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Dear Conference Participants,

Welcome to 3rd International Conference on Mathematical and Related Sciences: Current Trends and

Developments.

On behalf of the Organizing Committee, I am very happy to open 3rd International Conference on

Mathematical and Related Sciences. I believe that this event, which is the fruit of an intensive and

devoted teamwork,  will have an invaluable contribution to the scientific world.  At the end of busy

schedule of nearly one year, we have now achieved to organize this conference .

However, as the COVID-19 pandemic is gaining an ever tighter grip on our daily lives, as in many

events, we also are forced to organize our conference as online meeting. This is because of the fact

that, we, the organizers, are concerned about your health and we want to do our part to keep everyone

safe. The conference is going to be held with zoom platform for participants. All presentations will be

virtual presentation. We, organizing committee members, wish you all good health and high spirits.

Please keep social distance and try to be realistically optimistic in these challenging coronavirus

times.

The aim of the International Conference on Mathematical and Related Sciences is to bring together

experts and young researchers from all over the world working in mathematics and applied

mathematical sciences to present their researches, exchange new ideas, discuss challenging issues,

foster future collaborations and interact with each other. In this sense, we are happy to bring together

world mathematicians and exchange information with them.

The main objective of our conference is to discuss recent results in mathematics  and applications and

their relationship with other disciplines. We expect the participation of many prominent researchers

from different countries who will present high quality papers. The conference brings together about

over 100 participants from 15 countries (Turkey, Azerbaijan, Indonesia,  Pakistan, Georgia, Italy,

China, Croatia, Jordan, Saudi Arabia, United Arab Emirates,  Uzbekistan, Nigeria, USA, Spain ), out



of which 109 are contributing to the meeting with oral online presentations, including five keynote

talks.

It is also a purpose of the conference to promote collaborative and networking opportunities among

senior scholars and graduate students in order to advance new perspectives. The papers presented in

this conference will be considered in the journals listed on the conference websites.

I’d like to express my gratitude to all our authors, members of scientific committee, keynote speakers

and contributing reviewers. I believe we will see the best papers of scholars in this event. Special

thanks are also due to the organizing committee members, for completing all preparations that are

necessary to organize this conference. I express my gratitude to the members of technical committee of

the conference for the design and proofreading of the articles.

We wish everyone a fruitful conference and pleasant memories in our online event.

Thank you.

Prof. Dr. Erhan SET

Chair of ICMRS 2020
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Dense Sets in Pythagorean Fuzzy Soft Topological Spaces

Adem YOLCU1 and Taha Yasin ÖZTÜRK2

1,2Department of Mathematics, Faculty of Science and Letters, Kafkas University, Kars-TURKEY

yolcu.adem@gmail.com
taha36100@hotmail.com

Abstract. In this paper, several different types of dense sets such as nowhere dense sets and somewhere dense sets have
been investigated in pythagorean fuzzy soft topological spaces and some basic characteristics of these notions have been
provided. The interrelationships between the different concepts have been also analyzed in depth.

1. INTRODUCTION

The fuzzy set theory suggested by Zadeh [30] has gained considerable popularity in a variety of areas due
to its ability for working with confusion. The Fuzzy Set is defined by a membership function, which takes the
value from the crisp set to the unit interval = [0,1]. Several studies have been carried out on the use of fuzzy sets
[5, 12]. Like the vast majority of imprecise and ambiguous knowledge in the real world, numerous extensions of the
fuzzy set have been created by several researchers. The concept of intuitionistic fuzzy sets (IFSs) was introduced by
Atanassov [2] as a simplified mathematical paradigm of conventional fuzzy sets. The main benefit of the IFS is that
it has the property to cope with the hesitancy that might exist due to imprecise knowledge. This is done by adding a
second function, called a non-membership function, along with the membership function, of the traditional
fuzzy set. There are numerous hypotheses in the literature that are used to explore uncertainties and many dynamic
structures in architecture, economics, medical sciences, etc. Among these theories, the most common are fuzzy set
theory [30], intuitionistic fuzzy set theory , soft set theory [13], rough set theory  [16]. One of these theories, soft set
theory, emerged in Molodtsov [13], and is distinct from other established theories due to its parametrization tools.
Soft set theory is one of the most popular theories of recent years.

No matter how stable the notion of IFSs, there are situations where + ≥ 1 varies from the condition in
IFSs where + ≤ 1 is the only one. This restriction in IFS is the impetus for the implementation of Pythagorean
fuzzy sets (PFSs). Pythagorean fuzzy set (PFS) proposed in Yager [27, 28] is a new method for dealing with
vagueness given membership grade and non-membership grade satisfying condition + ≤ 1. PFS has a
very similar relationship with IFS. To define unclear information more adequately and reliably than IFSs, the notion
of PFSs can be used. The principle of PFSs has been thoroughly investigated since its inception [3, 8, 19, 26, 31].
The Pythagorean fuzzy soft set theory was described by Peng et al. [17], and its significant properties were studied.
The Pythagorean fuzzy soft matrix and its different potential forms were investigated by Guleria and Bajaj [7]. M.
Kirisci [10] defined the current Pythagorean fuzzy soft set form and suggested a decision-making problem solution.

Topological structure of these structures has many uses for decision-making challenges, medical diagnosis,
artificial intelligence, pattern recognition, predicting and image processing, etc. Soft topology was introduced by
Ahmad and Hussain [1], Cagman et al. [4], Roy and Samanta [24], Shabir and Naz [25]. Osmanoglu and Tokat [15],
Coker [6] and Li and Cui [11] introduced intuitionistic fuzzy soft topology (IFS-topology). Mukherjee et al. [9]
studied various dense sets on intuitionistic fuzzy soft topological spaces. Riaz et al. [20, 21, 22] introduced N-soft
topology and soft rough topology with applications to multi-criteria group decision making (MCGDM). Pythagorean
fuzzy topology introduced by Olgun et al [14]. Riaz et al. [23], Yolcu and Ozturk [29] studied Pythagorean fuzzy
soft topological spaces.

In this paper, concepts have been presented on pythagorean fuzzy soft topological spaces of different types
of dense sets, nowhere dense sets and anywhere dense sets, and some basic characteristics of these concepts are
discussed. The interrelationships between the different definitions were also analyzed in depth.
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2. PRELIMINARIES

Definition 1. [30] Let X be an universe. A fuzzy set F in X, F = {(x, μ (x)): x ∈ X}, where μ : X → 0,1] is the
membership function of the fuzzy set F; μ (x) ∈ 0,1] is the membership of x ∈ X in f. The set of all fuzzy sets over
X will be denoted by FS(X).

Definition 2. [2] An intuitionistic fuzzy set F in X is F = {(x, μ (x), v (x)): x ∈ X}, where μ : X → 0,1], v : X → 0,1]
with the condition 0 ≤ μ (x) + v (x) ≤ 1, ∀x ∈ X. The numbers μ , v ∈ 0,1] denote the degree of membership and
non-membership of x to F, respectively. The set of all intuitionistic fuzzy sets over X will be denoted by IFS(X).

Definition 3. [13] Let E be a set of parameters and X be the universal set. A pair (F, E) is called a soft set over X,
where F is a mapping F: E → (X). In other words, the soft set is a parameterized family of subsets of the set X.

Definition 4. [12] Let E be a set of parameters and X be the universal set. A pair (F, E) is called a fuzzy soft set over
X, If F: E → FS(X) is a mapping from E into set of all fuzzy sets in X, where FS(X) is set of all fuzzy subset of X.

Definition 5. [27] Let X be a universe  of discourse. A pythagorean fuzzy set (PFS) in X is given by, P =
{(x, μ (x), v (x)): x ∈ X} where, μ : X → 0,1] denotes the degree of membership and v : X → 0,1] denotes the
degree of nonmembership of the element x ∈ X to the set P with the condition that 0 ≤ (μ (x)) + (v (x)) ≤ 1.

Definition 6. [18] Let X be the universal set and E be a set of parameters. The pythagorean fuzzy soft set is defined
as the pair (F, E) where, F: E → PFS(X) and PFS(X) is the set of all Pythagorean fuzzy subsets of X. If μ (x) +
v (x) ≤ 1 and μ (x) + v (x) ≤ 1, then pythagorean fuzzy soft sets degenerate into intuitionistic fuzzy soft sets.

Definition 7. [18] Let (F, E)two pythagorean fuzzy soft sets over X. The complement of (F, E) is denoted by (F, E)
and is defined by

(F, E) = {(e, (x, v ( )(x), μ ( )(x)): x ∈ X): e ∈ E}

Definition 8. [10]
a) A pythagorean fuzzy soft set (F, E) over the universe X is said to be null pythagorean fuzzy soft set if μ ( )(x) =
0 and v ( )(x) = 1; ∀e ∈ E, ∀x ∈ X. It is denoted by 0( , ).
b) A pythagorean fuzzy soft set (F, E) over the universe X is said to be absolute pythagorean fuzzy soft set if
μ ( )(x) = 1 and v ( )(x) = 0; ∀e ∈ E, ∀x ∈ X. It is denoted by 1( , ).

Definition 9. [10] Let (F, A) and (G, B) be two pythagorean fuzzy soft sets over the universe set X, E be a parameter
set and A, B ⊆ E.Then,
a) Extended union of (F, A) and (G, B) is denoted by (F, E) ∪ (G, B) = (H, C) where C = A ∪ B and (H, C) defined
by;

(H, C) = {(e, (x, μ ( )(x), v ( )(x)): x ∈ X): e ∈ E}
where

μ ( )(x) =
μ ( )(x) , if e ∈ A − B
μ ( )(x) , if e ∈ B − A
max μ ( )(x), μ ( )(x) , if e ∈ A ∩ B

v ( )(x) =
v ( )(x) , if e ∈ A − B
v ( )(x) , if e ∈ B − A
min μ ( )(x), μ ( )(x) , if e ∈ A ∩ B

b) Extended intersection of (F, A) and (G, B) is denoted by (F, E) ∩ (G, B) = (H, C) where C = A ∪ B and (H, C)
defined by;
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(H, C) = {(e, (x, μ ( )(x), v ( )(x)): x ∈ X): e ∈ E}
where

μ ( )(x) =
μ ( )(x) , if e ∈ A − B
μ ( )(x) , if e ∈ B − A
min μ ( )(x), μ ( )(x) , if e ∈ A ∩ B

v ( )(x) =
v ( )(x) , if e ∈ A − B
v ( )(x) , if e ∈ B − A
max μ ( )(x), μ ( )(x) , if e ∈ A ∩ B

Let X be an initial universe and PFS(X) denote the family of pythagorean fuzzy sets over X and PFSS(X, E) be the
family of all pythagorean fuzzy soft sets over X with parameters in E.

Definition 10. [29] Let X ≠ ∅ be a universe set and τ ⊂ PFSS(X, E) be a collection of pythagorean fuzzy soft sets
over X, then τ is said to be on pythagorean fuzzy soft topology on X if
(i) 0( , ), 1( , ) belong to τ,
(ii) The union of any number of pythagorean fuzzy soft sets in τ belongs to τ,
(iii) The intersection of any two pythagorean fuzzy soft sets in τ belongs to τ.
The triple (X, τ, E) is called an pythagorean fuzzy soft tpological space over X. Every member of τ is called a
pythagorean fuzzy soft open set in X.

Definition 11. [29]
a) Let X be an initial universe set, E be the set of parameters and τ = 0( , ), 1( , ) . Then τ is called a pythagorean
fuzzy soft indiscrete topology on X and (X, τ, E) is said to be a pythagorean fuzzy soft indiscrete space over X.
b) Let X be an initial universe set, E be the set of parameters and τ be the collection of all pythagorean fuzzy soft
sets which can be defined over X. Then τ is called a pythagorean fuzzy soft discrete topology on X and (X, τ, E) is
said to be a pythagorean fuzzy soft discrete space over X.

Definition 12. [29] Let (X, τ, E) be a pythagorean fuzzy soft topological space over X. A pythagorean fuzzy soft set
(F, E) over X is said to be a pythagorean fuzzy soft closed set in X, if its complement (F, E) belongs to τ.

Proposition 1. [29] Let (X, τ, E) be a pythagorean fuzzy soft topological space over X. Then, the following
properties hold.
(i) 0( , ), 1( , ) are pythagorean fuzzy soft closed set over X.
(ii) The intersection of any number of pythagorean fuzzy soft closed set is a pythagorean fuzzy soft closed set over

X.
(iii) The union of any two pythagorean fuzzy soft closed set is a pythagorean fuzzy soft closed set over X.

Definition 13. [29] Let (X, τ, E) be a pythagorean fuzzy soft topological space over X and (F, E) be a pythagorean
fuzzy soft sets over X. The pythagorean fuzzy soft closure of (F, E) denoted by pcl(F, E) is the intersection of all
pythagorean fuzzy soft closed super sets of (F, E).

Clearly pcl(F, E) is the smallest pythagorean fuzzy soft closed set over X which contain (F, E).

Theorem 1. [29] Let (X, τ, E) be a pythagorean fuzzy soft topological space over X and (F, E) ∈ PFSS(X, E). Then
the following propeties hold.

(i) pcl(0( , )) = 0( , ) and pcl(1( , )) = 1( , ),
(ii) (F, E) ⊆ pcl(F, E),
(iii) (F, E) is a pythagorean fuzzy soft closed set ⇔ pcl(F, E) = (F, E),
(iv) pcl pcl(F, E) = pcl(F, E),
(v) (F, E) ⊆ (G, E) ⇒ pcl(F, E) ⊆ pcl(G, E),
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(vi) pcl (F, E) ∪ (G, E) = pcl(F, E) ∪ pcl(G, E).

Definition 14. [29] Let (X, τ, E) be a pythagorean fuzzy soft topological space over X and (H, E) ∈ PFSS(X, E). The
pythagorean fuzzy soft interior of (H, E), denoted by pint(H, E), is the union of all the pythagorean fuzzy soft open
sets contained in (H, E).

Theorem 2. [29] Let (X, τ, E) be a pythagorean fuzzy soft topological space over X and (H, E) ∈ PFSS(X, E). Then
the following properties hold.
(i) pint(0( , )) = 0( , ) and pint(1( , )) = 1( , ),
(ii) pint(H, E) ⊆ (H, E),
(iii) (H, E) is a pythagorean fuzzy soft open set ⇔ pint(H, E) = (H, E),
(iv) pint pint(H, E) = pint(H, E),
(v) (H, E) ⊆ (G, E) ⇒ pint(H, E) ⊆ pint(G, E),
(vi) pint (H, E) ∩ (G, E) = pint(H, E) ∩ pint(G, E).

Theorem 3. [29] Let (X, τ, E) be a pythagorean fuzzy soft topological space over X and (H, E) ⊂ PFSS(X, E). Then
(i) (pcl(H, E)) = pint((H, E) )
(ii) pint((H, E)) = pcl((H, E) )

3. DENSE SETS ON PYTHAGOREAN FUZZY SOFT TOPOLOGICAL SPACES

Definition 15 Let ( , ̃, ) be a pythagorean fuzzy soft topological space over and ( , ) ∈ ( , ). ( , )
is called dense in ( , ̃, ) , if closure of ( , ) is 1( , ), i.e. ( , ) = 1( , ).

Example 1 Let = { , }, = { , } and
̃ = 0( , ), 1( , ), ( , ), ( , ), ( , ), ( , )

where ( , ), ( , ), ( , ), ( , ) pythagorean fuzzy soft sets over , defined as;

( , ) = ( , {( , 0.45,0.12), ( , 0.52,0.78)})
( , {( , 0.21,0.42), ( , 0.14,0.45)})

( , ) =
( ,{( , 0.76,0.32), ( , 0.36,0.18)})
( , {( , 0.44,0.23), ( , 0.71,0.67)})

( , ) = ( , {( , 0.76,0.12), ( , 0.52,0.18)})
( , {( , 0.44,0.23), ( , 0.71,0.45)})

( , ) = ( , {( , 0.45,0.32), ( , 0.36,0.78)})
( , {( , 0.21,0.42), ( , 0.14,0.67)})

Then ̃ defines a pythagorean fuzzy soft topology on and hence ( , ̃, ) is a pythagorean fuzzy soft topological
space over . Suppose that any ( , ) ∈ ( , ) is defined as following:

( , ) = ( , {( , 0.67,0.33), ( , 0.58,0.23)})
( , {( , 0.73,0.12), ( , 0.68,0.72)})

Then ( , ) is pythagorean fuzzy soft dense set in ( , ̃, ) , since 1( , ) is the only closed set in ( , ̃, )
containing ( , ) and hence ( , ) = 1( , ).

Proposition 2 Let ( , ̃, ) be a pythagorean fuzzy soft topological space over and ( , ), ( , ) ∈ ( , )
and ( , ) ⊆ ( , ). If ( , ) is pythagorean fuzzy soft dense set in ( , ̃, ) then ( , ) must be dense in
( , ̃, ) .
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Proof. By Theorem 1 if ( , ) ⊆ ( , ), then ( , ) ⊆ ( , ) and from the definition of pythagorean fuzzy
soft dense set ( , ) = 1( , ). We have 1( , ) ⊆ ( , ) implies ( , ) = 1( , ). Thus ( , ) is dense set in
( , ̃, ) .

Theorem 4 A pythagorean fuzzy soft set ( , ) ∈ ( , ) is dense set in pythagorean fuzzy soft topological
space ( , ̃, ) if and only if 1( , ) is only closed set in ( , ̃, ) containing ( , ).

Proof. Let 1( , ) is the only closed set in ( , ̃, ) containing ( , ), then from the definition of pythagorean fuzzy
soft closure, we have ( , ) = 1( , ) and hence ( , ) is dense in ( , ̃, ) .

Conversely, let ( , ) ∈ ( , ) be pythagorean fuzzy soft dense set in ( , ̃, ) . If there exist an
another closed set ( , ) ≠ 1( , ) containing ( , ) then from the definition of closure, we have ( , ) =
( , ) ≠ 1( , ), which contradiction assumption. Thus 1( , ) is the only closed set in ( , ̃, ) containing ( , ).

Theorem 5 Let ( , ̃, ) be a pythagorean fuzzy soft topological space over and ( , ), ( , ) ∈ ( , ).
Then their union ( , ) ∪ ( , ) is pythagorean fuzzy soft dense in ( , ̃, ) if and only if one of them is dense in
( , ̃, ) .

Proof. (⇒) Let ( , ), ( , ) ∈ ( , ) and their union ( , ) ∪ ( , ) be pythagorean fuzzy soft dense in
( , ̃, ) . If ( , ) and ( , )not dense in ( , ̃, ) , then ( , ) ≠ 1( , ) and ( , ) ≠ 1( , ). Therefore

(( , ) ∪ ( , )) = ( , ) ∪ ( , ). (( , ) ∪ ( , )) = ( , ) ∪ ( , ) ≠ 1( , ) , which
contradict our assumption. Thus one of them must be dense in ( , ̃, ) .

(⇐) Let ( , ), ( , ) ∈ ( , ) and ( , ) be dense in ( , ̃, ) , i.e, ( , ) = 1( , ). Therefore
(( , ) ∪ ( , )) = ( , ) ∪ ( , ) = 1( , ) ∪ ( , ) = 1( , ). Thus ( , ) ∪ ( , ) is

pythagorean fuzzy dense in ( , ̃, ) .

Corollary 1 Union of two pythagorean fuzzy soft dense sets in a pythagorean fuzzy soft topological space ( , ̃, )
is also dense in ( , ̃, ) .

Corollary 2 Let ( , ̃, ) be a pythagorean fuzzy soft topological space over and ( , ) ∈ ( , ). If ( , )
is pythagorean fuzzy soft dense in ( , ̃, ) , then for any ( , ) ∈ ( , ), their union ( , ) ∪ ( , ) must
be pythagorean fuzzy soft dense set in ( , ̃, ) .

Theorem 6 Let ( , ̃, ) be a pythagorean fuzzy soft topological space over and ( , ), ( , ) ∈ ( , ). If
( , ) ∩ ( , ) is pythagorean fuzzy soft dense in ( , ̃, ) , then ( , ) and ( , ) must be pythagorean fuzzy soft
dense in ( , ̃, ) .

Proof. Let ( , ), ( , ) ∈ ( , ) and their intersection ( , ) ∩ ( , ) is pythagorean fuzzy soft dense in
( , ̃, ) . Then (( , ) ∩ ( , )) = 1( , ).

⇒ ( , ) ∩ ( , ) ⊇ (( , ) ∩ ( , )) = 1( , )

⇒ ( , ) ∩ ( , ) ⊇ 1( , )
⇒ ( , ) ⊇ 1( , )and ( , ) ⊇ 1( , )

⇒ ( , ) = 1( , )and ( , ) = 1( , ).

Remark 1 The converse of the above theorem may not be true.

