case the following is provided: 
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Let 𝑟 > 2 and let 𝑐 ∈ 𝐻 be assumed to be a fixed element that induces-Id on 𝐴. Let 𝑏 be any 

element of the side set 𝑐𝐴. In this case, for a uniformly distributed random element ℎ ∈ 𝐻 and 

any integer 𝑘 

𝑃𝑟𝑜𝑏 (ℎ𝑘 = 𝑏|  ℎ𝑘 ∈ 𝑐𝐴) = 1/|𝐴|. 
 Let 𝑏 ∈ 𝐻 be a fixed element with a nontrivial effect on 𝐴. In this case for a fixed side set 𝐶 of 

𝐴 in 𝐻 and a uniformly distributed random ℎ ∈ 𝐶 

𝑃𝑟𝑜𝑏 ([𝑏, ℎ] ≠ 1|  [𝑏, ℎ] ∈ 𝐴) ≥ 1 − 1/𝑟. 
 

One of the maximal subgroups of Sp(6,3) is 𝐺𝑈(3,3).2 and solvable residue of this subgroup 

is  𝑆𝑈(3,3) [2]. 

 

The theorem involving the analysis for this perfect subgroup is as follows: 

 

Theorem 3: If 𝐺̅ = 𝐺/(𝑅 ∩ 𝐺) ≅ 𝑆𝑈(3,3), BlindDescent [3] produces a suitable 𝑥 element 

with probability greater than 1 − 𝛿 after processing 750𝑙𝑜𝑔(1/𝛿), 𝑦 elements. 

 

Proof: We have 𝑟 = 3 and so, 

𝑃𝑟𝑜𝑏([𝑥, 𝑦] ∈ 𝑅 ∩ 𝐺) ≥ 1/500. 
Also, it is obtained from Lemma 1 that 

𝑃𝑟𝑜𝑏([𝑥, 𝑦] ∉ 𝑍(𝑅 ∩ 𝐺)|[𝑥, 𝑦] ∈ 𝑅 ∩ 𝐺) ≥ 2/3. 
Thus, 

𝑃𝑟𝑜𝑏([𝑥, 𝑦] ∉ 𝑍(𝑅 ∩ 𝐺) ∧ [𝑥, 𝑦] ∈ 𝑅 ∩ 𝐺) ≥ 1/750. 
 

Theorem 4: 𝐺̅ = 𝐺/(𝑅 ∩ 𝐺) ≅ 𝑃𝑆𝐿(2,17), BlindDescent finds a suitable 𝑥 with probability 

greater than 1 − 𝛿 after processing 750𝑙𝑜𝑔(1/𝛿), 𝑦 elements. 

 

Proof: We have 𝑟 = 2 and so, 

𝑃𝑟𝑜𝑏([𝑥, 𝑦] ∈ 𝑅 ∩ 𝐺) ≥ 1/280. 
Also, it is obtained from Lemma 1 that 

𝑃𝑟𝑜𝑏([𝑥, 𝑦] ∉ 𝑍(𝑅 ∩ 𝐺)|[𝑥, 𝑦] ∈ 𝑅 ∩ 𝐺) ≥ 1/2. 
Hence, 

𝑃𝑟𝑜𝑏([𝑥, 𝑦] ∉ 𝑍(𝑅 ∩ 𝐺) ∧ [𝑥, 𝑦] ∈ 𝑅 ∩ 𝐺) ≥ 1/560. 
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ABSTRACT 

 

In this paper, we study on Gröbner bases of toric ideals and some of their applications. After 

discussing the basic issues regarding Göbner bases and toric ideals, some applications of 

Gröbner bases of toric ideals as integer programming, triangulations of convex polytopes and 

contingency tables (statistics) are mentioned. 

 

INTRODUCTION 

A Gröbner basis is a set of multivariate nonlinear polynomials that allows simple algorithmic 

solutions for many fundamental problems related to algebraic and applied fields. Formal 

definition of Gröbner basis and some related concepts are as follows [1]: 

Definition 1. Let 𝐼 be an ideal and 𝐺 = {𝑔1, 𝑔2, … , 𝑔𝑡} be a set of nonzero polynomials of 𝐼. 
Then, 𝐺 is a Gröbner basis if and only if for all 𝑓 ∈ 𝐼 such that 𝑓 ≠ 0, there exists 𝑖 ∈ {1,2, … , 𝑡} 
such that 𝑙𝑝(𝑔𝑖) divides 𝑙𝑝(𝑓). 

Theorem 1 (Division Algorithm):   Given 𝑎, 𝑏 ∈ 𝑘[𝑥] (𝑎 and 𝑏 are elements of one variable 

polynomial rings) with 𝑏 ≠ 0, there exists unique 𝑞, 𝑟 ∈ 𝑘[𝑥] with 𝑟 =  0 or 𝑑𝑒𝑔(𝑟) <

𝑑𝑒𝑔(𝑏) such that; 

 𝑎 =  𝑏𝑞 +  𝑟. 

We can use the division algorithm to find the greatest common divisor of two polynomials with 

Euclidean Algorithm. 