Example 2 Consider Example 1.  Then pythagorean fuzzy soft sets

( , ) = ( , {( , 0.31,0.75), ( , 0.12,0.25)})
( , {( , 0.42,0.16), ( , 0.68,0.36)})
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( , ) = ( , {( , 0.45,0.82), ( , 0.35,0.71)})
( , {( , 0.51,0.38), ( , 0.86,0.68)})

are pythagorean fuzzy soft dense in ( , ̃, ) , but their intersection

( , ) ∩ ( , ) = ( , {( , 0.31,0.82), ( , 0.12,0.71)})
( , {( , 0.42,0.38), ( , 0.68,0.68)})

is not pythagorean fuzzy soft dense in ( , ̃, ) , since (( , ) ∩ ( , )) = ( , ) ≠ 1( , ).

4. NOWHERE DENSE SETS IN PYTHAGOREAN FUZZY SOFT TOPOLOGICAL
SPACES

Definition 16 Let ( , ̃, ) be a pythagorean fuzzy soft topological space over and ( , ) ∈ ( , ). ( , )
is called nowhere dense set in ( , ̃, ) , if closure of ( ( , )) is 1( , ), i.e. (( ( , )) ) = 1( , ).

Example 3 Consider Example 1.  Then pythagorean fuzzy soft set

( , ) = ( , {( , 0.12,0.73), ( , 0.14,0.82)})
( , {( , 0.11,0.91), ( , 0,1)})

is nowhere dense set in ( , ̃, ) .

Proposition 3 Let ( , ̃, ) be a pythagorean fuzzy soft topological space over and ( , ), ( , ) ∈ ( , )
such that ( , ) ⊆ ( , ). If ( , ) is nowhere dense set in ( , ̃, ) then ( , ) must be nowhere dense in
( , ̃, ) .

Proof. Let ( , ) ⊆ ( , ).
⇒ ( , ) ⊆ ( , )
⇒ ( ( , )) ⊇ ( ( , ))
⇒ (( ( , )) ) ⊇ (( ( , )) )

and since ( , ) is nowhere dense in ( , ̃, ) , we have (( ( , )) ) = 1( , ). Therefore
(( ( , )) ) ⊇ (( ( , )) ) = 1( , ), this implies (( ( , )) ) ⊇ 1( , ) and hence
(( ( , )) ) = 1( , ). Thus ( , ) is nowhere dense in ( , ̃, ) .

Theorem 7 Let ( , ̃, ) be a pythagorean fuzzy soft topological space over and ( , ) ∈ ( , ). ( , ) is
nowhere dense in ( , ̃, ) if and only if ( ( , )) = 0( , ).

Proof. Let ( , ) ∈ ( , ) be pythagorean fuzzy soft nowhere dense set in ( , ̃, ) . Then
(( ( , )) ) = 1( , )

⇒ ( ( , )) = 1( , ), (byTheorem3)
⇒ ( ( , )) = 0( , ). (Takingcomplement)

Conversely, Let ( ( , )) = 0( , ).
⇒ ( ( , )) = 1( , )(Takingcomplement)
⇒ (( ( , )) ) = 1( , )(byTheorem3)

Thus ( , ) is pythagorean fuzzy nowhere dense set in ( , ̃, ) .

Theorem 8 Let ( , ̃, ) be a pythagorean fuzzy soft topological space over and ( , ) ∈ ( , ). ( , ) is
nowhere dense set in ( , ̃, ) if and only if (( , ) ) = 1( , ).

Proof. Straightforward.
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Theorem 9 Let ( , ̃, ) be a pythagorean fuzzy soft topological space over and ( , ) ∈ ( , ). ( , ) is
nowhere dense set in ( , ̃, ) if and only if (( , ) ) = 0( , ).

Proof. Straightforward.

5. SOMEWHERE DENSE SETS IN PYTHAGOREAN FUZZY SOFT
TOPOLOGICAL SPACES

Definition 17 Let ( , ̃, ) be a pythagorean fuzzy soft topological space over and ( , ) ∈ ( , ). ( , )
is called somewhere dense set in ( , ̃, ) , if( , ) is not nowhere dense set, i.e. (( ( , )) ) ≠ 1( , ).

Example 4 Consider Example 1.  Then pythagorean fuzzy soft set

( , ) = ( , {( , 0.76,0.12), ( , 0.52,0.18)})
( , {( , 0.44,0.23), ( , 0.71,0.45)})

is somewhere dense set in ( , ̃, ) .

Theorem 10 Every non-empty pythagorean fuzzy soft open set in pythagorean fuzzy soft topological space ( , ̃, )
is somewhere dense in ( , ̃, ) .

Proof. Let ( , ) ∈ ( , ) be non-empty pythagorean fuzzy soft open set inpythagorean fuzzy soft topological
space ( , ̃, ) and ( , ) = ( , ). By Theorem 2, we have ( , ) ⊆ ( , )

⇒ ( , ) ⊆ ( ( , ))
⇒ ( , ) ⊆ ( ( , ))
⇒ 0( , ) ≠ ( , ) ⊆ ( ( , ))
⇒ ( ( , )) ≠ 0( , )

⇒ ( ( , )) ≠ 0( , )

⇒ ( ( , )) ≠ 1( , )

⇒ (( ( , )) ) ≠ 1( , )(ByTheorem3).
Thus ( , ) is somewhere dense in ( , ̃, ) .

Theorem 11 Let ( , ̃, ) be a pythagorean fuzzy soft topological space over and ( , ) ∈ ( , ). ( , ) is
somewhere dense set in ( , ̃, ) if and only if there exist a non-empty pythagorean fuzzy soft open set ( , ) ∈ ̃
such that ( , ) ⊆ ( , ).

Proof. Let ( , ̃, ) be a pythagorean fuzzy soft topological space over and ( , ) ∈ ( , ). ( , ) is
somewhere dense set in ( , ̃, ) , then we have (( ( , )) ) ≠ 1( , ).

⇒ ( ( , )) ≠ 1( , )(ByTheorem3)
⇒ ( ( , )) ≠ 0( , )(takingcomplement)

Here ( ( , )) is a pythagorean fuzzy soft open subset of ( , ). Taking ( , ) = ( ( , )), we
have for ( , ) ∈ ( , ) is somewhere dense set in ( , ̃, ) , there exist a non-empty pythagorean fuzzy soft
open set ( , ) ∈ ̃ such that ( , ) ⊆ ( , ).

Conversely, let for ( , ) ∈ ( , ) , there exist a non-empty pythagorean fuzzy soft open set ( , ) ∈
̃ such that ( , ) ⊆ ( , ). This implies ( ( , )) ⊆ ( , )

⇒ (( ( , )) ) ⊆ (( , ) )
⇒ (( ( , )) ) ⊆ ( , )
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Also ( , ) ≠ 0( , ) ⇒ ( , ) ≠ 1( , ). Thus we have (( ( , )) ) ≠ 1( , ) and hence ( , ) is pythagorean
fuzzy soft somewhere dense set in ( , ̃, ) .

6. CONCLUSION

In this paper, definitions of different types of dense sets, nowhere dense sets and anywhere dense sets of
pythagorean fuzzy soft topological spaces have been presented and some of the basic properties of these concepts
have been discussed. The interrelationships between the different notions were also studied in detail. Finally, we
have to say that this paper is only the beginning of a new structure and that we have just learned a few theories, it
would be important to carry out further theoretical studies in order to develop a general system for functional
applications.
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Abstract. Stroke is the second deadliest disease in the world that occurs when blood supply to the brain is disrupted or
reduced due to blockage or rupture of a blood vessel. There are two types of stroke, namely hemorrhagic and ischemic
stroke. Ischemic stroke is the most common type in Indonesia and accounts for about 52.9% of all stroke cases. Infarction
often occurs in ischemic stroke because of insufficient supply of oxygen and nutrients to the brain. This is due to the
disruption of blood flow to the brain. The detection of cerebral infarction assists the health sector in diagnosing ischemic
stroke. The data used in this study were obtained from the Department of Radiology, Dr. Cipto Mangunkusumo Hospital,
Jakarta, Indonesia which consisted of 206 samples and 7 features. The features of the data were obtained from
descriptions of brain imaging CT Scans. To analyze cerebral infarction data, two ensemble learning methods were
compared. They include Random Forest (RF) and Extreme Gradient Boosting (XGBoost). In terms of accuracy
performance, the average accuracy of Random Forest was slightly higher than the average accuracy of XGBoost.
However, the highest average accuracy produced by both methods was 95.2% on 90% of training data. In terms of
running time computation performance, XGBoost was 10 times faster than RF. Using 90% of training data, XGBoost and
RF required 2 and 21.7 seconds of running time computation, respectively. Thus, in analyzing cerebral infarction data,
Random Forest produced higher accuracy performance, while XGBoost was faster in running time computation
performance.

1. INTRODUCTION

Stroke is a disease that occurs when blood supply to the brain is disrupted or reduced due to blockage or rupture of
the blood vessel [1]. Therefore, the brain is unable to receive oxygen and nutrients due to this circulatory disorder
[2]. This leads to damage or death of the affected brain cells [2]. The part of the body which is controlled by the
damaged brain area may no longer function properly. Stroke is a medical emergency because brain cells can die in a
matter of minutes [3]. Prompt treatment is therefore needed to minimize the possibility of complications [3].

Based on data from WHO Global Health Estimates (GHE) in 2016, stroke is the second deadliest disease in the
world after ischemic heart disease [4]. This has accounted for about 5.7 million deaths or 10.2% of total deaths [4].
Indonesia’s Sample Registration System (SRS) from 2014-2016 consistently reported stroke as the first leading
cause of death, responsible for 21.1%, 20.4%, and 19.9% death for all age groups, respectively each year [5]-[6].
According to Indonesia Basic Health Research (Riskesdas) 2018, the prevalence of stroke based on diagnosis in
population aged more than 15 years is 10.9 per mil, with the highest prevalence occurring in East Kalimantan (14.7
per mil) [7].

There are two types of stroke based on pathological background, namely haemorrhagic and ischemic stroke [8].
Haemorrhagic stroke occurs when a blood vessel ruptures, causing a stop in brain function [8]. The most common
cause of this type of stroke is hypertension or aneurysm rupture. Ischemic stroke is caused by a blockage or blood
clot in the large arteries that supply blood to the brain due to embolism or atherosclerosis [8]. Of the two types of
strokes, ischemic stroke (infarction) is the most common type in Indonesia. This accounts for about 52.9% of all
stroke cases [9].

Infarction often occurs in ischemic stroke. This is due to insufficient supply of oxygen and nutrients to an area of the
brain caused by disruption in blood flow [10]. Thrombotic cerebral infarction occurs when blood clot forms inside
the arteries that supply blood to the brain [8]. Embolic cerebral infarction occurs when blood clot forms inside the
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heart or aorta and is then transported to the brain [8]. Lastly, lacunar cerebral infarction occurs when blood clot
forms in small penetrating arteries due to local disease of these vessels (for example chronic hypertension) [8].

The detection of cerebral infarction has assisted in the diagnosis of ischemic stroke. This is carried out by a
Computed Tomography (CT) Scan. However, the description obtained from a CT Scan alone is not enough to detect
cerebral infarction. Therefore, machine learning is used to classify cerebral infarction with the description obtained
from a CT Scan as its features. To obtain a better result, two ensemble learning classifiers were compared in this
study. They include Random Forest and Extreme Gradient Boosting (XGBoost). Ensemble learning combines
several base models to produce a more accurate output [11]. The base models for both classifiers used were Decision
Trees.

Several methods have been carried out by previous researchers to classify cerebral infarction data. They include
Support Vector Machine (SVM) with hybrid preprocessing method [9], SVM using polynomial and Gaussian kernel
[12], SVM with artificial bee colony and particle swarm optimization feature selection [13], Multiple Support
Vector Machine (MSVM) with information gain feature selection [14], and Naïve Bayes [15]. Furthermore, Random
Forest has also been used to classify breast cancer [16], ovarian cancer [17], prostate cancer [18], thalassemia [19],
etc. Meanwhile XGBoost has been used to classify pathways that detect different conditions in gene expression data
[20], to classify symptom severity [21], and to detect intrusion in networks [22].

2. MATERIAL AND METHODS

The comparison of two ensemble learning methods, namely Random Forest and XGBoost were proposed as
classifiers for the cerebral infarction data. This section explains the research method used in this study. It includes
information about cerebral infarction data, ensemble learning, Random Forest classifier, XGBoost classifier and
model performance used to compare both classifiers.

A. Dataset

In this study, cerebral infarction data was used to detect ischemic stroke in patients. This was carried out by the
Department of Radiology, Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia in 2018 with 206 samples and 7
features. The 206 samples consisted of 103 samples each from patients having cerebral infarction and individuals
without cerebral infarction. The features of the data were obtained from descriptions of brain imaging CT Scans.

Fig. 1 Brain imaging CT Scans from individuals without infarction (left) and individuals with infarction (right) [12]

Information of cerebral infarction data features:
· Area : Size of infarction area (in cm2)
· Min : Minimum value of infarction
· Max : Maximum value of infarction
· Average : Average value of infarction
· SD : Standard error value of infarction
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· Sum : Total amount value of infarction
· Length : Length of infarction (in cm)

B. Ensemble Learning

Ensemble learning is one of the supervised learning methods in machine learning. This method combines several
base models to improve the performance of the base model to be used [11]. It was developed initially to reduce
variance in automatic decision-making system. Subsequently, it was upgraded continuously until it could
successfully overcome various machine learning problems, such as missing features, error correction, imbalance
data, feature selection, etc [23]. Furthermore, for several years, it has been proven that ensemble learning is very
effective and has numerous purposes in real world applications, especially in handling large volume of data.

There are two main approaches in ensemble learning, namely averaging and boosting [24]. In averaging or bagging
method, several base models are built independently, the final prediction is obtained from the average value of each
base model’s prediction or voting for regression and classification problems, respectively [24]. Meanwhile in
boosting method, several base models are built sequentially, where the building of one base model depends on the
performance of the previous model [24]. Random Forest and XGBoost are examples of each approach, respectively.
The base model used for both approaches was Decision Tree.

C. Random Forest

Random forest is an ensemble learning method that uses Decision Tree as its base model. It was first developed by
Tin Kam Ho in 1995 [25]. Decision Tree is a white box machine learning model. This implies that the knowledge
extracted by this model is in form of rules that can be easily explained with Boolean logic [24]. In Decision Tree, a
node represents the test for a particular feature, a branch represents result of the previous test, a leaf node represents
a class target or score and a path from the root to leaf node states the rules.

Fig. 2 Illustration of Decision Tree

Random forest uses the bagging approach of ensemble learning. This implies that target prediction in this model was
obtained by combining the prediction results from several randomized decision trees which were built independently
[24]. Each randomized decision tree was built from each bootstrap. Bootstrap is a set of samples from training data
which are drawn randomly with replacement. The feature selected as a node in the decision tree is the best from the
randomly selected features. As a classifier, Random Forest gives the final prediction based on the highest vote, i.e.
the class which appears often as the predicted target of each randomized decision tree [24]. Despite being known to
reduce variance and relatively robust against outliers and noise, Random Forest takes longer time computation
especially in large number of trees.
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Fig. 3 Random Forest Algorithm [24]

D. Extreme Gradient Boosting (XGBoost)

Gradient boosting is a boosting-based ensemble learning method in machine learning. This method combines several
weak base learners incrementally, to form a stronger learner with higher accuracy [26]. XGBoost is an upgraded
method from bagging approach that handles bias and deals with large volume of data with high computational speed
[27]. Decision Tree of a fixed size, especially CART (Classification and Regression Tree), was used as weak
learners in XGBoost classifier.

Given niii yx :1)},{( = as n samples of training data, XGBoost sequentially adds tree learners from previous ensemble
residual values. For m number of iterations or boosting rounds, NÎ> mm ,0 the ensemble at m-th iteration is
written as:

å== =
m
i i

m
m xhyxF 0 )(ˆ)( (2.1)

where hm(x) learns from the previous ensemble model Fm-1 that minimize loss function L. The initialization
ensemble F0(x) was obtained from the original dataset. The optimization problem in XGBoost was solved by
minimizing the objective function Lt, that is:

å ++= =
-n

i mim
m

i
m hxhyylL 1

1)( )())(ˆ,(minmin a (2.2)

2
)(

2w
Thm

l
ga += (2.3)

where l is a loss function, 1ˆ -my is the label predicted in last iteration, hm is the decision tree output, T is number of
tree nodes, w is weight value, γ is regularization parameter and λ is minimum loss parameter.

Random Forest Algorithm
Input: A training set niii yxD :1)},{( == , P features, and M number of trees.
Process:
For m = 1 to M:
1. Draw a bootstrap sample Dm from training data D
2. Grow a decision tree model hm(x) from bootstrap sample Dm by repeating the steps bellow until the stopping criteria are

fulfilled.
i. Select randomly, small subset of P consisting of p features
ii. Select the best feature as node of the decision tree using Gini impurity function
iii. Split the node into two internal nodes
iv. Recursively repeat step ii and iii until it reaches leaf nodes

Output: å
=

=
M

m
m xh

M
xF

1
)(1)(
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Fig. 4 XGBoost Algorithm [24]
E. Model Performance

In this study, two ensemble learning methods in machine learning were compared, namely Random Forest and
XGBoost. To evaluate which method produces the best performance, the measure of accuracy value obtained from
confusion matrix and running time computation of each algorithm were calculated.  The better method produced a
higher accuracy value and faster running time compared to the other method.

Table 1. Confusion Matrix

Class Prediction
Infarction Normal

Actual Infarction True Positive (TP) False Negative (FN)
Normal False Positive (FP) True Negative (TN)

Based on the confusion matrix, the measure of accuracy value was:

Accuracy =
TNFPFNTP

TNTP
+++

+ (2.4)

3. RESULTS AND ANALYSIS

The implementation of Random Forest and XGBoost to classify the cerebral infarction data was carried out using
Python3 programming language. Each classifier fits the training data with a proportion ranging from 10% to 90%,
which was divided using holdout validation. Holdout validation randomly divides a dataset into training and testing
data thus it is very dependent on the data used. To overcome this problem, the simulations were done 5 times for
each proportion of training data.

Random Forest and XGBoost have several parameters. However, both methods have one parameter in common,
namely n_estimators, which represents number of trees to be built. In this study, this parameter was optimized using
Grid Search hyperparameter optimization method with the list of value assigned to be optimized is {10, 50, 100,
500, 1000} on each classifier used.

A. Random Forest Classifier Results Analysis

The tests were performed on cerebral infarction data using Random Forest classifier. The accuracy and running time
results performance for each proportion of training data are shown in Table 2 and Table 3, respectively.

XGBoost Algorithm
Input: A training set niii yxD :1)},{( == , loss function L, M number of trees.
Process:
1. Model initialization: å == n

i iyLxF 10 ),(min)( a
2. For m = 1 to M:

Calculate ensemble model å === m
i i

m
m xhyxF 0 )(ˆ)( that minimizes loss function L in previous (m-1)-th iteration

å =
- ++= n

i mim
m

i
m hxhyylL 1

1)( )())(ˆ,(minmin a

2
)(

2w
Thm

l
ga +=

Output: Fm(x)
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Table 2. Accuracy of Random Forest Classifier

From Table 2, the accuracy results of each simulation using Random Forest were different for the same proportion
of training data. This is likely because Random Forest builds tree independently and holdout validation randomly
divides data into train and test sets. Thus, every simulation on each proportion of training data produced different
accuracy.

The lowest accuracy obtained using Random Forest classifier was 81.7% with 10% training data on fourth
simulation, while the highest accuracy obtained was 100% with 90% training data on fifth simulation. The average
accuracy values of the five simulations at each training data show that the highest average accuracy that Random
Forest can obtain was 95.2% on 90% training data, while the lowest average accuracy was 87% on 10% of training
data.

Table 3. Running Time of Random Forest Classifier

From Table 3, the running times computation of Random Forest varied from 19.5 to 22.5 seconds for every
simulation of each proportion of training data used. The fastest average running time was 20 seconds on 10%
training data, while the lowest running time was 21.7 seconds on 90% training data.

B. XGBoost Classifier Results Analysis

The tests were performed on cerebral infarction data using XGBoost classifier. The accuracy and running time
results performance for each proportion of training data are shown in Table 4 and Table 5, respectively.

Training
Data
(%)

Running Time (s) Average
Running
Time (s)1 2 3 4 5

10 19.8 19.8 20.0 20.4 20.0 20.0
20 20.2 20.4 20.7 20.3 20.4 20.4
30 20.4 20.3 20.4 20.3 20.4 20.4
40 20.8 20.5 22.0 21.0 20.8 21.0
50 20.7 20.8 21.1 20.9 20.7 20.8
60 21.5 20.7 20.8 20.9 20.8 20.9
70 22.3 21.1 22.4 21.0 21.8 21.7
80 21.5 21.6 21.5 21.3 21.4 21.5
90 21.6 21.5 21.5 22.1 21.9 21.7

Training
Data (%)

Accuracy (%) Average
Accuracy

(%)1 2 3 4 5
10 88.2 90.9 89.8 81.7 84.4 87.0
20 90.9 90.3 90.9 90.9 91.5 90.9
30 90.3 88.3 90.3 88.3 89.7 89.4
40 91.1 90.3 90.3 90.3 90.3 90.5
50 90.3 91.3 87.4 90.3 89.3 89.7
60 89.2 88.0 88.0 86.7 86.7 87.7
70 91.9 91.9 90.3 91.9 90.3 91.3
80 88.1 92.9 92.9 90.5 97.6 92.4
90 90.5 95.2 95.2 95.2 100 95.2
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Table 4. Accuracy of XGBoost Classifier

From Table 4, the accuracy results of each simulation using XGBoost were the same for every proportion of training
data. This is likely because XGBoost builds tree sequentially, it learns from previous model and improve the
performance on next model. Thus, although holdout validation randomly divides the data, every simulation on each
proportion of training data produced the same accuracy. This shows that XGBoost classifier produced more stable
accuracy compared to Random Forest classifier.