Theorem 2 (Euclidean Algorithm): For 𝑎, 𝑏 ∈ 𝑘[𝑥], 𝑏 ≠  0, (𝑎, 𝑏)  =  (𝑟𝑛) where 𝑟𝑛 is the 

last non-zero remainder in the sequence of divisions 

𝑎 = 𝑏𝑞1 + 𝑟1, 

𝑏 = 𝑟1𝑞2 + 𝑟2, 

𝑟1 = 𝑟2𝑞3 + 𝑟3, 

mailto:merve9eker@gmail.com
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. 

. 

. 

𝑟𝑛−2 = 𝑟𝑛−1𝑞𝑛 + 𝑟𝑛  

𝑟𝑛−1 = 𝑟𝑛 𝑞𝑛  +  0 

Here, 𝑟𝑛  =  𝑥𝑎 +  𝑦𝑏 for 𝑥, 𝑦 ∈  𝑘[𝑥] can be calculated explicitly (by solving the above 

equations). We can use these algorithms to decide things like ideal membership (when 𝑎 ∈

 (𝑎1, . . , 𝑎𝑘)) and equality (when (𝑎1, . . , 𝑎𝑘)  =  (𝑏1, . . , 𝑏𝑘)). Above, as the algorithms progress, 

they produce smaller degree polynomials at each step, ending with a remainder of zero. To 

extend these ideas to polynomials in various variables, the concept of the size of polynomials 

is needed. This is possible with term orders. 

Definition 2 (Monomial Order). Let 𝑇𝑛 be a set of all monomials in the variables 𝑥1, … , 𝑥𝑛. A 

total order <  on 𝑇𝑛 is called a monomial order if <  satisfies the following: 

 

 1 𝑢 is element of 𝑇𝑛; 𝑢 ≠ 1 and 1 <  𝑢. 

 2 𝑢, 𝑣, 𝑤 is element of 𝑇𝑛; 𝑢 <  𝑣  and 𝑢𝑤 <  𝑣𝑤. 

There are different sorting methods to find the monomial order. 

Lexicographic order: It can be define the lexicographical order on 𝑇𝑛 with 𝑥1 > ⋯ > 𝑥𝑛 as 

follows: For 

𝜶 = (𝛼1, … , 𝛼𝑛), 𝜷 = (𝛽1, … , 𝛽𝑛) ∈ ℕ
𝑛 

we define 

𝒙𝜶 < 𝒙𝜷 ⇔ {
the first coordinates 𝛼𝑖  and 𝛽𝑖  in 𝜶 and 𝜷 

from the left, which are different, satisfy 𝛼𝑖 < 𝛽𝑖 .
 

Degree Lexicographic order: : It can be define the lexicographical order on 𝑇𝑛 with 𝑥1 > ⋯ >

𝑥𝑛 as follows: For 

𝛼 = (𝛼1, … , 𝛼𝑛), 𝛽 = (𝛽1, … , 𝛽𝑛) ∈ 𝑁
𝑛 

we define 
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𝒙𝜶 < 𝒙𝜷 ⇔

{
 
 

 
 ∑ 𝛼𝑖

𝑛

𝑖=1
<∑ 𝛽𝑖

𝑛

𝑖=1
 

𝑜𝑟

∑ 𝛼𝑖
𝑛

𝑖=1
=∑ 𝛽𝑖

𝑛

𝑖=1
 and 𝒙𝜶 < 𝒙𝜷

with respect to lex with 𝑥1 > 𝑥2 > ⋯ > 𝑥𝑛.

 

 

TORIC IDEALS AND APPLICATIONS 

Fix a subset 𝒜 = {𝑎1, 𝑎2, … , 𝑎𝑛} ⊂ ℤ𝑑\{0}. Let 𝜋 a semigroup homomorphism as follows: 

𝜋:ℕ𝑛 → ℤ𝑑 ,   𝑢 = (𝑢1, … , 𝑢𝑛) ↦∑𝑎𝑖𝑢𝑖 = 𝐴𝑢.

𝑛

𝑖=1

 

Then, 𝜋(ℕ𝑛) = {𝐴𝑢: 𝑢 ∈ ℕ𝑛} is called the monoid generated by 𝒜. The semigroup ring of ℕ𝑛 

is 𝑘[𝑥] = 𝑘[𝑥1, … , 𝑥𝑛], and ℤ𝑑 is the Laurent ring 𝑘[𝑡±1] ≔ 𝑘[𝑡1
±1, … , 𝑡𝑑

±1]. So, it is induced 

by 𝜋 that 

𝜋̂: 𝑘[𝑥] → 𝑘[𝑡±1], 𝑥𝑗 ↦ 𝑡𝑎𝑗 ≔ 𝑡1
𝑎1𝑗𝑡2

𝑎2𝑗 …𝑡𝑑
𝑎𝑑𝑗 . 

Definition 3.  The toric ideal of 𝒜 is the kernel of the map 𝜋̂ which is denoted as 𝐼𝒜 [6]. 

Some applications of Gröbner basis of Toric ideals are as follows: 

 Integer programming ([2]). 

 Triangulations of convex polytopes ([3],[4]). 

 Contingency tables (statistics) ([5]). 
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