The lowest accuracy obtained using XGBoost classifier was 85.5% with 60% training data on every simulation,
while the highest accuracy obtained was 95.2% with 90% training data on every simulation. The average accuracy
values of the five simulations at each training data were the same as every accuracy value on every simulation.

Table 5. Running Time of XGBoost Classifier

From Table 5, increasing the training data proportion, produced a higher running time computation with XGBoost
classifier program. The running times computation varied from 0.8 to 2 seconds for every simulation of each
proportion of training data used. The fastest average running time was 0.8 seconds with 10% training data, while the
lowest running time was 2 seconds with 90% training data.

C. Performance Comparison of Random Forest and XGBoost

To analyze the comparison of accuracy and running time computation for Random Forest and XGBoost, two graphs
were provided for each performance as shown in Fig. 5 and Fig. 6.

Training
Data
(%)

Running Time (s) Average
Running
Time (s)1 2 3 4 5

10 0.8 0.8 0.8 0.8 0.8 0.8
20 1.0 0.9 0.9 1.0 0.9 0.9
30 1.1 1.1 1.1 1.1 1.1 1.1
40 1.3 1.3 1.2 1.2 1.2 1.2
50 1.4 1.4 1.4 1.4 1.4 1.4
60 1.5 1.5 1.5 1.5 1.5 1.5
70 1.7 1.7 1.7 1.7 1.7 1.7
80 1.9 1.8 1.8 1.8 1.8 1.8
90 2.0 2.0 2.0 2.0 2.0 2.0

Training
Data (%)

Accuracy (%) Average
Accuracy

(%)1 2 3 4 5
10 88.2 88.2 88.2 88.2 88.2 88.2
20 89.7 89.7 89.7 89.7 89.7 89.7
30 89.7 89.7 89.7 89.7 89.7 89.7
40 89.5 89.5 89.5 89.5 89.5 89.5
50 87.4 87.4 87.4 87.4 87.4 87.4
60 85.5 85.5 85.5 85.5 85.5 85.5
70 88.7 88.7 88.7 88.7 88.7 88.7
80 90.5 90.5 90.5 90.5 90.5 90.5
90 95.2 95.2 95.2 95.2 95.2 95.2
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Fig. 5 Accuracy comparison of Random Forest and
XGBoost classifiers

Fig. 6 Running time comparison of Random Forest
and XGBoost classifiers

Fig. 5 shows that was no significant difference between the
average accuracy of Random Forest and XGBoost classifiers. The graph of the average accuracy for each training
data tends to have similar changes on both methods. However, the average accuracy of Random Forest was slightly
higher than the average accuracy of XGBoost. The highest average accuracy value produced was same for both
methods, which was 95.2% on 90% training data. The lowest average accuracy value produced by XGBoost was
85.5% on 60% training data. This value is 1.5% lower than the lowest accuracy value of the Random Forest
classifier, which was 87% on 10% training data.

From Fig. 6, it is seen that the average running time computation of XGBoost method tends to increase with the
proportion of training data, while that of Random Forest method was not very stable as the proportion of training
data increased. There was a significant difference between the average running time of Random Forest and XGBoost
classifiers. For each proportion of training data used, the average running time of XGBoost had a time ranged from 0
to 2 seconds. This was far different from the running time of Random Forest which ranged from 20 to 22 seconds.
Therefore, XGBoost classifier is better than Random Forest classifier in terms of running time computation.

4. CONCLUSION

The classification of cerebral infarction as one of the causes of ischemic stroke assists the health sector in making its
diagnoses. The images from brain CT Scans of patients with infarction and individuals without infarction provided
some descriptions that were used as features for the dataset. To find the model that has the best performance in
classifying cerebral infarction data, two ensemble learning methods were compared as classifiers, namely Random
Forest and XGBoost.

From several experiments and analyzes that have been carried out, Random Forest and XGBoost produced average
accuracy values that were not very different. However, the average accuracy of Random Forest was slightly higher
than the average accuracy of XGBoost. Both methods produced an accuracy value of 95.2% with 90% training data
as their highest average accuracy. Meanwhile, for running time computation performance, XGBoost was a lot faster
than Random Forest. XGBoost and Random Forest required an average running time of 2 and 21.7 seconds
respectively, with 90% of training data. Random Forest was 10 times longer than XGBoost. Thus, in analyzing
cerebral infarction data, Random Forest produced higher accuracy performance, while XGBoost was faster in
running time computation performance.
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Abstract. Sinusitis is an inflammatory condition of the paranasal sinuses, which according to its onset is further
classified into acute, sub – acute, chronic, and recurrent. Antibiotics are usually prescribed to treat patients with acute
sinusitis. However, due to concerns and guidelines regarding the use of antibiotics, it is essential to determine an accurate
diagnosis on acute sinusitis. Therefore, adequate diagnosis is needed to prevent acute sinusitis become worse and obtain
the best treatment. This research studied the use of an improved machine learning process for the appropriate diagnosis of
acute sinusitis. The purpose was to compare some kernel functions with Support Vector Machines classifier for proper
diagnosis. To measure the most accurate kernel function, the Support Vector Machines classifier with linear, polynomial,
and Gaussian radial basis functions were applied as the commonly used kernels. The main advantage of this method is
determining the best kernel function to support the healthcare sector in diagnosing acute sinusitis with Support Vector
Machines. The idea is proven in four criteria, namely accuracy, precision, recall, and F1 score. The highest average of
accuracy and F1 score were the criterion used to determine the best kernel function classification. The result showed that
linear kernel function is the best for acute sinusitis classification with 99.37% average of accuracy, followed by a
polynomial and Gaussian radial basis. In addition, all three kernels reached 100% accuracy, with different precision,
recall, and F1 score of the training data and future studies need to be carried out to improve machines learning
classification for medical diagnosis with kernel function contribution.

1. INTRODUCTION

Sinusitis is an inflammation of the paranasal sinuses or swelling of the tissues lining the sinuses [1]. Blockage of the
sinuses due to fluid, promote growth of germs that could manifest as headaches and yellowish nasal secretions.

Sinusitis is classified based on its onset period, which comprises of acute, sub-acute, chronic, and recurrent [2].
Acute sinusitis usually starts with symptoms lasting less than 4 weeks, such as common cold, while sub-acute
sinusitis lasts up to 12 weeks. Worse, chronic sinusitis lasts for more than 12 weeks, while recurrent sinusitis occurs
several times a year, lasting from 7 – 10 days or more with a complete resolution between the onset [2]. Acute
sinusitis is a common diagnosis that is found on patients, with approximately 30 million visits and $11 billion
spending on treatment. Antibiotics are usually prescribed to treat patients with acute sinusitis. However, due to
concerns and guidelines regarding the use of antibiotics, it is essential to determine an accurate diagnosis on acute
sinusitis, hence this project aims to improve the diagnosis of acute sinusitis.

Therefore, an appropriate diagnosis is needed to identify acute sinusitis patients, thereby ensuring their benefit from
the administration of antimicrobial agent [1]. According to several studies, clinicians face difficulty in determining
the symptoms and signs of viral URI because they are tightly related to bacterial processes [1]. These are the
following three clinical identifications for patients with acute bacterial sinusitis: 1) period of onset lasts at least 10
days without sign of substantial improvement., 2) onset with high fever more than 39°C and purulent nasal
discharge, and 3) onset with worsening symptoms indicated by the fever, headache, or increase in nasal discharge
[1]. The methods used in this diagnosis consist of nasal endoscopy, Computed Tomography (CT) scan, nasal and
sinus cultures, and Magnetic Resonance Imaging (MRI), which provide a detailed description of the condition.
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This process is driven by machine learning algorithms as a branch in computer science that is gaining development
of handling diseases within the healthcare sector [3]. It is classified based on supervised learning for labelled data
such as classification, regression, and unsupervised learning for clustering data. Many studies have been carried out
on the use of machine learning to classify medical diagnoses such as sinusitis with data image [4], schizophrenia [5],
and breast cancer [6].

One popular algorithm in machine learning is Support Vector Machine (SVM) [7], which was developed by V.
Vapnik in 1995 as a supervised statistical learning technique. SVM is used for classification and regression. Studies
carried out by [6] and [8] stated that the support vector machine is good for classification. Therefore, this research
uses the SVM classifier to categorize acute sinusitis to obtain an optimal result and help medical diagnosis perform
better.

Previous studies on the classification of sinusitis using other methods include the Fuzzy Support Vector Machine
[9], Kernel Spherical K- Means [10], Imaging Features [4, 11, 12], and Kernel Perceptron [13].  Furthermore, the
Support Vector Machine method was used for Classification of Cancer Data [14], Schizophrenia [5], Face
Recognition [15], Policyholders Satisfactorily in Automobile Insurance [16], Brain Tumor MRIs [17], Intrusion
Detection System [8] and Dementia Prediction [18]. Despite the numerous works carried out on the same subject,
this research was proposed to investigated the different classification results between Linear, Polynomial, and
Gaussian radial basis function kernels on support vector machine used for classifying acute sinusitis for supporting
the development of machine learning in medical treatment. Therefore, this study compared the result of these three
kernels and selected the best one to classify acute sinusitis.

2. RESEARCH METHODS

I. Data

Data were obtained from the CT scan of patients suffer acute sinusitis from the Department of Radiology Dr.
RSUPN Cipto Mangkunsumo (RSCM), Central Jakarta. The dataset consists of four features including Gender, Age,
Hounsfield Unit for acute sinusitis, and Air Cavity. Hounsfield unit described how much the absorption of x-rays
was on the body's tissues, when the tissues were denser, the higher result obtained for the Hounsfield unit. Air cavity
is a cavity containing air, such a cavity occurring in the body or bones. Gender consists of binary classification, with
1 and 2 used to represent male and female, respectively. This dataset consists of 200 observations with 102 and 98
labelled acute and non-acute sinusitis, as shown in Table 1.

Table 1. Samples of Sinusitis Dataset

II. Support Vector Machine

Support Vector Machine (SVM) tries to determine an optimized hyper-plane in a kernel space where training data
are linearly separable. The SVM classifier aims to determine a classification criterion capable of separating data
accurately [19]. The binary class classification criterion can be a line with linear separable data or non-linear
separable data by maximizing the margin between each class.

Gender Age Hounsfield
Unit

Air
Cavity

Diagnosis

1 15 29 -522 1
2 58 20 -720 1
1 45 93 -663 0
2 20 47 -889 1
1 15 28 -467 1
1 18 54 -496 0
2 58 107 -852 0
1 31 83 -550 0
1 45 16 -988 1
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III. Characteristic of Support Vector Machine

Given the dataset { , } where denotes the number of data, ∈ is a feature vector from data sample- .
denotes dimension of data, and denotes class label of data sample- . According to Figure 1, the separating line
known as hyperplane for training data, , ( = 1, 2, 3, . . . , ), is defined as:

wT· x + b = 0 (1.1)

Figure 1. SVM solves the classification problem by performing a hyperplane, which maximizes the data's margin
[19]

where the general objective is to find and . The hyperplane needs to possess minimum error in separating the
data and a maximal distance from the closest sample of each class. In these substances, sample of each class is in the
left ( = −1) or the right ( = 1) sides of the hyperplane [19]. Figure 1 shows that the two margins used to
control separate data as follows:

wT· x + b=
≥1 , yi = 1
≤-1, yi = -1

(1.2)

The best hyperplane is obtained by maximized the distance between the margins:

d(w ,b; x)= wT· x + b - 1 - wT· x + b + 1
|w| = 2

|w|
(1.3)

The general problem to determine the optimal hyperplane for linear separable data is defined as follows:

Minw , b = 1
2

|w| 2
(1.4)

s.t. yi(wT· x + b)≥ 1, i = 1, …, n (1.5)

For non-linearly separable data, there is slack variable, ≥ 0 where = 1,2, . . . , [20], which was the distance
between error labelled data and the margin that needs to minimized. Hence, the optimization function in Eq. (4) for a
non-linearly separable data changes to a new function as follows:
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Minw , b= 1
2

|w| 2
+C ∑ ξin

i=1 , C>0 (1.6)

s.t. yi(wT· x + b)≥ 1 - ξi ,  i = 1, 2, …, n (1.7)

The C in Eq. (6) is known as the regularization parameter [21]. According to a research carried out by [18], when
the value of C is high, the training data is accurately categorized by hyperplane and focuses on error minimization.
Similarly, when C is a low value, the optimizer looks for higher-margin separating hyperplane while misclassifying
the more data points to maximize the emphasized margin.

Eq. (6) and (7), are used to solve the optimization problem for margin constraints, using Lagrange multipliers
( ( ≥ 0), ( ≥ 0)) [19]. The unconstrained form is obtained as follows:

L(w ,b, ξ, α, β)= 1
2

|w| 2
+C ∑ ξi

n
i=1 - ∑ αi{yi(w

T·xi+b)-1+ ξi)}
n
i=1 - ∑ βiξi

n
i=1 (1.8)

The optimal solution of Eq. (8) is obtained by satisfying Karush-Kuhn-Tucker condition:
∂L
∂w

= 0 → w = ∑ αiyixi
n
i=1 (1.9)

∂L
∂b

= 0 →∑ αiyi
n
i=1 = 0 (1.10)

∂L
∂ξ

= 0 → αi + βi = C
(1.11)

Substituting Eq. (9) – (11) into Eq. (8), the following dual problem for a non-linear separable SVM is formulated as
follows:

L(α) = ∑ αi
n
i=1 - 1

2
∑ αiαjyiyjxi

Txj
n
i=1 (1.12)

s.t.
0 ≤ αi ≤ C

∑ αiyi
n
i=1 = 0 (1.13)

The above equations and its constraints are used by SVM to obtain the optimal classification solution.

IV. Kernel Function

Kernel methods are useful for the successful application of SVM. These are used to map data from the original
feature space to the kernel without knowing the mapping function , which maps data into the feature space,
explicitly [20]. Kernel function is defined as follows:

K xi,xj =<φ(xi ),φ xj > (1.14)

Kernel function is used to defined the hyperplane as follows:

g(x) = wT·φ(x) + b (1.15)

For Eq. (9) is defined as follows:

w = ∑ αiyiφ(xi)
n
i=1 (1.16)
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By substituting Eq. (16) into (15), the optimal decision function is obtained by a suitable kernel. The general
equation for the hyperplane is specified as follows:

g(x) = ∑ yiαi K(xi,xj) + bn
i=1 (1.17)

Support Vector Machines is efficiently used to solve non-linear problems by selecting a proper kernel function [19].
There are some kernel functions on support vector machine problem. However, this study uses the linear,
polynomial, and Gaussian radial basis function, as the commonly used kernels for SVM [22], to optimize
classification of acute sinusitis. All three kernels have the same parameter, C, as regularization parameter.

· Linear Kernel defined as [23]:

K xi,xj = <xixj> (1.18)

· Polynomial defined as:

K xi,xj = <xixj>+1
r
, r ≥ 2, r ∈ N (1.19)

where denotes the degree of the polynomial kernel. High increases data transformation complexity and
overfitting, while low creates an underfitting model.

· Gaussian radial basis function kernel defined as:

K xi,xj = exp -γ xi-xj
2

, γ > 0 (1.20)

The research carried out by [24], shows that the controls the width of the radial basis function kernel.
Intuitively, a small value defines a gaussian radial basis function with large variance, while a large
value defines a small variance.

V. Parameter Optimization

Several parameters were optimized by using the grid search method, which was widely used due to its simplicity
[23]. Grid search optimizes the SVM parameters C and using cross-validation (CV) technique as a performance
metric [17]. This study used 10-folds cross-validation with the following optimized parameters:

· Regularization parameter C = 10

· For gaussian radial basis function kernel, γ = 0.1

· For polynomial kernel, = 3

VI. Model Performance Evaluation

The research carried out by [25], stated that the commonly-accepted performance evaluation is based on accuracy.
Then this study used a performance evaluation by measuring accuracy, precision, recall, and F1 score, where TN,
TP, FN, FP denote True Negative, True Positive, False Negative, and False Positive, respectively, [26]:

· TP is the number of correct acute sinusitis predictions;

· TN is the number of correct non-acute sinusitis predictions;

· FP is the number of incorrect acute sinusitis predictions;

· FN is the number of incorrect non-acute sinusitis predictions;

The following formulas are used [27]:
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accuracy = TP+ TN
TP+ TN+ FP+ FN

x 100% (1.21)

recision = TP
TP+ FP

x 100% (1.22)

recall = TP
TP+ FN

x 100% (1.23)

F1 score= 2 x precision x recall
precision+ recall

(1.24)

3. RESEARCH METHODS

This study used Python 3.6 for support vector machines and kernels.

I. Classification SVM Results Using Linear Function Kernel

The performance evaluation result using linear function kernel with regularization parameter C = 10, is shown in
Table 2:

Table 2. The accuracy, precision, recall, and f-1 score of SVM with linear kernel.

According to Table 2, SVM classification with linear kernel function peaked at the highest and lowest data training
accuracy of 40% - 90% and 30% at 100% and 97.86%, respectively.

II. Classification SVM Results Using Polynomial Function Kernel

The polynomial kernel has the hyperparameter C and (degree). This study used C and values of 10 and 3 to
prevent complexity and overfitting. The results SVM with polynomial kernel function are shown in Table 3:

SVM with linear function kernel
Data

Training
Accuracy Precision Recall F1 score

10% 98.33% 98.00% 99.00% 98.00%
20% 98.13% 100.00% 96.00% 98.00%
30% 97.86% 100.00% 96.00% 98.00%
40% 100% 100.00% 100.00% 100.00%
50% 100% 100.00% 100.00% 100.00%
60% 100% 100.00% 100.00% 100.00%
70% 100% 100.00% 100.00% 100.00%
80% 100% 100.00% 100.00% 100.00%
90% 100% 100.00% 100.00% 100.00%

Average 99.37% 99.78% 99.00% 99.33%
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Table 3. The accuracy, precision, recall, and f-1 score of SVM with polynomial kernel degree 3.

According to Table 3, SVM classification with linear kernel function peaked at the highest and lowest data training
accuracy of 90% and 10% at 100% and 97.86%.

III. Classification SVM Results Using Gaussian Radial Basis Function Kernel

The performance evaluation result using the Gaussian radial basis function kernel with regularization parameter C =
10 and = 0.1, as shown in Table 4.

Table 4. The accuracy, precision, recall, and f-1 score of SVM with gaussian radial basis function

SVM with gaussian radial basis function kernel
Data

Training
Accuracy Precision Recall F1 score

10% 97.78% 97.00% 99.00% 98.00%
20% 98.13% 98.00% 99.00% 98.00%
30% 98.57% 97.00% 100.00% 99.00%
40% 99.17% 98.00% 100.00% 99.00%
50% 99.00% 98.00% 100.00% 99.00%
60% 98.75% 98.00% 100.00% 99.00%
70% 100.00% 100.00% 100.00% 100.00%
80% 100.00% 100.00% 100.00% 100.00%
90% 100.00% 100.00% 100.00% 100.00%

Average 99.04% 98.44% 99.78% 99.11%

According to Table 4, SVM classification with linear kernel function peaked at the highest and lowest data training
accuracy of 70%-90% and 10% at 100% and 97.78%, respectively.

IV. Comparison Result

The average accuracy of each kernel measured in 3.1, 3.2, and 3.3 are compared in Tables 5 and 6.

SVM with Polynomial Kernel Function Degree 3
Data

Training
Accuracy Precision Recall F1 score

10.00% 91.67% 87.00% 98.00% 92.00%
20.00% 96.88% 98.00% 96.00% 97.00%
30.00% 95.71% 99.00% 93.00% 96.00%
40.00% 99.17% 98.00% 100.00% 99.00%
50.00% 98.00% 96.00% 100.00% 98.00%
60.00% 98.75% 98.00% 100.00% 99.00%
70.00% 98.33% 97.00% 100.00% 98.00%
80.00% 97.50% 95.00% 100.00% 98.00%
90.00% 100.00% 100.00% 100.00% 100.00%
Average 97.33% 96.44% 98.56% 97.44%
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Table 5. Comparison accuracy and precision between linear, polynomial, and gaussian radial basis function kernel.

Table 6. Comparison recall and F1 score between linear, polynomial, and gaussian radial basis function kernel

According to Table 5, the linear kernel has the highest average accuracy at 99.37%, while polynomial has the lowest
at 97.33%. The research carried out by [26] stated that a high value of F1 score indicates an increase in classification
performance. In Table 6, the linear kernel has the highest classification performance for classifying acute sinusitis
with 99.33% F1 score, with the lowest found in polynomial at 97.44. Therefore, the linear kernel is the best for the
SVM classifier for acute sinusitis because it consists of high accuracy and F1 score.

4. CONCLUSION

In conclusion, the main goal of this study was carried out to determine the best kernel function with support vector
machine for classifying acute sinusitis. After comparing Linear, polynomial, and Gaussian radial basis functions, the
research showed that the linear kernel is best for classifying acute sinusitis with an average of accuracy of 99.37%
and highest classification performance 99.33% average of F1 score. Further studies need to be carried out using the
same experimental setup for the development of machine learning in medical diagnosis and classifying other
diseases. Furthermore, this study believes the methods are suitable to classifying other disease.
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Abstract. James’ Distortion theorems played a vital role to investigate Banach spaces containing nice copies of or ℓ and
their failure of the fixed point property for nonexpansive mappings. His tools leaded researchers to see that every classical
nonreflexive Banach space contains an isomorphic copy of either or ℓ . There have been many researches done using these
tools developed by James and followed by Dowling, Lennard and Turett mainly to see if a Banach space can be renormed to have
the fixed point property for nonexpansive mappings when there is failure. Recently, in a study in preparation, the first and the
third authors obtained alternative asymptotically isometric properties implying failure of the fixed point property inside copies of

or ℓ . In this study, we provide more alternative asymptotically isometric properties in copies of ℓ . Analogously, we
introduce a new property equivalent for a Banach space to contain asymptotically isometric copy of ℓ . That is, we show that a
Banach space contains an asymptotically isometric copy of ℓ if and only if it has the property we introduce.

1. INTRODUCTION AND PRELIMINARIES

A Banach space is called to have the fixed point property for non-expansive mappings [fpp(n.e.)] if any non-
expansive self-mappings defined on any non-empty closed, bounded and convex subset of the Banach space has a
fixed point. It has been seen that most classical Banach spaces fail the fixed point property and especially there is a
fact that if a Banach space is a non-reflexive Banach lattice then it fails the fixed point property if it contains either
an isomorphic copy of c or ℓ , Banach space of scalar sequences converging to 0, or an isomorphic copy of ℓ ,
Banach space of absolutely summable scalar sequences [5].

James [4] developed a tool which leaded researchers to understand if a Banach space contains an isomorphic copy of
c or ℓ . Strengthening James’ Distortion theorems, Dowling et al. [2] obtained new tools to test if a Banach space
contains an asymptotically isometric copy of ℓ which implies the failure of the fixed point property for
nonexpansive mappings.

The notions of asymptotically isometric copies of the classical Banach spaces c and ℓ have applications in metric
fixed point theory because they arise naturally in many places. For example, every non-reflexive subspace of
(L [0, 1], ‖. ‖ ), every infinite dimensional subspace of (ℓ ‖. ‖ ), and every equivalent renorming of ℓ contains an
asymptotically isometric copy ℓ and so all of these spaces fail the fixed point property [1, 3]. The concept of
containing an asymptotically isometric copy ℓ also arises in the isometric theory of Banach spaces in an intriguing
way: a Banach space X contains an asymptotically isometric copy ℓ if and only if X∗ contains an isometric copy of
(L [0, 1], ‖. ‖ ) [3].
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The first author and the third author recently introduced new properties for a Banach space to check if it fails the
fixed point property. They proved that a Banach space contains an asymptotically isometric copy of ℓ if and only if
it has one of the properties they introduced. So they obtained equivalent properties.

In this study, we provide more alternative asymptotically isometric properties. Analogously, we show that if a
Banach space satisfies the property we introduce then it fails to have the fixed point property for nonexpansive
mappings; moreover, we show that a Banach space contains an asymptotically isometric copy of ℓ if and only if it
has the property we introduce.

Now we provide some preliminaries before giving our main results. First of all, the following is a well-known
definition.

Definition 1. Let K be a non-empty closed, bounded, convex subset of a Banach space (X, ∥⋅∥). Let T: K → K be a
mapping. We say T is  nonexpansive if ∥ T(x) − T(y) ∥≤∥ x − y ∥ for all x, y ∈ K. Also, we say that K has the
fixed point property for nonexpansive mappings [fpp(n.e.)] if for all nonexpansive mappings T: K → K, there exists
z ∈ K with T(z) = z.

As usual, (c , ∥⋅∥ ) is given by c : = x = (x ) ∈ : each x ∈ ℝ and lim
→

x = 0 . Further, ∥ x ∥ : = sup
∈

|x |,

for all x = (x ) ∈ ∈ c . Also, c is the space of sequences with finetely many nonzero terms. Furthermore,
(ℓ , ∥⋅∥ ) is the vector space of all absolutely summable scalar sequences such that ∥ x ∥ : = ∑  |x | for all
x = (x ) ∈ ∈ ℓ .

Definition 2. [2] A Banach space (X, ∥⋅∥) is said to contain an asymptotically isometric copy of ℓ if there exist a
sequence (x ) in X and a null sequence (ε ) in (0,1) so that

 (1 − ε )|a | ≤  a x ≤  |a | ,

for all (a ) ∈ ℓ .

Theorem 1. [2] A Banach space (X, ∥⋅∥) contains an asymptotically isometric copy of ℓ if and only if there is a
sequence (x ) in X and there are scalars 0 < k ≤ K < ∞ such that

1.  for all (a ) ∈ ℓ ,

k  |a | ≤  a x ≤ K  |a |

and
2. lim

→
∥ x ∥= k.

Then, the following theorem is given as one of their results in [2].

Theorem 2. If a Banach space (X, ∥⋅∥) contains an asymptotically isometric copy of ℓ , then X fails fpp(n.e.).
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2. MAIN RESULTS

In this section, define a new property that implies the failure of the fixed point property for nonexpansive mappings.
That is, we show that if a Banach space has the property we introduce then it fails to have the fixed point property
for nonexpansive mappings. We find an alternative way of detecting our property. Then, we show that a Banach
space contains an asymptotically isometric copy of ℓ if and only if it has the property we introduce.

Definition 3. We will say a Banach space ( , ∥⋅∥) has property N-AAIP-ℓ (which stands for new alternative
asymptotically isometric property for spaces in a copy of ℓ ) if there exist a sequence ( ) in and a null
sequence ( ) in (0,1) so that

 (1 − )  +  
(1 − )

2
∑  

1 + ∑  
≤  

≤   +  
1

2
∑  

1 + ∑  
,

for all ( ) ∈ ℓ .

Theorem 3. A Banach space ( , ∥⋅∥) has property N-AAIP-ℓ if and only if there is a sequence ( ) in and
there are scalars 0 < < < ∞ such that
1.  for all ( ) ∈ ℓ ,

 | | +  
1

2
| |

1 + | | ≤  ≤  | | +  
1

2
| |

1 + | | (1)

and
2.

→
∥ ∥= . (2)

Proof. Assume that a Banach space (X, ∥⋅∥) has property N-AAIP-ℓ . Then, there exist a sequence (x ) in X and a
null sequence (ε ) in (0,1) so that

 (1 − )  +  
(1 − )

2
∑  

1 + ∑  
 a x

≤   +  
1

2
∑  

1 + ∑  
,

for all (a ) ∈ ℓ .
Now for each n ∈ ℕ, define y : = x − x with x = 0. So there exist a null sequence (ε ) in (0,1) so that for
all (a ) ∈ ℓ
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 (1 − ε )|a | +  (1 − ε )
1

2
|a |

1 + |a | ≤  a y ≤  |a | +  
1

2
|a |

1 + |a | .

We may suppose (ε ) ∈ℕ to be a decreasing sequence.
Let z = (1 − ε ) y for each n ∈ ℕ. Then, for all (t ) ∈ ℓ ,

 |a | +  
1

2
|a |

1 + |a | ≤  a (1 − ε ) y

≤  (1 − ε ) |a | +  
(1 − ε )

2
|a |

1 + |a | .

Let K = . Then we obtain the condition (2) for the sequence (z ) . Next, taking (a ) as the unit basis (e ) of

c in the , we get lim
→

∥ y ∥= 1 and so lim
→

∥ z ∥= 1 which means condition (2) holds as well.

Conversely, assume that there exist a sequence (x ) in X and k, K ∈ (0, ∞) with k ≤ K so that for all (a ) ∈ ℓ ,

k  |a | +  
1

2
|a |

1 + |a | ≤  a x ≤ K  |a | +  
1

2
|a |

1 + |a |

and lim
→

∥ x ∥= k.

Equivalently we can get that there exist a sequence (x ) in X and k ∈ (0,1] so that for all (a ) ∈ ℓ ,

 |a | +  
1

2
|a |

1 + |a | ≤  a x ≤ K  |a | +  
1

2
|a |

1 + |a |

and lim
→

∥ x ∥= 1.

Let (ε ) be a null sequence in (0,1). Since lim
→

∥ x ∥= 1, and ∥ x ∥≥ 1 for all n ∈ ℕ, by passing to

subsequences, if necessary, we can assume that 1 ≤∥ x ∥≤ 1 + ε for all n ∈ ℕ. Define y = for all n ∈ ℕ.

Then, since ∥ y ∥≤ 1, we have for all (a ) ∈ ℓ ,

 a y ≤  |a | ≤  |a | +  
1

2
|a |

1 + |a | .

Moreover, by the left hand side inequality of (1), we have

 a y =  a
x

(1 + ε )

≥  
|a |

1 + ε
+  

1
(1 + ε )2

|a |
1 + |a |
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≥  (1 − ε )|a | +  
(1 − ε )

2
|a |

1 + |a |

Hence, we obtain that there exist a sequence sequence (y ) in X and a null sequence (ε ) in (0,1) so that  for all
(a ) ∈ ℓ ,

 (1 − ε )|a | +  
(1 − ε )

2
|a |

1 + |a | ≤  a y ≤  |a | +  
1

2
|a |

1 + |a | .

Now for each n ∈ ℕ, define z : = ∑  y . Then, there exist a null sequence (ε ) in (0,1) so that  for all (a ) ∈
ℓ ,

 (1 − )  +  
(1 − )

2
∑  

1 + ∑  
≤  a z

≤   +  
1

2
∑  

1 + ∑  
.

So we are done.

Theorem 4. If a Banach space ( , ∥⋅∥) has property N-AAIP-ℓ , then fails fpp(n.e.).

Proof. Assume that a Banach space (X, ∥⋅∥) has property N-AAIP-ℓ . Then, there exist a sequence (x ) in X and a
null sequence (ε ) in (0,1) so that

 (1 − )  +  
(1 − )

2
∑  

1 + ∑  
≤  a x

≤   +  
1

2
∑  

1 + ∑  
,

for all (a ) ∈ ℓ .

Now for each n ∈ ℕ, define y : = x − x with x = 0. So there exist a null sequence (ε ) in (0,1) so that  for
all (a ) ∈ ℓ ,

 (1 − ε )|a | +  
(1 − ε )

2
|a |

1 + |a | ≤  a y ≤  |a | +  
1

2
|a |

1 + |a | .

Let (γ ) be a strictly decreasing sequence in (1, ∞) with lim
→

γ = 1. By passing to subsequences if necessary we

can assume that γ < (1 − ε )γ .
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Define z = γ y , for all n ∈ ℕ, and let C = {∑  t z : t ≥ 0 and ∑  t = 1} which is a closed bounded
convex subset of X.

Now, consider the mapping T: C → C given by T(∑  t z ) = z + ∑  t z , where 1 ≥ t ≥ 0 for all n ∈ ℕ.
It is clear that T has no fixed points in C.
We will now show that T is nonexpansive (in fact, T is contractive).
Write u = ∑  t z and w = ∑  s z as two arbitrary elements of C with u = w.
Then,

∥ Tu − Tw ∥=  (t − s )z

=  (t − s )γ y

≤  
1

2
|t − s |

1 + |t − s |
γ +  |t − s |γ

<  
1

2
|t − s |

1 + |t − s |
γ (1 − ε ) +  |t − s |γ (1 − ε )

≤  (t − s )γ y

=∥ u − w ∥.
This completes the proof.

Theorem 5. A Banach space ( , ∥⋅∥) contains an asymptotically isometric copy of ℓ if and only if has

property N-AAIP-ℓ .
Proof. Assume that a Banach space X contains an asymptotically isometric copy of ℓ . Then, by Theorem 1, there
exist a sequence (x ) in X with lim ∥ x ∥= 1 and 1 ≤ K such that for all (a ) ∈ ℓ ,

 |a | ≤  a x ≤ K  |a | .

Then, letting y = 1 + x for each n ∈ ℕ and S = , we have

 (1 − ε )|a | +  
(1 − ε )

2
|a |

1 + |a | ≤  |a | +  
|a |
2

≤  a y

≤ K  |a | +  
|a |
2
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≤ S  |a |

≤ S  |a | +  
1

2
|a |

1 + |a |

and lim ∥ y ∥= 1.

Hence, by Theorem 3, X has property N-AAIP-ℓ .

Conversely assume that X has property N-AAIP-ℓ . Then, using Theorem 3, equivalently we can get that there exist
a sequence (x ) in X and k ∈ (0,1] so that for all (a ) ∈ ℓ ,

 |a | +  
1

2
|a |

1 + |a | ≤  a x ≤ K  |a | +  
1

2
|a |

1 + |a |

and lim
→

∥ x ∥= 1.

Thus,

 |a | ≤  t x ≤
3K
2

 |a | .

Hence, we are done by Theorem 1.
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Abstract. Most of the preliminary results on prey-predator interactions focus on the direct and immediate relationship
between prey and predator species, usually described by the system of ordinary differential equations. However, the
existence of time delay, often degenerating the system dynamics, has been proven in many experimental studies. One
main objective of this paper is to mathematically analyse the dynamical system of plankton species interacting with
dissolved oxygen and discuss how a constant time delay in predator gestation affects their interactions. The local stability
and delay induced Hopf bifurcation analysis around the positive equilibria of the system of delay differential equations is
also examined. Various numerical simulations including time simulations, phase portraits and numerical bifurcation
analysis are performed to support the theoretical results presented in this paper. In this context, the other main objective
of this paper is to analyse the dynamics of oxygen concentration as a function of two main parameters of the system via
numerical continuation. The findings of this paper show that, compared to non-delayed case, delay form of the model
support multiple Hopf bifurcations and the continuation of periodic orbits emanating from Hopf points demonstrate
various dynamics such as transcritical bifurcation, Neimark-Sacker bifurcation, period doubling bifurcation and saddle
node bifurcation.

1. INTRODUCTION

Marine ecosystem has very complex dynamics with many non-linearly interacting species from micro-
scale to macro-scale, and thus numerous mathematical work has been performed and is still required to
approximate its complex dynamics. In order to develop mathematically attainable models, most of the research
in theoretical ecology have been conducted on simple and instantaneous spatial and temporal models of prey-
predator interactions and their potential outcomes; zoo-plankton and phytoplankton interactions in particular [1,
2, 3, 4, 5]. In real world, time delay occurs in most of the biological systems and leads natural oscillation in the
concentration or density of the species [6, 7, 8]. In fact, the most obvious case is that the reproduction rate of
predator after predation is not immediate and occurs after some time delay[9, 10]. There is a great interest in
theoretical ecology community to analyse biological systems in the presence of delay and many models have
been created to explain their dynamics.

Studying numerical bifurcation and different properties of the system stability in the ecological system is
constantly extending with a new knowledge. Dynamics of plankton interactions in particular has attracted a
great attention. Moreover, since 2010, research community has attempted to examine the role of oxygen
interacting with plankton species [11, 12, 13, 14, 15]. In this paper a three component model of plankton-
oxygen dynamics based on the paper by Dhar et al. [11] is taken into consideration. Then we extend this paper
in several directions; firstly, non-dimensionalisation of the system is performed to remove the physical
quantities and dimensions. After introducing new dimensionless variables and parameters, equilibria of the
system is determined. Incorporating gestation delay in the animal form of the plankton (zoo-plankton) we
analyse the changes in the dynamics of the original model. Analytical and numerical findings of this paper show
that system is stable under critical threshold and unstable above critical threshold, for which instability occurs at
a Hopf bifurcation. In the last part of the paper we present the results for one-parameter numerical bifurcation
analysis, where oxygen concentration is plotted with respect to two main parameters (i) phytoplankton growth
rate with respect to oxygen and (ii) constant intake rate of the oxygen. Constructing an orbit with a small
amplitude close to the Hopf bifurcations, the continuation of periodic orbits emanating from Hopf points
demonstrates very complex behaviours.
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2. MATHEMATICAL MODEL

The model considered in this paper is based on the system given in [11] :

,= 1
0 ap

pzp
cc

rp
dt
dp

+
--

-+
bd

k
(2.1)

,)(= 210 zpcc
dt
dc aah --- (2.2)

.= 2
1 z

ap
pz

dt
dz db

-
+

(2.3)

Here p and z stand for the density of phytoplankton and zoo-plankton respectively and c represents the

concentration of oxygen. 0c demonstrates the constant intake of oxygen. k/r is related to the growth rate of

phytoplankton. 1d and 2d are the natural death rates of phytoplankton and zoo-plankton respectively. 1a and 2a
represent the consumption of oxygen by per capita planktons. Zoo-plankton feed on phytoplankton thus interactions
between the two taxa of plankton occurs with Holling- type II functional response. Lastly 1b stands for the
conversion rate from phytoplankton into zoo-plankton. For further information we refer the reader to [11].

a. Non-dimensionalisation and equilibria analysis:

In order to determine the relative importance of terms in the mathematical model (2) and reduce the number
of parameters, all variables are scaled with representative dimensional quantities. Introducing the following
dimensionless variables:

,=,)(=,)(=,= 0
2

0 papccczcztt +
+ k
a
km

m
and substituting in the system (2) with the new dimensionless parameters:

,
)(

=,)(=,=,
)(

=
0

1
1

2

01,2
1,2

0 c
a

a
c

c
rr

+
+

+ km
aa

a
kbb

m
d

d
km

m
hh

m
dd

m
bb

km
hh =,=,=,

)(
= 2

2
2

1
1

0

0
1 c

c
+

Thus the model (2) can be rewritten in a dimensionless form as

),,,(
11

= (1)
1 zcpf

p
pzp

c
rp

dt
dp

º
+

--
-

bd (2.4)

),,,(,= (2)
121 zcpfzpc

dt
dc

º--- ahh (2.5)

).,,(
1

= (3)
2

1 zcpfz
p

pz
dt
dz

º-
+

db
(2.6)
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Equilibria of the model: The temporal model (2.1) in the absence of delay has three possible steady states: (i)

plankton free steady state ,0)(0,=
2

1
1 h

hS , (ii) zoo-plankton free steady state

÷÷
ø

ö
çç
è

æ --
- ,0)(,1=

11

1211

1
2 ad

dhdh
d

rrS and (iii) coexistence state ),,(= ***
3 zcpS where

.
1)(

=,1=,= 1*
21

1**

21

21
1

2

*

21

2* ÷
ø
ö

ç
è
æ -
--÷÷

ø

ö
çç
è

æ
-

-
-

-
d

dbb
b

db
dah

hdb
d

c
rzzcp

Here *p exists only when 21 > db . The stability of plankton free steady state ( 1S ) and zoo-plankton free steady

state ( 2S ) can be determined in a similar spirit as described in [11].

The stability of the positive coexistent equilibrium ),,(= ***
3 zcpS is determined using linearisation

with transformations: ),(~=),(~=),(~= *** tzzztccctppp +++ where ×~ represent perturbations
around the equilibrium points. Then the linearised model is rewritten as

),()(= 0 tjjj
t -+ tt

dt
d AA (2.7)

where 0A and tA stand for the characteristic matrices incorporated with constant time delay in zoo-plankton
gestation and given as

*
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The characteristic matrix corresponding to equation (2.7) is then given by
,=)( 03

lt
tll ---D eI AA (2.9)

and the associated characteristic equation is 0=))(( lDDet . This leads to stability of the coexistent state where

infinite number of solutions can be obtained. However, the finite number of solutions with k>)(lÂ , RÎk is
found. Characteristic equation results in third order equation of

( ) 0,=4
(2)
3

(1)
32

2
1

3 KKKKK +++++ -ltllll e (2.10)
where
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( )
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In order to prove the existence of the Hopf bifurcation, a critical time delay must occur such that wl i±= , (

0>w ) and all other eigenvalues have negative real parts. Furthermore, 0¹÷
ø
ö

ç
è
æ
t
l

d
dRe should satisfied. Let ciw

be a root of equation (2.10), thus we obtain a pair of equations:
,=)(sin)(cos: 2

3(1)
3

(2)
3 cccccIm wwtwtww KKK -- (2.12)

.=)(sin)(cos: 4
2

1
(2)
3

(1)
3 KKKK -- ccccRe wtwwtw (2.13)

Using equations (2.12)-(2.13) we have

( ) ( ) ( ) ( )24
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leading to
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Equation (2.15) has at least one positive root. Solving equations (2.12)-(2.13) with respect to t , one can obtain
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Differentiation of equation (2.10) with respect to t and substituting in (2.12) and (2.13) gives
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3. NUMERICAL RESULTS

In this section, numerical findings of the three component model presented in (2.1) is presented. A
particular attention will be paid on the existence of Hopf bifurcation around the positive steady state

),,(= ***
3 zcpS in the presence and absence of constant time delay in zoo-plankton gestation. The sign of the

Hopf point is the existence of a pair of purely imaginary eigenvalues. Apart from the eigenvalues corresponding to
Hopf point, all other eigenvalues are found with a negative real part. In this section, parameters are fixed to

3.2=1h , 0.07=1d , 2.1=b , 2.9=2h , 0.24=1a , 0.9=1b , 0.28=2d . In the absence of delay t ,
parameter r which is related to the growth rate of phytoplankton with respect to oxygen can be chosen as a control
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parameter. At 0.056=r , a Hopf bifurcation occur and a limit cycle appears around the positive equilibria. In
Figure 1, time simulations of all three species are shown for different values of r parameter. When the growth rate
of phytoplankton is zero ( 0=r ) as seen in Fig 1(a), only oxygen presents in the system and plankton species
extinct. The model present damping oscillations when 0.01=r as all components converge to positive steady state
in Fig 1(b). Stable dynamics in Fig 1(c) for 0.045=r becomes unstable when 0.09=r in Fig 1(d), where
higher amplitude oscillations are observed away from the Hopf bifurcation.

Figure 1: Time evolutions of three component system with the effect of various r values in the absence of delay, (a)r = 0,
(b)r = 0.01, (c)r = 0.045, (d)r = 0.09 with initial conditions p0 = 0.6, c0 = 0.9, z0 = 0.3.

An alternative way to show system dynamics is given in Figure 2 , where corresponding phase
trajectories are shown. Here ),,( 000 zcp stands for initial condition for each species and presented by red dot.
When system is stable, see Fig. 2 (b,c), trajectories approaches to positive steady state (black point), and that is
unstable as trajectory gets away from this equilibrium, see Fig. 2 (d).

Figure 2: Corresponding phase portraits for (a)r = 0, (b)r = 0.01, (c)r = 0.045, (d)r = 0.09 in the absence of delay.
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The role of delay in the population densities are demonstrated in Figures 3 and 4 . For this purpose, the
growth rate of phytoplankton with respect to oxygen is fixed to be 0.01=r in the rest of the paper. Taking this
stable state as a reference point as seen in Fig 1(b) and Fig 2 (b), one can examine the role of gestation delay in the
system. In Figure 2 and 4 , one can discuss the existence and stability of Hopf bifurcation induced by various
delay rates (t ). Using parameters described at the beginning of section 3, critical delay values is found as

2.0075=t (see equation (2.17)), for which Hopf bifurcation occurs. The plots given in 2 (a,c) present stable
dynamics of oxygen, phytoplankton and zoo-plankton based on time when delay parameter is under critical
threshold, i.e. 1.7=t . In Fig. 2 (b,d) limit cycle appears with Hopf bifurcations.

Figure 3: Time evolution and trajectories of the corresponding phase portraits of three component system with delay
values (a,c) 1.7=t , (b,d) 2.0075=t

Further away from the bifurcation point, periodic oscillations with high amplitude can be observed and
size of the corresponding limit cycle increases as seen in Fig. 4 (a,c). However, excessive delay in the system may
result in negative effect on the population, leading to extinction of phytoplankton and zoo-plankton, see Fig. 4 (b,d)
where 6=t .

Figure 4: Time evolution and trajectories of the corresponding phase portraits of three component system with delay
values (a,c) = 5.5, (b,d) 6=t
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In Figure 5 , the curves with the real part of the eigenvalue are plotted as a function of parameter r in
the absence (left) and presence (right) of time delay. Here when the curves cross the zero line, instability with a
Hopf bifurcation is observed. Compared to non-delayed case (left), Hopf bifurcation is observed for smaller values
of r (right).

Figure 5: Real part of the eigenvalue is plotted as a function of phytoplankton growth rate r. Hopf bifurcations are
detected crossing the zero axes for no delay (left) and with delay (right).

4.  NUMERICAL BIFURCATION ANALYSIS

In Figures 6 and 7 , the effect of time delay in the system is determined through numerical bifurcation
analysis. Here the dynamics of oxygen is examined under the variation of parameters r (phytoplankton growth rate
related to oxygen) and 1h (intake of dissolved oxygen). Similar procedure can be done to explore the dynamics of
plankton species, however we are only interested in the role of dissolved oxygen in the water. For the case where
delay is absent in the system, the stability of c with respect to parameter r is presented in Fig. 6 (a), where one
saddle-node and one Hopf bifurcation are detected. Here ln represents the number of eigenvalues with positive real
part. In the presence of delay, in Fig. 6 (b), the only change is observed in the stability of coexisting state, where
Hopf bifurcation and corresponding limit cycle surrounding unstable positive steady state are seen for smaller r
values.

Figure 6: Numerical continuation of c with respect to the parameter r in the absence of delay, and with delay

value  2.0075. Here ln stands for the number of eigenvalues with positive real parts, thus dashed and dotted lines are
unstable and straight line is stable.

In Figure 7 , the stability of c around the steady state is visualised as a function of 1h in the absence and
presence of constant time delay, see Figs. 7 (a,b) and 7 (c,d). Compared to Fig. 6 , much complex dynamics can
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be observed for 1h . Here, two transcritical bifurcations are independent of delay and can be observed in both cases.
In fact, delay rate has a main impact on the existence and stability of Hopf bifurcations. When delay is absent, there
is a single Hopf bifurcation, where stable branch looses its stability, see Fig 7 (a). Gray lines in 7 (b) represent the
copies of branches given in 7 (a) and here unstable branches emanating from Hopf bifurcation with 1=ln is
obtained. When delay is incorporated in the model, three extra Hopf bifurcations appear. A zoomed-in view of the
gray square plotted in Fig. 7 (c) is presented in 7 (d), where stable and unstable branches arising from these Hopf
points may exhibit various bifurcation dynamics, including saddle node bifurcation, Neimark-Sacker bifurcation and
period doubling bifurcation. The number of eigenvalues with positive real parts are associated with various colors.
Insets in 7 (d) present zoomed-i view around two bifurcation points, where changes occur in a very small region.

Figure 7: Bifurcations for of c with respect to the parameter 1h in the absence of delay, and with delay value 2.0075.

5. DISCUSSION

In this paper, we have demonstrated that constant time delay in the population dynamics has a great impact
on the stability of the positive steady state for a three component system and this delay may give us the opportunity
to analyse the properties of Hopf bifurcations obtained with zoo-plankton gestation. When delay parameter crosses a
critical value, stability switches from stable to unstable and Hopf bifurcation occurs. In particular, taking 1h as a
control parameter, multiple Hopf bifurcations can be seen, and the branches emanating from Hopf points display
many complex behaviours including transcritical bifurcation, Neimark-Sacker bifurcation, period doubling
bifurcation and saddle node bifurcation.

Time simulations and phase trajectories are computed using Matlab 2017 and single parameter
continuation and stability analyses in the presence of constant time delay are performed using DDE-BIFTOOL [16,
17]. The most obvious result of this study would be that the model with time delay is realised as biologically more
realistic form. Introducing time delay in predator gestation has lead particularly interesting dynamics where
fluctuations can be seen for moderate values of time delay. Furthermore, if plankton communities are exposed to
large delay, e.g. 6=t , plankton taxa suffer and extinct, thus only dissolved oxygen exist in the water.

One possible extension of this paper would be the analytical derivation of the stability of Hopf bifurcations
near the positive steady state and the direction of the periodic orbits arising from the Hopf points using center
manifold theorem [18]. Another natural extension would be to use of brownian motion to explore the stochastic
effects in the system [19].
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Abstract. In this study we introduce the concept of -f lacunary almost statistical convergence and -f lacunary almost
summability of double sequences of order a for fuzzy numbers. We give some inclusion relations between these concepts.

Key words and phrases: Fuzzy numbers, Modulus function, -f Lacunary almost statistical convergence, -f Lacunary
almost summability.

1. INTRODUCTION

The fuzzy set concept and some theories related to this concept are given by Zadeh [44]. Bounded and
convergent sequences of fuzzy numbers were defined and some of their properties were examined by Matloka [16].
Later Nanda [17] reached the knowledge that the set of bounded and convergent sequences of fuzzy numbers form a
complete metric space. Subsequently, Nuray and Savaş [19] reached some results by defining the fuzzy numbers as
statistically convergent and statistically Cauchy sequences.. Also, fuzzy sequences have been studied by many
authors; Altinok et al. ([4],[5]), Altin et al. [6], Burgin [7], Hanéel et al. [9], Fang and Hung [11], Kumar et al. ([12],
[13], [14]),Wang and Xi [45], Aytar and Pehlivan [3], Mursaleen and Başarır [18], Tripathy and Baruah [20],
Tripathy and Dutta[21] and others.

A fuzzy real number X is a fuzzy set on ,R i.e. a mapping [0,1])(=: LX ®R associating each real

number t with its grade of membership. The -b level set of a fuzzy real number ,X for 10 ££ b denoted by
b][X is defined by }.)(:{=][ bb ³Î tXtX R A fuzzy real number X is called convex if

)),(),((min=)()()( rXsXrXsXtX Ù³ where .<< rts I& f there exist RÎ0t such that 1=)( 0tX then
the fuzzy real number X is called normal. A fuzzy real number X said to be upper semi-continuous if for each

0,>e )),([0,1 e+- aX for all LaÎ is open in the usual topology of .R The set of all upper semi-continuous,

normal, convex fuzzy numbers is denoted by ).(RL Every real number r can be expressed as a fuzzy real number

r as follows:

î
í
ì

otherwise.0
,=if1

=)(
rt

tr

The notion of a modulus was given by Nakano [22]. Maddox [15] used a modulus function to construct some
sequence spaces. Afterwards, different sequence spaces defined by modulus have been studied by Altın and Et [2],
Et et al.[8], Işık [23], Gaur and Mursaleen [24], Nuray and Savaş [25] , Pehlivan and Fisher [26], Şengül [27],
Şengül et al.[28] and many others.

A modulus f is a function from )[0,¥ to )[0,¥ such that

)i 0=)(xf if and only if 0,=x
)ii )()()( yfxfyxf +£+ for 0,, ³yx
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)iii f is increasing,

)iv f is continuous from the right at 0.
It follows that f must be continuous everywhere on ).[0,¥ A modulus function may be unbounded or

bounded.
Aizpuru et al. [1] defined -f density of a subset NÌE for any unbounded modulus f by

{ }
existslimit theif,

)(
):(

lim=)(
nf

Eknkf
Ed

n

f Î£
¥®

and defined -f statistical convergence for any unbounded modulus f by

0=}):({ e³-Î lxkd k
f N

i.e.

0=}):({
)(

1
lim e³-£

¥®
lxnkf

nf k
n

and we write it is as lim-fS lxk = or ).( f
k Slx ® Every -f statistically convergent sequence is

statistically convergent, but a statistically convergent sequence does not need to be
-f statistically convergent for every unbounded modulus .f

The concept of almost convergence in single sequences was studied by Lorentz [29], and this work was
given by Moricz and Rhoades [30], for double sequences.

A fuzzy real valued double sequence )(= nkXX is a double infinite array of fuzzy real numbers, i.e.

),(RLX nk Î for all ., NÎkn
Let E be the set of all closed bounded intervals ].,[= RL XXX Let

).,(max=),( RRLL YXYXYXd -- Then ),( dE is a complete metric space.

Let :d RRR ®´ )()( LL be defined by

).(,),][,]([sup=),(
10

RLYXYXdYXd Î
££

bb

a

Then d defines a metric on ).(RL
Fuzzy sequence concept has been studied by Tripathy and Baruah [31], Tripathy and Borgohain ([32],[33]

), Tripathy and Das [34], Tripathy and Dutta ([35], [36], [37] ), Tripathy and Sarma ([39], [40]) and many others.
In [41], Bronwich was the first to work on double sequences with real or complex terms. Regular

convergence of real or complex double sequences has been defined by Hardy. [10]. Some works on double
sequences on crisp set are due to Tripathy and Sarma [42] and others. Different types of spaces of fuzzy real-valued
binary sequences have also been studied by the authors of Tripathy and Dutta ([35], [36]), Tripathy and Sarma [40] .

A double sequence )},{(=, srsr lkq is called double lacunary if there exist two increasing sequences of

integers }{ rk and }{ sl such that

¥®¥®- - rkkhk rrr as=0,= 10

.as=ˆ0,=and 10 ¥®¥®- - sllhl sss
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Troughout we denote ,=, srsr lkk srsr hhh ˆ=, for all sr, {0};ÈÎN ,=ˆ,=
11 -- s

s
s

r

r
r l

l
q

k
kq

.ˆ=, srsr qqq Interval determined by sr ,q are denoted by rrsr kkklkI ££-1, :),{(= and }1 ss lll ££- . Also

.=ˆ
11, --- srsrsr lklkh =q sr ,q̂ is determined by rrsr kkklkI £- <:),{(=ˆ

1, or ),( \}< 21
1 IIlll ss È£-

where rr kkklkI £- <:),{(= 1
1 and }<< ¥lls , ss llllkI £- <:),{(= 1

2 and }.<< ¥kkr
Denote

),( \}<or<:),{(= 21,
, BB
nm IInjmijiB È+£+£ bbaaba

where njjiIB +£ bb <:),{(=1 and },<< ¥+ ima mijiIB +£aa <:),{(=2 and

},<< ¥+ jnb

rr
yx hxixhjiB 1)(<:),{(=,

, ++£+ aaba or ),(}ˆ1)(ˆ 21
AAss IIhyhy È++£+ bb

where rrA hxixhjiI 1)(<:),{(=1 ++£+ aa and },<<ˆ1)( ¥++ jhy sb :),{(=2 jiI A

ss hyjhy ˆ1)(<ˆ ++£+ bb and }.<<1)( ¥++ ihx ra
In [43] , Tripathy and Sen introduced the concept of lacunary almost convergence in the sense that

sequence nkX of fuzzy real valued is called lacunary almost convergent to the fuzzy real number ,0X if for
every 0>e

0,,inuniformly0,=)},(:ˆ),{(ˆ
1

lim 0,,
,

³Î- ++
¥®

srXXdIkn
h

P skrnsr
rs

sr

where the vertical bars denote the cardinality of the enclosed set.

2. MAIN RESULTS

In the section, we will be introduce the concepts of -f lacunary almost statistical convergence of order

a of double sequences for fuzzy numbers and -f lacunary summability of order a of double sequences for

fuzzy numbers where f is an unbounded modulus give some results related to these concepts.

Definition 2.1 Let f be unbounded modulus, )},{(= sr
''

lkq be a double lacunary sequence and a be a real

number such that 1<0 £a . We say that the fuzzy real valued double sequence nkXX = is -f lacunary

statistically convergent of order a for fuzzy numbers, if there is a fuzzy real number 0X such that

( ) 0,inuniformly0,=),:),{((
)]([

1
lim 0,,
,

³Î ++
¥®

srXXdIknf
hf skrnsr

rssr a

This space will be denoted by .ˆ ,a

q

f
''S In this case, we write .=limˆ

0
, XXS nk

f
'' -a

q
I& n the special case

)},,2{(2= sr''
q we shall write a,ˆ f''

S instead of .ˆ ,a

q

f
''S

Definition 2.2. Let f be unbounded modulus, )},{(= sr
''

lkq be a double lacunary sequence, )(= kpp be a
sequence of strictly positive real numbers and a be a real number such that 1<0 £a . We say that the fuzzy real
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valued double sequence nkXX = is )(ˆ
,

pw
f

''
a

q
- almost summable to 0X (a fuzzy number), if there is a fuzzy

real number 0X such that

( )[ ] 0,inuniformly0,=,
)]([

1
0,

,),(
³++

Î
å srXXd

hf
kp

skrn

srIknrs
a

This space will be denoted by ).(ˆ
,

pw
f

''
a

q
In this case, we write .=lim)(ˆ 0

,
XXpw nk

f
'' -a

q
The set of strongly

-)(ˆ
,

pw
f

''
a

q
almost summable sequences will be denoted by ).(ˆ

,
pw

f
''

a

q
I& f we take ppk = for all ,NÎk we

write ][ˆ
,

pw
f

''
a

q
instead of ).(ˆ

,
pw

f
''

a

q

Definition 2.3. Let f be unbounded modulus, )},{(= sr
''

lkq be a double lacunary sequence, )(= kpp be a
sequence of strictly positive real numbers and a be a real number such that 1<0 £a . We say that the fuzzy real

valued double sequence nkXX = is ],,[ˆ pfw
''

qa
- almost summable to 0X (a fuzzy number), if there is a

fuzzy number 0X such that

( )[ ] 0,inuniformly0,=),(
][

1
lim 0,

,),(,
³++

Î¥®
å srXXdf

h
kp

skrn

srIknrssr a

in this case we write 0., =lim],,[ˆ XXpfw kn
''

-qa The set of all strongly almost summable sequences will be

denoted by ].,,[ˆ pfw
''

qa
If we take 1=kp for all ,NÎk we write ],[ˆ fw

''
qa

instead of ].,,[ˆ pfw
''

qa

Definition 2.4. Let f be unbounded modulus, )},{(= sr
''

lkq be a double lacunary sequence, )(= kpp be a
sequence of strictly positive real numbers and a be a positive real number. We say that the fuzzy real valued
double sequence nkXX = is )(ˆ , pw f

''
a

q
- almost summable to 0X (a fuzzy number), if there is a fuzzy number

0X such that

( )[ ] 0.,inuniformly0,=),(
)]([

1
lim 0,

,),(,
³++

Î¥®
å srXXdf

hf
kp

skrn

srIknrssr a

Then we write 0.,
, =lim)(ˆ XXpw kn

f
'' -a

q

In order not to indicate in each of the following theorems, we will assume that the sequence )(= kpp is

bounded and .<=supinf=<0 ¥££ Hppph k
k

kk
k

Maddox [15] proved the existence of an infinite modulus f with inequality ),()()( yfxcfxyf ³ for all

0,³x 0³y , where c is a positive constant.

Teorem 2.1. Let f be an unbounded modulus function and a be a positive real number . I& f 0,>)]([
lim a

a

u
uf

u ¥®

then Ì],[ˆ fw
''

qa
.ˆ ,a

q

f
''S
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Proof. Let ],[ˆ fwX
''

qaÎ and 0.>)]([
lim a

a

u
uf

u ¥®
For 0,>e we have

( ) ( )
÷
÷

ø

ö

ç
ç

è

æ
³ ++

Î
++

Î
åå 0,

,),(
0,

,),(
,

][
1),(

][
1 XXd

h
XXdf

h skrn

srIknrs
skrn

srIknrs
aa

( )
( )

÷
÷
÷
÷

ø

ö

ç
ç
ç
ç

è

æ

³ ++

³++

Î
å 0,

0,,
,),(

,
][

1 XXd
h skrn

XskrnXd
srIknrs

e

a

( )( )eea }),:),{(
][

1
0, ³Î³ ++ XXdIknf

h skrnrs
rs

( )( ) )(}),:),{(
][ 0, eea fXXdIknf

h
c

skrnrs
rs

³Î³ ++

( )( )
).()]([

)]([

}),:),{(

][
= 0,

e
e

a
aa fhf

hf

XXdIknf

h
c

rs
rs

skrnrs

rs

³Î ++

Therefore, 0, =lim],[ˆ XXfw kn
''

-qa implies .=limˆ
0,

, XXS kn
f

'' -a

q

Teorem 2.2. Let 21,aa be two real numbers such that 21<0 aa £ 1£ , f be an unbounded modulus function

and let )},{(= sr
''

lkq be a double lacunary sequence. The sequence )(= kpp is bounded and

.<=supinf=<0 ¥££ Hppph k
k

kk
k

Then we have Ì)(ˆ 1

,
pw

f
''

a

q
.ˆ 2,a

q

f
''S

Proof. Let )(ˆ= 1

,
pwXX

f
''nk

a

q
Î and 0>e be given and åå

21
, denote the sums over ,),( ,srIkn Î

( ) e³0, , XXd kn and ,),( ,srIkn Î ( ) e<, 0, XXd kn respectively. Since

£1)( a
rshf 2)( a

rshf for each r and s , we may write

( )[ ] kp
skrn

srIknsr

XXdf
hf

),(
)]([

1
0,

,),(1
,

++
Î
åa

( )[ ] ( )[ ] ú
û

ù
ê
ë

é
+ ++++ åå kp

skrn
kp

skrn
sr

XXdfXXdf
hf

),(),(
)]([

1= 0,
2

0,
11

,
a

( )[ ] ( )[ ] ú
û

ù
ê
ë

é
+³ ++++ åå kp

skrn
kp

skrn
sr

XXdfXXdf
hf

),(),(
)]([

1
0,

2
0,

12
,

a
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[ ] ú
û

ù
ê
ë

é
³ å kp

sr

f
hf

)(
)]([

1
12

,

ea

[ ] ú
û

ù
ê
ë

é
÷
ø

ö
ç
è

æ
³ å kp

sr

f
hfH

ea
12

, )](.[
1

[ ] [ ] ú
û

ù
ê
ë

é
÷
ø

ö
ç
è

æ
³ å ),(min

)](.[
1

12
,

Hh

sr

f
hfH

eea

( ) [ ] [ ][ ]( )),(min}),:),{(
)](.[

1
0,2

,

Hh
skrnrs

sr

XXdIknf
hfH

eeea ³Î³ ++

( )( ) [ ] [ ][ ]( ).),(min}),:),{(
)](.[ 0,2

,

Hh
skrnrs

sr

fXXdIknf
hfH
c eeea ³Î³ ++

Hence .ˆ 2,a

q

f
''SX Î

Teorem 2.3. Let f be an unbounded modulus, )},{(= sr
''

lkq be a double lacunary sequence and a be a fixed

number such that 1.<0 £a If lim 1,>inf r
r

q lim 1>inf s
s

q and 0,>)]([
lim a

a

u
uf

u ¥®
then a,ˆ f''

S .ˆ ,a

q

f
''SÌ

Proof. Suppose first that lim 1>inf r
r

q and lim 1>inf s
s

q ; then there exist 0>,ba such that aqr +³1 and

bqs +³1 for sufficiently large r and ,s which implies that
aa

a
a

÷
ø
ö

ç
è
æ
+

³÷÷
ø

ö
çç
è

æ
Þ

+
³

11 r

r

r

r

n
h
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h
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.
11
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÷
ø
ö

ç
è
æ
+

³÷÷
ø

ö
çç
è

æ
Þ

+
³

b
b

k
h

b
b

k
h

s

s

s

s

If ,=limˆ
0,

, XXS kn
f''
-a then for every 0>e and for sufficiently large r and ,s we have

( )( )}),:,{
)]([

1
0, ea ³££ ++ XXdkknnf

knf skrnsr
sr

( )( )}),:),{(
)]([

1
0,, ea ³Î³ ++ XXdIknf

knf skrnsr
sr

( )( )}),:),{(
)]([

1
)]([
)]([

= 0,,
,

, eaa

a
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hfknf

hf
skrnsr

srsr

sr
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][

)]([][
)]([

= 0,,
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, ea
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a

a

a
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h
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n
h
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knf
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ø
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ø
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ç
è
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³
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so the proof is complete.

Teorem 2.4. Let f be an unbounded modulus, )(= rkq and )(= s
'

lq be two lacunary sequences,

)},{(= sr
''

lkq be a double lacunary sequence and 1.<0 £a If 0, =limˆ XXS nf -a
q and

,=limˆ
0

,
XXS k'

f
-a

q
then .=limˆ

0,
,

XXS kn''
f

-a

q

Proof. Suppose 0, =limˆ XXS nf -a
q and .=limˆ

0
,

XXS k'
f

-a

q
Then for 0>e we can write

( ) 0=,:{
)]([

1
lim 0XXdIn

hf rnr
rr

+Îa
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( ) 0=,:{
)]([

1
lim 0XXdIk

hf sks
ss

+Î
a

so we have
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)]([
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hf skrnsr
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)]()([
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0,

,
XXS kn''

f
-a

q

Teorem 2.5. Let f be an unbounded modulus. If 0,>lim kp then 0,
, =lim)(ˆ XXpw kn

f
'' -a

q
uniquely.

Proof. Let 0.>=lim tpk Assume that 0,
, =lim)(ˆ XXpw kn

f
'' -a

q
and .=lim)(ˆ 0,

, '
kn

f
'' XXpw -a

q
Then
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( )[ ] 0,,inuniformly0,=),(
)]([
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lim 0,
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and

( )[ ] 0.,inuniformly0,=),(
)]([

1
lim 0,

,),(,
³++
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å srXXdf

hf
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srIknrssr a

By definition of ,f we have
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( )[ ] ( )[ ] kp'
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XXdf
hf
DXXdf

hf
D ),(

)]([
),(

)]([
= 0,

,),(
0,

,),(
++

Î
++

Î
åå + aa

where Hpk
k

=sup and ).(1,2max= 1-HD Hence

( )[ ] 0.=),(
)]([

1
lim 00

,),(,

kp'

srIknrssr
XXdf

hf å
Î¥®

a

Since tpk =lim we have ( ) 0.=, 00
'

XXd Thus the limit is unique.
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Abstract. Hepatitis refers to an inflammatory condition of the liver, with symptoms including fatigue, flu-like symptoms,
dark urine, yellowing of the eyes and skin. The most common type of hepatitis in the world are Hepatitis B and C. Early
diagnosis should be carried out on individuals that infected by this virus. Furthermore, they should be properly treated to curb
the risks that may occur. Machine learning has been useful in helping doctors improve their medical decisions regarding
diagnosis of Hepatitis. Some researchers have used several machine learning methods to diagnose Hepatitis. In this study,
Logistic Regression and Support Vector Machine were compared to discover which method is best for diagnosing Hepatitis
dataset from Tangerang District General Hospital. This dataset consists of 29 Hepatitis B patients and 84 Hepatitis C patients.
The target type of this dataset is Hepatitis B or Hepatitis C. In this research, both methods were used and compared because
they have some advantages. Logistic Regression provides great training efficiency and easy implementation. The predicted
parameters gave a conclusion about the importance of the features. Meanwhile, Support Vector Machine performs well when
there is a clear margin of separation between classes and it also has a relatively efficient memory. Based on this experiment,
Logistic Regression yielded 96.04% accuracy using 90% of data training, while Support Vector Machine yielded 94.96%
accuracy using 70% of data training. Therefore, it can be concluded that Logistic Regression is a better method for
classifying Hepatitis dataset.

1. INTRODUCTION

Hepatitis refers to an inflammatory condition of the liver which occurs when an individual becomes infected by the
Hepatitis virus, but it can also be caused by using drugs, excessive consumption of alcohol and autoimmune
diseases. When this happens to an individual, the symptoms include fatigue, flu-like symptoms, dark urine,
yellowing of the eyes and skin.

The most common Hepatitis virus in the world are Hepatitis B and C [1-3], which commonly transmitted through
contact with body fluids such as blood, vaginal secretions or semen.

Hepatitis B and C viruses are the main causes of liver disease [4]. The prevalence of hepatitis C virus (HCV)
infection reached at 40% among kidney transplant patients [5]. Majority of liver disease due to kidney
transplantation is caused by hepatitis C virus infection.

According to The World Health Organization (WHO), approximately 257 million are living with hepatitis B, and 71
million are living with hepatitis C worldwide [6]. One million deaths each year is caused by this viral infection. It is
the seventh most common cause of death worldwide and is a significant public health problem in South East Asia.

Early diagnosis should be carried out on individuals that infected by this virus. Furthermore, they should be properly
treated to curb the risks that may occur. Hepatitis is usually diagnosed by using blood tests which is associated with
various risk factors [7-14]. Although there have been very good results from using this method, the progress made in
diagnosing this disease is still unclear. Therefore, many studies have been carried out to aid the diagnosis of
hepatitis by some researchers such as data mining. The discovery of data mining has been able to help doctors
improve their medical decisions [15].
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Data mining is a semi-automatic process that uses mathematical techniques, artificial intelligence, and machine
learning to access useful knowledge and information kept in a huge database (Turban, 2005).

Machine learning is one area of computer science that is useful in predicting various outcomes depending on the
data used [16]. Such algorithms have a significant contribution to medical decision making [17-18]. In this research,
two methods were proposed and compared for the prediction of Hepatitis. They include Logistic Regression and
Support Vector Machine (SVM). The dataset that used in this study was obtained from Tangerang District General
Hospital.

Logistic sigmoid function was used in Logistic Regression to transform its output and return a probability value.
This value was mapped to two or more classes. Conversely, Support Vector Machine uses kernel trick to find the
optimal boundary between the possible outputs.

SVM and Logistic Regression have been used to classify many diseases. Z. Rustam and Rampisela T.V used SVM
to classify Schizophrenia data and obtained an accuracy of 90.1% [19]. Nadira and Z. Rustam also used SVM and
feature selection to classify cancer. An accuracy of 96.4286% was obtained on breast cancer dataset, and 99.9999%
on lung cancer dataset [20]. C. Aroef, R. P. Yuda, Z. Rustam, and J. Pandelaki used Multinomial Logistic
Regression and SVM in Osteoarthritis Classification. An accuracy of 85% and 71% was obtained using SVM and
Multinomial Logistic Regression respectively [21].

Hepatitis has also been predicted using several methods. G. Kurniawan and Z. Rustam used K-Means Clustering in
predicting hepatitis disease and obtained an accuracy of 84.85% [22]. Karthikeyan Thirunavu and Dr. P. Thangaraju
obtained an accuracy of 84% using Naive Bayes, and 83% using Random Forest, J48 and Multilayer Perceptron
[23].

Therefore, in this study, Logistic Regression and Support Vector Machine methods will be compared by using
hepatitis dataset that obtained from Tangerang District General Hospital.

2. MATERIAL & METHODS

2.1 Dataset

The dataset was obtained from Tangerang District General Hospital. It consisted of 113 instances with four features
and two classes, with 29 Hepatitis B patients and 84 Hepatitis C patients. The target type of this dataset is Hepatitis
B or Hepatitis C. Table 1 shows the features.

Table 1. The features in hepatitis dataset

Feature Name Description
Gender Male or Female

SGOT Aspartate Amino
transferase

SGPT Alkaline Amino
transferase

Anti-HCV Anti Hepatitis C Virus
Hepatitis B or
Hepatitis C Class
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a. Logistic Regression
Logistic Regression (LR) is a type of regression used in binary classification. It is also a predictive analysis. To
build a binary classification model, it uses the maximum log-likehood principle. The attribute may be ordinal,
nominal, ratio scale or interval, but the output is only a binary value.

The main function of Linear Regression method is finding a linear decision boundary that separates the attribute
space when the probability of the outcome is 0.5, i.e:

p(y=1| x)= p(y= 0 | x)

To match the logarithmic form of the odds ratio, the model used the linear regression optimization algorithm such
as:

log p(y=1| x)
p(y= 0 | x)

= log p(y=1| x)
1- p(y=1| x)

= bTx

where bT is the transpose of the coefficient vector. The logit function is a log of the odds ratio that links the linear
model’s output to the outcome. By using sigmoid (logistic) function, Equation (2.2.2) was reformulated to find the
probability of the outcome:

p(y=1| x)= eb
Tx

1+eb
Tx

Linear function with the coefficient vector bwas used to describe the hyperplane decision. Furthermore, the LR
algorithm determined the optimal d-dimensional vector b = [b0,b1,...bd ]that fits the training observations:

logistic function f(z) = 1
1+e-z

Where z= b0 +b1x1 +...+bdxd

y=1, z> 0
y= 0,otherwise

By using all of the data points x ∈ R , the decision boundary was determined by:

b0 +b1x1 +...+bdxd = 0

IfbT x is positive, LR classifier will assign x to class (1), otherwise it will be assigned to the other class (0). The
rule of LR classification is:

y=1p(x,b )>0.5

By maximizing the Log-likelihood function with an iterative numerical algorithm, the values of βs can be calculated
(Hosmer and Lemeshow, 2000).

(2.2.1)

(2.2.2)

(2.2.3)

(2.2.4)

(2.2.5)

(2.2.6)
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b. Support Vector Machine

The SVM concept is useful to discover the best hyperplane that acts as a separator between two classes in the input
space. Figure 1 (a) draws several patterns which are members of two classes: positive (+1) and negative (–1).
Patterns that are joined in the positive class are represented by circles, while the negative class are represented by
squares. The varieties of the dividing lines are shown in Figure 1 (a).

Figure 8. Finding the best hyperplane with Support Vector Machine

Measuring the hyperplane margin and finding the maximum point was carried out to obtain the best hyperplane
separator between the two classes. The distance between the hyperplane and the closest data from each class
determined the margin. A hyperplane is said to be optimum if it is located in the middle of the two classes. Figure 1
(b) shows the best hyperplane located in the middle of the two classes. Support vectors were the points represented
by squares and circles inside the black circle. The concept of Support Vector Machine (SVM) is finding a
hyperplane that separates data sets into two classes. The existing data was denoted by x⃗ ∈ R , while its label was
denoted by y ∈ -1, +1 for i = 1, 2, ...,l, where i is the amount of data. Assuming that class -1 and +1 can be
separated by a hyperplane without dimensions, which is determined by:

A pattern xi that belongs to class -1 is defined by:

while pattern xi which belongs to class +1 is defined by:

By maximizing the value of the distance between the hyperplane and its closest point, the maximum margin was

determined as . From finding the minimum point of equation (2.3.4) and noting the constraints of equation

(2.3.5), a Quadratic Programming (QP) problem was formulated.

(2.3.2)

(2.3.1)

(2.3.3)

(2.3.4)
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This problem can be solved by several computational techniques, such as Lagrange Multiplier as shown in equation
(2.3.6):

is a Lagrange multiplier, whose value is either zero or positive ( ³ 0). By minimizing L with respect to w and

b, and maximizing L with respect to , the optimal value of equation (2.3.6) can be calculated. Equation (2.3.6)

can also be modified as the maximization of problems that only contain by considering the optimal point
gradient L = 0, as shown in equation (2.3.7).

Maximize:

Subject to:

From this calculation were mostly obtained. This positive correlated data with is called support vector [24].

c. Statistical Measures

To measure the accuracy, precision, recall, and f1-score, the data was classified using Logistic Regression and
Support Vector Machine. The dataset was initially divided into training and testing. Furthermore, the model was
tested and calculations were carried out on several measurements whose description are shown in Table 2 and 3.

Table 2. Confusion matrix

Actual vs
Predicted

Positive Negative

Positive TP FN
Negative FP TN

Table 3. Terminology of statistical measurement

Actual vs Predicted Formula

mint(w) = 1
2

w 2

a i a i

a i

a i

aii ³ 0(i =1,2,...l ) ai yi
i=1

l

å = 0

a i a i

(2.3.5)

(2.3.6)

(2.3.7)

(2.3.8)
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Accuracy (A) A= TP+TN
TP+TN +FP+FN

Precision (P)

Recall (R)

f1 score (f1)

P= TP
TP+FP

R= TP
TP+FN

f1= 2´ P´R
P+R

3. RESULTS & ANALYSIS

The hepatitis dataset contained 113 instances, four features with one class. This study compared both Logistic
Regression and Support Vector Machine to ascertain which method has the best performance.

This type of testing was a training test. The dataset were classified using the two methods. By using 10%-90% of the
training data, accuracy, precision, recall, and f1 score from both methods are shown Table 4 and 5

Table 4. The accuracy, precision, recall, and f1 score with logistic regression

Data
Training

Accuracy Precision Recall f1 score

10%
20%
30%
40%
50%
60%
70%
80%
90%

83.33%
90.47%
90.85%
91.11%
92.98%
95.51%
94.96%
93.40%
96.04%

66.66%
88.88%
91.66%
86.66%
93.33%
100.00%
100.00%
95.23%
100.00%

66.66%
83.33%
72.22%
83.33%
80.00%
82.22%
80.15%
78.57%
84.72%

77.74%
87.74%
85.76%
88.95%
90.19%
93.66%
92.79%
90.84%
94.53%

From the results of Table 3, it was discovered that the highest accuracy by using Logistic Regression was 96.04%,
which was obtained when using 90% of data training. The lowest accuracy was 83.33% by using 10% of data
training. It also can bee seen that the highest precision was reached at 60%, 70%, and 90% of data training, which is
100%, while the lowest precision was 66.66% when using 10% of data training. For the recall, the highest value was
84.72% when using 90% of the data training, while the lowest recall was 66.66% when using 10% off data training.
Lastly, the highest f1 score was 94.53% when using 90% of the data training, while the lowest f1 score was 77.74%
when using 10% of data training.
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Table 5. The accuracy, precision, recall, and f1 score with support vector machine

Data
Training

Accuracy Precision Recall f1 score

10%
20%
30%
40%
50%
60%
70%
80%
90%

63.88%
72.02%
69.54%
88.88%
78.84%
92.61%
94.96%
86.65%
92.00%

50.00%
30.00%
64.28%
91.66%
100.00%
82.14%
95.23%
93.33%
100.00%

66.66%
88.88%
72.22%
83.33%
55.00%
100.00%
45.23%
64.28%
66.66%

58.73%
86.49%
83.46%
66.74%
75.11%
80.26%
84.16%
82.57%
80.55%

From the results in Table 4, the highest accuracy when using Support Vecror Machine was 94.96%, by using 70% of
data training. The lowest accuracy was 63.88%, by using 10% of data training. For the precision, the highest value
was 100% when using 50% and 90% of data training, while the lowest precision was obtained when using 20% of
data training, which is 30%. It also can be seen that the highest recall was obtained when using 60% of data training,
which is 100%, while the lowest recall was 45.23% when using 70% of data training. Lastly, for the f1 score, the
highest value was reached when using 20% of data training, which is 86.49%, while the lowest f1 score was 58.73%
when using 10% of data training. From the both Table, we can see that the better method was Logistic Regression,
because the highest accuracy was reached when using this method, which is 96.04%. While the highest accuracy
when using SVM was lower than the Logistic Regression’s accuracy, which is 94.96%.

Comparisons were made to discover a better method between Logistic Regression and Support Vector Machine
(SVM). The highest accuracy obtained was 96.04%, and the highest f1 score was 94.53% by using Logistic
Regression. It can be concluded that Logistic Regression was the better method compared to Support Vector
Machine.

4. CONCLUSION

In this study, Logistic Regression (LR) and Support Vector Machine (SVM) were used to classify the model and
also to determine the best performance of the methods based on accuracy. The performance indicators for this
dataset in evaluating the model were accuracy, precision, recall, and f1 score.

Logistic Regression had the best accuracy compared to SVM. It yielded an accuracy of 96.04% using 90% of data
training, and 94.53% of f1-score. Conversely, SVM yielded an accuracy of 94.96%, and 86.49% of f1-score at its
best. In other words, Logistic Regression was the better method compared to Support Vector Machine.

Although Logistic Regression has shown a good performance in classifying hepatitis, it also has its advantages and
disadvantages. Logistic Regression is one of the simplest machine learning algorithms. It provides great training
efficiency and easy implementation. The predicted parameters gave a conclusion about the importance of the
features. Therefore, it is used to discover the relationship between the features.

Logistic Regression is used in predicting probabilistic outcomes based on independent features. This may lead to an
over-fit model on the training set on high dimensional datasets. Therefore, the model will not be able to predict
accuracy value on the testing set. This condition happens when the dataset has a lot of features.
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SVM performs well when there is a clear margin of separation between classes and it also has a relatively efficient
memory. Conversely, its test phase is very slow and maybe difficult to perform. (Burges, 1996; Osuna and Girosi,
1998). When the dataset becomes noisy, i.e target classes are overlapping, SVM also does not perform well.

For upcoming studies, Logistic Regression method is recommended for classifying any other disease. It is expected
that results from these methods are better than those from other methods and will benefit the medical field.
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(3+1)-Dimensional Shallow Water Wave Equation (SWWE)
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Abstract. In this paper, we implemented an Generalized – expansion method for some exact solutions of Sixth-order
Ramani equation and (3+1)-dimensional shallow water wave equation. By using this scheme, we found several exact travelling
wave solutions of the sixth-order Ramani equation and (3+1)-dimensional shallow water wave equation. These solutions are both
exponential function solutions and rational function solutions. In addition, graphs of some solutions and numerical explanations
of these graphs were given. Recently, this method has been studied for obtaining exact travelling wave solutions of nonlinear
partial differential equations.
Keywords. Sixth-order Ramani equation, (3+1)-dimensional shallow water wave equation, Generalized – expansion
method, Exact travelling wave solutions.

1. INTRODUCTION

Nonlinear partial differential equations have an important place in many areas of the scientific World. Some of these
areas are applied mathematics, optical fibers, physics, cosmology and fluid dynamics. Many analytical methods
have been developed to solve nonlinear partial differential equations. [1-11]. Apart from these methods, there are
many methods in which these equations are solved using an auxiliary equation. Using these methods, partial
differential equations are transformed into ordinary differential equations. These nonlinear partial differential
equations are solved with the help of ordinary differential equations. Some of these methods given in [12-28]. We
used the generalized – expansion method for find the exact travelling wave solutions solutions of Sixth-order
Ramani equation and (3+1)-dimensional SWWE in this study. This method is presented by H. L. Lü, X. Q. Liu, L.
Niu [25].

2. ANALYSIS OF METHOD

Let us consider the general form of a nonlinear partial differential equation with two variables;
( , , , , … ) = 0, (1)

If ( , ) = ( ), = + conversion is applied to the above equation, we get
( , , , … ) = 0. (2)

We are looking for a solution in the form below

= + ∑ , ≠ 0, (3)
where = ( ) provides the following ordinary differential equation,

= ℎ + ℎ + ℎ + ℎ , (4)
where ℎ , ℎ , ℎ , ℎ are constants. Also m is a positive integer. m can be determined by balancing the highest order
derivative with the highest nonlinear terms in to (2). Substituting (3) and (4) into Eq.(5) yields a set of algebraic
equations for ℎ , ℎ , ℎ , ℎ , , , … , and because  all coefficients of have to vanish. From here
ℎ , ℎ , ℎ , ℎ , , , … , and can be determined.
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3. EXAMPLES

Example 3.1
We consider the Sixth-order Ramani equation [20],

+ 15 + 15 + 45 − 5 − 15 − 15 − 5 = 0,
(5)

If ( , ) = ( ), = + conversion is applied to the above equation, we get
( ) + 15 ( ) + 15 + 45( ) − 5 ( ) − 30 − 5 = 0, (6)

When balancing ( ) with then gives m=1. The solution is as follows,
= + , (7)

Substituted (7) into (6), the obtained following linear algebraic equation system for ℎ , ℎ , ℎ , ℎ , , and ;
720 ℎ − 540 ℎ + 90 ℎ = 0,

2520 ℎ ℎ − 1890 ℎ ℎ + 315 ℎ ℎ = 0,
−10 ℎ ℎ ℎ − 10 ℎ ℎ ℎ + 2 ℎ ℎ ℎ − 80 ℎ ℎ ℎ + 104 ℎ ℎ ℎ − 90 ℎ ℎ ℎ +
272 ℎ ℎ ℎ − 180 ℎ ℎ ℎ − 15 ℎ ℎ − 135 ℎ ℎ ℎ + 90 ℎ ℎ ℎ + 123 ℎ ℎ ℎ −
180 ℎ ℎ ℎ − 200 ℎ ℎ ℎ + 60 ℎ ℎ ℎ + 1520 ℎ ℎ ℎ ℎ − 1560 ℎ ℎ ℎ ℎ − 540 ℎ ℎ ℎ ℎ +
868 ℎ ℎ ℎ − 600 ℎ ℎ ℎ − 315 ℎ ℎ ℎ + 1296 ℎ ℎ ℎ − 1620 ℎ ℎ ℎ − 405 ℎ ℎ ℎ = 0,
−120 ℎ + 60 ℎ + 3360 ℎ ℎ − 2490 ℎ ℎ + 405 ℎ ℎ + 1680 ℎ ℎ − 1020 ℎ ℎ +
90 ℎ ℎ = 0,
−300 ℎ ℎ + 150 ℎ ℎ + 2100 ℎ ℎ − 1500 ℎ ℎ + 225 ℎ ℎ + 4200 ℎ ℎ ℎ −
2280 ℎ ℎ ℎ + 90 ℎ ℎ ℎ + 1260 ℎ ℎ − 540 ℎ ℎ − 45 ℎ ℎ = 0,
−10 ℎ − 250 ℎ ℎ + 120 ℎ ℎ + 602 ℎ ℎ − 390 ℎ ℎ + 45 ℎ ℎ − 200 ℎ ℎ +
60 ℎ ℎ + 3584 ℎ ℎ ℎ − 1470 ℎ ℎ ℎ − 135 ℎ ℎ ℎ + 1232 ℎ ℎ − 300 ℎ ℎ − 90 ℎ ℎ +
3024 ℎ ℎ ℎ − 810 ℎ ℎ ℎ − 270 ℎ ℎ ℎ = 0,
−15 ℎ ℎ − 75 ℎ ℎ + 30 ℎ ℎ + 63 ℎ ℎ − 30 ℎ ℎ − 300 ℎ ℎ ℎ + 60 ℎ ℎ ℎ +
1176 ℎ ℎ ℎ − 120 ℎ ℎ ℎ − 180 ℎ ℎ ℎ + 1848 ℎ ℎ ℎ + 150 ℎ ℎ ℎ − 315 ℎ ℎ ℎ −
150 ℎ ℎ + 30 ℎ ℎ + 2436 ℎ ℎ ℎ + 60 ℎ ℎ ℎ − 405 ℎ ℎ ℎ + 1680 ℎ ℎ ℎ +
180 ℎ ℎ ℎ − 270 ℎ ℎ ℎ = 0, ⋯
from the solution of this system are obtained the following situations and solutions;

i)ℎ ≠ 0, ℎ ≠ 0, ℎ = 0, ℎ = 0, = −5 − 3√5 , = , = 2

( , ) = + 2
( √ )

(8)

ii)ℎ = 0, ℎ ≠ 0, ℎ = 0, ℎ ≠ 0, = −5 + 3√5 , = , = −4

( , ) = − 4
( (

√
) )

(9)

iii)ℎ = 0, ℎ ≠ 0, ℎ ≠ 0, ℎ = 0, = −5 − 3√5 , = , = −2

( , ) = − 2
( ( √ ) )

(10)

Example 3.2 We consider the (3+1)- dimensional SWWE [21],
+ − 2 − 2 − 4 − 4 = 0, (11)

If ( , , , ) = ( ), = ( + + + ) conversion is applied to the above equation, we get
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+ ( ) − 6 ( ) − 6 = 0, (12)
when balancing ( ) , with ( ) then gives = 1. The solution is as follows:

= + , (13)
Substituted (13) into (12), the obtained following linear algebraic equation system for ℎ , ℎ , ℎ , ℎ , , , and ;
−120 ℎ − 60 ℎ = 0,
−360 ℎ ℎ − 180 ℎ ℎ = 0,
−6 ℎ − 390 ℎ ℎ − 192 ℎ ℎ − 240 ℎ ℎ − 96 ℎ ℎ = 0,
−12 ℎ ℎ − 180 ℎ ℎ − 84 ℎ ℎ − 480 ℎ ℎ ℎ − 180 ℎ ℎ ℎ − 180 ℎ ℎ −
72 ℎ ℎ = 0,
−7 ℎ ℎ − 31 ℎ ℎ − 12 ℎ ℎ − 8 ℎ ℎ − 292 ℎ ℎ ℎ − 96 ℎ ℎ ℎ − 136 ℎ ℎ −
36 ℎ ℎ − 342 ℎ ℎ ℎ − 144 ℎ ℎ ℎ = 0,
− ℎ ℎ − ℎ ℎ − 8 ℎ ℎ ℎ − 52 ℎ ℎ ℎ − 12 ℎ ℎ − 136 ℎ ℎ ℎ − 24 ℎ ℎ ℎ −
6 ℎ ℎ − 192 ℎ ℎ ℎ − 84 ℎ ℎ ℎ − 180 ℎ ℎ ℎ − 48 ℎ ℎ ℎ = 0,

ℎ ℎ + ℎ ℎ + 8 ℎ ℎ ℎ + 52 ℎ ℎ ℎ − 12 ℎ ℎ ℎ + 136 ℎ ℎ ℎ − 24 ℎ ℎ ℎ +
13 ℎ ℎ ℎ + 61 ℎ ℎ ℎ + 12 ℎ ℎ ℎ + 18 ℎ ℎ ℎ + 744 ℎ ℎ ℎ ℎ + 36 ℎ ℎ ℎ ℎ +
416 ℎ ℎ ℎ + 612 ℎ ℎ ℎ + 36 ℎ ℎ ℎ = 0, ⋯
from the solution of this system are obtained the following situations and solutions;

i)ℎ ≠ 0, ℎ ≠ 0, ℎ = 0, ℎ = 0, = − ℎ , = , = −2

( , , , ) = − 2 (14)

ii)ℎ = 0, ℎ ≠ 0, ℎ = 0, ℎ ≠ 0, = −4 ℎ , = , = 4

( , , , ) = + 4 (15)

iii)ℎ = 0, ℎ ≠ 0, ℎ ≠ 0, ℎ = 0, = − ℎ , = , = 2

( , , , ) = + 2 (16)

4. GRAPHS AND NUMERICAL EXPLANATIONS OF SOME SOLUTIONS
The shapes of Eq.(8) are represented in “Figure 1 and Figure 2”  within the interval −20 ≤ ≤ 20, −5 ≤ ≤ 5.
The shapes of Eqs.(14) are represented in “Figure 3 and Figure 4”  respectively, within the interval −20 ≤ ≤
20, −5 ≤ ≤ 5.

Figure 1. The 3Dimensional surfaces of Eq. (8) for = 1, ℎ = 2, ℎ = 1, = 3.
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Figure 2. The 2Dimensional surfaces of Eq. (8) for = 1, ℎ = 2, ℎ = 1, = 3, = 1.

Figure 3. The 3Dimensional surfaces of Eq. (14) for = 1, ℎ = 2, ℎ = 1, = 3, = 1, = 2, =
1, = 2.

Figure 4. The 2Dimensional surfaces of Eq. (14) for = 1, ℎ = 2, ℎ = 1, = 3, = 1, = 2, = 1, = 2, =
1.

5. CONCLUSION
We used the generalized – expansion method to find the exact travelling wave  solutions of Sixth-

order Ramani equation and (3+1)-dimensional SWWE. The solutions found as a result of the application of the
method are exponential and rational solutions. The accuracy of these solutions was seen by using Mathematica 11.2
computer program. In addition, graphs of some solutions and numerical explanations of these graphs were given.
Many nonlinear partial differential equations and system of equations can be solved using this method.
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Abstract. The Artificial Neural Network (ANN) is a mathematical predictive model that combines numerous processing
units and becomes adaptive nonlinear information processing systems. This Network has certain properties including
adaptability and the ability to generalize and learn from examples. Because of that, ANN has been applied in many fields
such as classification, pattern recognition, time-series prediction, and others. Previous studies have shown that ANN is
beneficial to classify the small dataset. Furthermore, a good ANN should be able to minimize errors by using an
optimizer algorithm. Therefore, this study discussed Genetic Algorithm (GA) and several gradient-based optimizers
including Stochastic Gradient Descent (SGD), RMSprop, Adadelta, AdaGrad, Adamax, and Adam. Subsequently, a
comparison was made to determine the small dataset classifier. Meanwhile, the study used the dataset of patients
suffering from thalassemia, (genetic blood disorder) in Harapan Kita Children and Women's Hospital, Indonesia. The
results showed that ANN with Adam optimizer is the best choice overall with 89.99% in comparison to the gradient-
based algorithm. However, Adam compared to GA, GA has higher accuracy than Adam with 93.33%.

1. INTRODUCTION

Nowadays, machine learning methods are widely used in scientific areas, especially with the rise of Neural
Networks (NNs) [1]. Starting from the study of computational learning theory, machine learning (ML) has
developed into many methods, which find patterns through historical learning and data training trends to make
predictions [2]. Furthermore, the data scientists, analysts, researchers, and engineers use these analytical models to
obtain reliable results and make valid decisions. Recently, there is a high demand for research to understand how a
specific model operates and the reasons behind its decision [1]. Therefore, researchers are increasingly using ML to
optimize and produce reliable results.

In machine learning methods, data act as the fuel. In some cases, however, its collection is very expensive and time-
consuming [3]. In health sciences, for example, big datasets are seldom unattainable [4] and this problem requires an
urgent solution. Fortunately, with a correct learning algorithm, ANN is a beneficial method for classifying small
datasets [5]. Although ANN with a large dataset is still the best choice, nonetheless, the Artificial Neural Network
with a small dataset and a good pre-training is a reasonable alternative to make predictions [6].

The Artificial Neural Network (ANN) is a mathematical predictive model that combines numerous processing units
and becomes adaptive nonlinear information processing systems [7]-[8]. This tool was introduced by McCulloch and
Pitts as a powerful model in 1943 [7]. It is inspired by the human brain with great characteristics such as real-time
learning, self-organizing, and self-adapting [8]. Also, it has three basic layers made up of logical units or perceptron.
The first is the input layer which receives the data. Followed by the hidden, which consists of one or more layers.
The last is the output layer that receives the hidden layer(s) and creates the decision [5]. Furthermore, the
complexity of the ANN model is based on the number of hidden layers added [9]. It should be noted that there is a
positive relationship between complexity and computation time [10].

These networks have an attractive feature such as their high ability of mapping nonlinear systems, which enable
them to learn the underlying behaviors from the known data [11]. Also, ANNs have several advantages over
statistical methods, such as being able to recognize linear patterns rapidly and the nonlinear with threshold impacts,
categorical, stepwise linear, or even contingency effects [5]. Therefore, ANN is a powerful tool for solving various
problems including disease diagnosis [12]-[13], pattern recognition [14]-[15], image processing [16], ecological
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modelling [17], etc. This tool has shown good results in each field including previous research about neural network
with small dataset such as Shuo Feng [6] predict material defect with a small data set, also, Nasser [18] analyses the
parboiling process of rice as well as Rosa [10] on sales prediction, etc.

In order to obtain a better result with high accuracy, the optimization algorithm, which have several choices such as
gradient-based, gradient-free, and the evolutionary, should be adopted [19]. However, the most popular and common
way of optimizing the neural networks is through gradient-based algorithms or gradient descent [20].  Even though
the objective function is non-convex, the gradient descent finds a global minimum in training neural networks [21].
In addition, there are evolutionary algorithms (EAs) as an optimizer for ANN and the most popular is the genetic
algorithm (GA) that has been utilized to optimize the connectivity weight of ANN and proven to be useful and
efficient [7]. GA applies Darwin's theory of evolution, namely "survival of the fittest". It is expected that GA can
produce optimal solutions by going through three operations include selection, crossing, and mutation. [22].

In this research, data were collected from 98 thalassemia sufferers from Harapan Kita Children and Women's
Hospital, Indonesia. Thalassemia is a genetic disease caused by an abnormal form of hemoglobin. Furthermore, the
research aimed to determine the best optimizers in the neural network for classifying small dataset.

2. METHODS

This research used Artificial Neural Networks to classify the small dataset. Also, various optimization algorithms
including Stochastic Gradient Descent, AdaGrad, Adadelta, RMSprop, ADAM, AdaMax, and Genetic Algorithm
were applied.

Artificial Neural Networks

The Artificial neural network is a machine learning technique that imitates the neuron system of the brain to
simulate human learning mechanisms. It uses connected neurons arranged into a layered structure, such as the input,
hidden, and output [23]. This method has computational units called neurons that are connected by weights. The
weights have the same function as the synapses in the brain, which are the connection points with other neurons. The
weight (wi) is represented as the strength of the signal on a connection. The stronger networks tend to activate
signals with activation functions such as sigmoid, tansig, softmax, and ReLU [24]. Furthermore, the rectified linear
unit (ReLU) was applied because of its simplicity [23].

A successful model fits both the known and unknown data. Therefore, the construction of a neural network requires
training known datasets to identify a set of suitable weights and enhance output predictability for the unknown data
[25]. Besides, a good ANN is expected to easily minimize loss function.

Yang (2019), reported that the artificial neuron is characterized by n inputs and an output y. This is activated on
instances where the signal strength ( ) attains a certain threshold, written as follows:

= ( ) ; = . = ∑ (2.1)
Where = [ 1, 2, . . . , ] contains n input with corresponding weight = [ 1, 2 … , ]. Variable x is
known as the observational value, being a part of the training data. Also, the purpose of single-layer neural network
is to recognize a function required to calculate the predicted value of y, both in the training and new data.
Furthermore, y is obtained by calculating ( ) or the activation function. Fig. 1 shows an illustration of a simple
neural network.
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Figure. 1 A Simple Neural Network [23]

The illustration of neural networks is shown in Fig.2. The bold line represent a scheme from the input to output in
ANN architecture.

Figure.2 Illustration of Artificial Neural Network [23]

Stochastic Gradient Descent

The gradient-based optimizers are commonly used in previous research about ANN [26]. One of them is stochastic
gradient descent (SGD) which has some advantages including its fast convergence and good generalization
properties. Consequently, SGD became the standard optimization for neural networks [27]. Furthermore, to obtain
good accuracy, the neural networks need an optimizer to minimize the loss function or error. The loss function
formula is written as follow:

( ) = ∑ ( , ) = ∑ [ ( , ) − ] (2.2)
wheres are predicted values based on data testing and ( ) are from the trained neural networks with u as
inputs. The multilayer connections require an iterative calculation. Therefore, in the case of large-scale problem, the
incidence computation intractability is probably reported. This problem is solved by using SGD to approximate the
true gradient through this iterative formula:

= − ∇ (2.3)
The learning rate at iteration t is defined by , and is estimated to vary with iterations. Furthermore, the stochastic
gradient is calculated by randomly selecting sample i. This approach tends to significantly reduce computation costs
[26].
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AdaGrad

This optimizer uses an adaptive learning rate with diagonal matrix = [ ] ∈ ℝ . The i-th diagonal element
is the sum of the gradient concerning (i = 1,2,..., n) up to k iteration. In AdaGrad, the learning rate is replaced
with

← (2.4)

In this formula, avoiding division by zero is a must, so there is ϵ > 0 . The iterative formula is then written as:
( ) = − ( ) (2.5)

AdaDelta

Adadelta is an improvement from AdaGrad which calculate using
= ( ( )) (2.6)

In this optimizer, the running average of squared gradients at iteration k is used. Then, the update simply becomes
( ) = ( ) + (1 − ) (2.7)

The parameter increment is given by
∇ = −

[ ]
(2.8)

where the root mean squared (RMS) error is represented by [ ] = E [ ] + . Therefore, in AdaDelta, the
iterative formula is written as:

( ) = − [(∇ ) ]
[ ]

(2.9)

RMSprop

Geofrey Hinton introduced another optimizer namely RMSprop, which uses a running average of its recent gradient
magnitude with exponential decay. Therefore, the iterative formula becomes

( ) = −
( )

(2.10)

ADAM

Kingma and Ba, in 2014, developed Adam, a very popular optimizer with two main steps. These include the first
moment defined by m and the second as m at each iteration k, which corresponds to the mean and the uncentered
variance. The two main steps are written as follows:

( ) = ( ) + (1 − )
( ) = ( ) + (1 − )

(2.11)

wheres , are parameters. Then, the iterative formula is written as:
( ) = −

( )

( ) (2.12)

( ) =
( )

, ( ) =
( )

(2.13)
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Adamax

This optimizer is variant of Adam. In the Adam update rule, m( ) factor scales the gradient to be inversely
proportional to the ℓ norm of the past (via the ( )term) and current gradient | |

( ) = ( ) + (1 − )| | (2.14)
To generalize this update to the ℓ norm. The norms for large p values generally become numerically unstable.
However, Adamax uses ℓ that has stable behavior.

( ) = ( ) + (1 − )| | (2.15)

Genetic Algorithm

The Genetic algorithm (GA) is inspired by the evolution and principles of natural selection. This optimization
algorithm is one of popular evolutionary algorithm. It requires three things, which are chromosomes, genetic
operators, and selection. First, the chromosomes are represented by coding an objective function in the form of bits
arrays or character strings. The genetic operators as the second thing required are used for manipulating the strings.
The third is the selection according to their fitness in order to determine a problem's solution. Furthermore, GA can
be defined as a probabilistic method with genetic operators such as the principle of selection and mutation [28].

There are two types of genetic operators, which include crossover and mutation [29]. The crossover operation is
essential to exchange the two parent’s chromosomes information received in the selection process. The two parents
will produce one new solution or offspring. While the task of the mutation operation is to randomly change new
solutions structures to increase its diversity. Furthermore, during iterations of this algorithm, only the high-quality
solution survives and participates in the next generation's crossovers [30]. The process of GA is represented in
Figure 3 [31].

Figure. 3 Genetic Algorithm Process

The first step is coding, in this case, all the related variables are listed as chromosome in the forms of string. Then, a
population of chromosomes is created and each indicates one solution. Secondly, the quality is evaluated by a
designed fitness function. Thirdly, some are selected where the good individuals reproduce better than the bad and
the genetic operations are then applied. Furthermore, to produce a child, this method applies cross to the parents
with the proportion of the population (probability Pc). Then, a certain proportion (probability Pm) is applied for a
mutation operator. After undergoing all steps, a new population is formed, which will reiterate the same process and
stop when a user-defined criterion is reached [29].
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Confusion Matrix

A confusion matrix was applied to measure the accuracy of various neural network optimizers. This matrix, which
has four combinations of actual and predicted values is shown in Table 1,

TABLE 1. Confusion Matrix

Actual Value
Predicted Value
Positive Negative

Positive
Negative

= (2.16)

RESULTS

The thalassemia data from Harapan Kita Children and Women's Hospital, Indonesia was used. This dataset consists
of 98 patients with 42 non-thalassemia and 56 thalassemias sufferers. The dataset has 10 features, such as
Hemoglobin, Leukocyte Count, Haematocrit, Eosinophils, Basophils, Segment Neutrophils, Rod Neutrophils,
Monocytes, Lymphocytes, and Platelet Counts. Furthermore, the artificial neural networks with several optimizers
were applied to classify the dataset. The authors used 50 epoch and 70% data training. Table 2 shows ANN accuracy
with several optimizers.

TABLE 2. The Accuracy of ANN with Various Optimizers
Optimizers Accuracy of data testing Accuracy of data training
SGD 53.33% 58.82%

RMSprop 86.66% 95.58%
Adadelta 53.33% 61.76%
AdaGrad 83.33% 91.17%
Adamax 76.66% 91.17%
Adam 89.99% 95.58%

Genetic Algorithms 93.33% 92.64%

Table 2 shows that Adam has the highest accuracy when compared to other gradient-based optimizers with 89.99%
and 95.58% on data testing and training, respectively. Followed by RMSprop with 86.66% on data testing and is the
same as Adam on data training. However, SGD and Adadelta were recorded to have the lowest accuracy on data
testing with 53.33%. Therefore, Adam is the best choice in all gradient-based optimizer. When accuracy is
compared on data testing, Adam is found to be lower than the genetic algorithm (GA) which has 93.33%. This
implies that GA’s capability for classifying unknown data is better than Adam. Therefore, GA is recommended to
classify thalassemia with a small number of data.

CONCLUSION

The Artificial Neural Networks (ANNs) have been applied in many fields to obtain reliable results and make valid
decisions in research. This powerful tool has several advantages, such as the ability to learn from examples and
generalize, as well as adaptability. Furthermore, previous research have proven that ANN is beneficial to classify the
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small dataset. To obtain a better result, ANN with an optimizer algorithm should be adopted because it minimizes
errors. This research used several optimization algorithms and compared them to determine the best in classifying a
small dataset.

Table 2 showed that Adam optimizer is the best choice, compared to others with 89.99% accuracy on data testing.
However, the accuracy of the Genetic Algorithm is higher than Adam, which reached 93.33% on data testing.
Therefore, ANN with GA is the best method to classify thalassemia with small data.
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Abstract. Lung cancer is the second most common form of cancer and the most frequent cause of related deaths
worldwide. As part of the respiratory system, the lungs are the main organs for breathing. Early detection of lung cancer
is required for the provision of further care and to improve survival rate. Therefore, it is essential to adopt more advanced
technology. Nowadays, machine learning is an advanced technology used to carry out the classification task by learning
historical data and finding the pattern. In previous papers, numerous machine learning methods have been proposed to
help medical staff easily classify lung cancer. The two methods used in this study were Artificial Neural Network (ANN)
and Support Vector Machine (SVM). The idea of ANN is using connected neurons arranged into a layered structure to
learn from data training and make a prediction in data testing. Meanwhile, SVM idea is mapping the input space to a
higher dimensional space. In classification task, to separate data into classes SVM constructed a hyperplane. The authors
made a comparison between ANN and SVM to classify Lung Cancer from CT (computed tomography) scan images
presented with a small number of datasets. The data used was obtained from Cipto Mangunkusumo Hospital, Jakarta,
Indonesia. Based on experiments carried out, the results showed that Lung Cancer small data classification using
Artificial Neural Network and Support Vector Machine had 96% and 90% accuracy, respectively.

1. INTRODUCTION

Lung cancer is the second most common form of cancer known to affect both men and women [1]. This is a deadly
disease, which accounts for about 1.8 million death cases according to the World Health Organization (WHO) press
release in 2018 [2]. The lungs as part of the respiratory system are the main organs for breathing, comprising of
bronchi and bronchioles as large and small airways, respectively. The incidence of cancers in this location is mostly
initiated by the growth of abnormal cells lining the bronchi in an uncontrolled manner, which further invades the
surrounding tissues and organs directly. In addition, two types have been identified, including non-small cell lung
cancer (NSCLC) often managed by a combination of surgery and adjuvant therapy and small cell lung cancer
(SCLC) known to be treated non-surgically [3].

The several risk factors documented include tobacco use, indoor and outdoor air pollution, hereditary susceptibility,
radon, relative harmful occupational and radiation exposure and unbalanced diet [4]. Specifically, tobacco is
identified to have the most significant influence, which responsible for about 85% of deaths [1]. However, people
with no history of smoking have also been diagnosed with lung cancer.

The process of detection is carried out through several ways including imaging tests (X-Ray or CT scan), sputum
cytology and lung tissue biopsy. Furthermore, most doctors tend to prefer CT scans because of the ability to
distinguish the position of the nodule and identify some basic cancer characteristics, either as malign or benign.
Unfortunately, detection is very difficult compared to other diseases [5], because of the small nodule size measuring
less than 3cm in diameter [6]. Meanwhile, very few patients are diagnosed in the early stages (16%) due to the
absence of signs and symptoms [7]. However, it is important to obtain a confirmation promptly for patients to
commence the right treatment. This approach is known to improve survival rate.

Therefore, numerous machine learning methods have been proposed to help medical staff easily classify lung
cancer. This is achieved through knowledge of patterns, based on the similarity of some data attributes and
characteristics [8, 9]. In addition, as the disease data is obtained from CT Scans, image pre-processing techniques
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play an important role in nodule detection and segmentation, alongside feature extraction. This is carried out prior to
the application of classification techniques.

From previous studies, several have been used to classify lung cancers such as Convolutional Neural Network
(CNN) and Kernel K-means [10], Naive Bayes [1] and Fuzzy C-Means [11]. Although, some studies on lung cancer
have been carried out with machine learning models, its performance in dealing with small data has not been
discussed. Therefore, Artificial Neural Network (ANN) and Support Vector Machine (SVM) were used in this study
to classify small dataset which was different from that of previous studied.

ANN has attractive characteristics such as the ability to quickly recognize linear and nonlinear patterns with
threshold, categorical and gradual linear contingency effects [12]. In addition, its tools are assumed to be useful in
dealing with small datasets, following a correct learning algorithm [13]. This is also beneficial because larger data
require longer calculation time [14]. Meanwhile, Support Vector Machines are one of the most popular machine
learning method, because of its good capability to classify data [15]. The ANN and SVM were applied to classify
lung cancer with small data. The aim of this study was to determine whether ANN or SVM method was the best
approach by comparing the accuracy of both methods.

2. METHODS

This study used two different methods, namely ANN and SVM to classify lung cancer data from Cipto
Mangunkusumo Hospital, Jakarta, Indonesia. Subsequently, the confusion matrix was applied to calculate the
accuracy of both methods. In addition, the accuracies obtained were compared results and discussion sections.

Artificial Neural Networks

The main idea of ANN was using connected neurons arranged into a layered structure to learn from data training and
make a prediction in data testing[16]. The layered structure contained three types of layer, which include the input,
hidden and output layers. This method employs humans mechanism of learning through nervous system[17]. In the
nervous system, there are neurons connected through synapsis (see Figure. 1). Meanwhile in ANN, neuron
represents the computational unit and the function of synapsis is same as weight vector. Figure1 illustrates biological
and artificial neural network.

Figure.1 Biological Neural Network and Artificial Neural Network [17]

In addition, the process of learning was dependent on variable weight (wi), which represented the strength of neuron
connection to each other. The stronger connection tends to activate signals to another neuron by using activation
function. There are several choices of activation function, which include sigmoid, tansig and rectified linear unit
(ReLU) [13]. The Artificial neural network comprises of the estimation of suitable network system weights.
Therefore, it requires training in known data to identify a set of suitable weight and predict output precisely for
unknown data [18].

Where n is the number of inputs represented by = [ 1, 2, . . . , ], with corresponding weight =
[ 1, 2 … , ]. Variable y is the output and the value x is known as observational, being a part of the training data
which was written as follows:

= ( ) ; = . = ∑ (2.1)
Furthermore, ( ) was the activation functions. One of popular activation function was the rectified linear unit
(ReLU), because of its simplicity [16].  The illustration of ANN in general is shown in Figure.2
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Figure.2 Illustration of Artificial Neural Network [16]

This method was expected to easily minimize error and produce a good accuracy in data classification. The error
represented the differences between real and predicted output. Therefore, to minimize error, ANN adopted
optimization algorithm. Gradient-based algorithms are well-known to be used as neural network optimizers. There
are several examples, which include stochastic gradient descent (SGD), RMSprop and Adam.

Support Vector Machines

In 1963, Vapnik and Lerner introduced Support Vector Machines (SVM) as one of machine learning methods [19],
[20]. It is applied in several tasks including classification and regression [21]. The idea of this method was mapping
from input to a higher dimensional space. In classification task, to separate data into classes SVM constructed a
hyperplane [22]. The optimal hyperplane was obtained by maximizing the margin of classification edges [23].

For the illustration, { , } is the dataset with N number of samples. The Feature of vector was represented by
and is class label for . To discover the optimal hyperplane, the main formula of support vector machines

was written as follows:

f(x) = w ∙ x + b (2.2)
where w (weight) was the orthogonal vector to the hyperplane, which determines its orientation, x was the training
sample and b (bias) represented the distance from the origin to the hyperplane [24]. The goal was to maximize the
margin. Furthermore, SVM constructed the two planes called H1 and H2 as follows:

⟶ + = +1 = +1 (2.3)
⟶ + = −1 = −1 (2.4)

The area for the negative class was + ≤ −1 while that of the positive class was + ≥ +1. Figure.1
illustrates the hyperplane in Support Vector Machines.
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Figure 1. Illustration of Support Vector Machine [20]

The problem of SVM optimization is written as follow:
Minimize ‖ ‖ (2.5)
s.t. ( ∙ + ) ≥ 1, ∀ = 1, … , (2.6)

after solving the problem above, formula of and became:
= ∑ (2.7)

= ∑ ( − ∑ ) (2.8)
and the decision formulas of SVM were written as follows

( ) = ( ∙ + ) (2.9)

However, in many cases the separation of classes may not be carried out precisely using a linear boundary (See
Figure.1). Those cases were called non-linear separable data. Therefore, to approach a non-linear decision boundary,
SVM enlarged the original feature space to high dimensional space, which made computations intractable.
Furthermore, for this issue, the 'kernel trick' was applied using a kernel function to produce better accuracy results
[25]. Figure 2 shows the illustration of non-linear separable data.

Figure 2. Non-Linear Separable Data [26]

The performance of SVM closely relied on the kernel function that used the method [27]. Specifically, a kernel
function was the essential component needed to make the SVM method get higher accuracy [28]. In addition, it was
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used for complex real-world applications by mapping the data into a higher-dimensional space [29]. The kernel
function is generally written as follow:

, =< ( ), >
(2.10)

the problem of SVM optimization became:
Minimize ‖ ‖ + C ∑ (2.11)
s.t ( ∙ ( ) + ) − 1 + ≥ 0, ∀ = 1, … , (2.12)

by solving the problem above, the formula of and were as follow:
∗ = ∑ ( ) (2.13)

∗ = ∑ ( − ∑ ( )) (2.14)
And the decision formulas of SVM were as follow:

( ) = ( ∗ ∙ ( ) + ∗) (2.15)

where was an error that should be minimized and C was the penalty which determined the trade-off between the
minimization of error and the maximization of the classification margin.

Confusion Matrix

In this study, the confusion matrix was applied to measure the performance of ANN and SVM. This is a well-known
performance measurement for machine learning classification problem, where output may be two or more classes. It
requires four variables, which include TP (True Positive), TN (True Negative), FP (False Positive) and FN (False
Negative). A detailed confusion matrix is shown in Table 1.

TABLE 1. Confusion Matrix

Actual Value
Predicted Value
Positive Negative

Positive

Negative

= (2.16)

= (2.17)

= (2.18)

1 = 2
(2.19)

3. RESULTS

In this study, lung cancer CT scan, which consisted of 98 data was obtained from Cipto Mangunkusumo Hospital,
Jakarta, Indonesia. There are 7 features in CT scan data, which include area, minimum value, maximum value, sum



3rd INTERNATIONAL CONFERENCE
ON MATHEMATICAL AND RELATED SCIENCES:

CURRENT TRENDS AND DEVELOPMENTS
ICMRS 2020

20-22 NOVEMBER, 2020

82

value, average, standard error (SD) and length. Furthermore, the artificial neural network was applied in the
classification with 2 hidden layers. The optimizer used was Adam and number of epochs was 50. From the number
of the experiment obtained, the parameters produced the best accuracy. This study used 70% of training data. In
addition, for Support Vector Machine, the polynomial kernel with degree = 5 was used. The choice of that parameter
was based on the experiment carried out. The results obtained are shown in table 2 and 3.

TABLE 2. Accuracy and F1 Score of ANN and SVM
Methods Accuracy F1 Score

ANN 96% 96%

SVM S90% 93%

TABLE 3. Recall and Precision of ANN and SVM

Methods Recall Precision

ANN 100% 93%

SVM 100% 86%

Table.2 shows the accuracy and F1 Score of ANN and SVM. It is seen that ANN has 96% accuracy and 96% F1
Score, while SVM only reached 90% accuracy and 93% F1 Score. Therefore, ANN was better than SVM in
classifying lung cancer with small data. Furthermore, in Table3 recall was higher than precision in all methods. This
indicates that a lower number of malignant nodule samples were incorrectly classified as benign (false negative),
compared to the number of benign lung nodule inaccurately categorized as malignant (false positive). Furthermore,
both ANN and SVM had 100% in recall matrix however, ANN was higher than SVM in precision metrics.

4. CONCLUSION

The early detection of lung cancer is necessary because of its relation with patients’ treatment. Therefore, a quicker
diagnosis increases the tendency to obtain the appropriate treatment and consequently improves life expectancy.
However, an advanced technology was required to enhance the ease of classification from the CT scan of nodules in
lungs. Numerous machine learning methods has previously been used and developments were needed to resolve
existing limitations, including the challenges of small datasets.

Therefore, Artificial Neural Network (ANN) and Support Vector Machines (SVM) were used in this study. The
results showed that ANN was better than SVM in classifying lung cancer with small data since ANN accuracy
reached 96% while SVM reached 90%. In addition, for other metrics such as precision and F1 Score, ANN was
higher than SVM. However, in recall, both had same percent which was 100%.

For future studies, it is recommended to use other optimizers and kernel in ANN and SVM respectively to identify
the best-fit for lung cancer classification with small data. Furthermore, prospective studies are encouraged to
develop or modify this method, in order to produce the best accuracy with possible application in other disease
conditions.
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Abstract. In this paper, we consider a coefficient problem of an inverse problem of a quasilinear parabolic equation with
periodic boundary and integral over determination conditions. We prove the existence, uniqueness and continuously
dependence upon the data of the solution by iteration method.

1. INTRODUCTION

The inverse problem of determining unknown coefficient in a quasi-linear parabolic equation has generated an
increasing amount of interest from engineers and scientist. Nevertheless the inverse coefficient problems with
periodic boundary and integral overdetermination conditions are not investigated by many researchers [1]-[5].This
kind of conditions arise from many important applications in heat transfer, life sciences, etc. The inverse problem of
unknown coefficients in a quasi-linear parabolic equations with periodic boundary conditions was studied by Kanca
and Baglan [5]-[6].

Consider the equation

D)t,x(),u,t,x(f)t(luu xxt Î+= (1.1)

with the initial condition

],0[x),x()0,x(u pÎj= (1.2)

the periodic boundary condition

T][0,t),t,(u)t,0(u
)t,(u)t,0(u

xx Îp=
p=

(1.3)

and the overdetermination data

]T,0[t),t,(u)t(g Îp= (1.4)

for a quasilinear parabolic equation with the nonlinear source term f=f(x,t,u).
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Here D:={0<x<π, 0<t<T}.The functions )x(j and f(x,t,u) are given functions on [0,π]  and  D×(-∞,∞),
respectively.

The problem of finding the pair {l(t), u(x,t)} in (1.1)-(1.4) will be called an inverse problem.

Definition 1. The pair {l(t),u(x,t)} from the class C[0,T]×(C^{2,1}(D)∩C^{1,0}(D)) for which conditions (1)-(4)
are satisfied is called the classical solution of the inverse problem (1)-(4).

The paper organized as follows:

In Section 2, the existence and uniqueness of the solution of the inverse problem (1.1)-(1.4) is proved by using the
Fourier method and iteration method. In Section 3, the continuous dependence upon the data of the inverse problem
is shown. In Section 4, the numerical procedure for the solution of the inverse problem is given.

2. EXISTENCE AND UNIQUENESS OF THE SOLUTION OF THE INVERSE
PROBLEM

The main result on the existence and the uniqueness of the solution of the inverse problem (1.1)-(1.4) is presented
as follows:

We have the following assumptions on the data of the problem (1)-(4).

(A1) ]T,0[C)t(l],T,0[C)t(g 1 ÎÎ .

(A2) ],,0[C)x( 3 pÎj

).()0(
),()0(

),()0(

pj¢¢=j¢¢
pj¢=j¢
pj=j

(A3) Let the function f(x,t,u) is continuous with respect to all arguments in D×(-∞,∞) and satisfies the following
condition

(1) 0,1,2,=n,u~u)t,x(b
x

)u~,t,x(f
x

)u,t,x(f
n

)n(

n

)n(

-£
¶

¶
-

¶
¶

where 0)t,x(b),D(L)t,x(b 2 ³Î ,

(2) T][0,t],,0[C)u,t,x(f 3 ÎpÎ

p==
=

x0x
)u,t,x(f)u,t,x(f

p==
=

xx0xx )u,t,x(f)u,t,x(f

p==
=

xxx0xxx )u,t,x(f)u,t,x(f

(3) ò
p

Î¹
0

T][0,t,0dx)u,t,x(f .

By applying the standard procedure of  the Fourier method, we obtain the following representation for the
solution of (1.1)-(1.4) .
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Under the condition (A1)-(A3), differentiating (1.4), we obtain

]T,0[t),t,(u)t(g t Îp=¢ (2.2)

(2.1) and (2.2) yield
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It can be shown that B are the Banach spaces.

Theorem 1 Let the assumptions (A1)-(A3) be satisfied. Then the inverse problem (1.1)-(1.4) has a unique
solution for small T.

Proof. An iteration for (2.1) is defined as follows:
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For the uniqueness, we assume that the problem (1.1)-(1.4) has two solution pair (l,u), (k,v). Applying Cauchy
inequality, Hölder Inequality, Lipschitzs condition and Bessel inequality to |u(t)-v(t)| and |l(t)-k(t)|, we obtain:
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applying Gronwall's inequality to last equation we have

u(t)=v(t). Hence l(t)=k(t).

The theorem is proved.
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Abstract. The liver is one of the organs with several essential functions in the body and cancer associated with this organ
has been reported not to be due to the malignancy from organs which spread to different organs in the body. Different
types of cancer have been classified based on the growth location or metastasis but no symptoms have been observed to
indicate liver cancer but different methods of machine learning methods such as the Neural Network (NN) have been
designed and developed for easy identification. This method is popular and has a wide range of applications due to its
high accuracy value based on a network of small processing units modeled on the human nervous system. A Support
Vector Machine (SVM) with several kernel functions is also commonly used in classifying diseases and has been
discovered to be highly accurate in classifying algorithms for both linear and non-linear data. For the purpose of this
research, a database of Liver Cancer sufferers consisting of 122 data which are 71 significant and 52 minor data was
retrieved from Dr. Cipto Mangunkusumo Hospital, Indonesia, and the performance and accuracy of combining NN–SVM
as a classifier for the liver cancer dataset were compared with several other optimizers. The findings showed that the
Neural Network–Support Vector Machine with Adam Optimizer is the best model to classify Liver Cancer with 97.98%
accuracy. Therefore, this method is expected to provide higher accuracy in future studies while a more extensive database
is suggested to provide better results for predicting and classifying different diseases.

1. INTRODUCTION

I. Liver Cancer

The liver is one of the organs with several essential functions in the body including the production of bile which
helps in digesting nutrients like fat as well as others such as controlling blood clotting and cleaning of the blood
from toxins or harmful substances such as alcohol or drugs [1]. Meanwhile, liver cancer has been reported not to be
due to the malignancy from organs which spread to different others in the body [2] but happens when cells in the
liver mutate to form tumors. It is one of the five types of cancer observed to be causing most deaths and reported by
the World Health Organization to be responsible for more than 700,000 out of 9 million deaths from cancer [5].

The disease is classified based on the location of the growth or metastasis into primary and secondary liver cancer
[3] with the primary type found to be starting in the liver and has the potential to be fatal while the secondary type
starts in other parts of the body and later transmit and sprout to the liver. Moreover, Hepatocellular Carcinoma is one
of the most prevalent types of liver cancer which expands from the primary liver cells known as the hepatocytes.

Hepatocellular Carcinoma (HCC) accounts for the occurrence of approximately 75% of primary liver cancers and
also serves as the pavement for hepatitis and cirrhosis displaced by scar tissue [4]. Meanwhile, secondary liver
cancer is generally named according to the organ the cancer cells initially developed as observed in metastatic colon
cancer which originates from the colon and transmits to the liver. The secondary type is observed to be more general
than the primary and apart from the transmission associated with the colon, other sources include breast, pancreas,
lung, ovary, stomach, and skin or melanoma [5].

Previous studies have shown several methods used in classifying liver cancer and some of them include Random
Forest [6], Hybrid–Feature Analysis [7], and Deep Learning [8]. It is important to point out that classification is a
learning process used in data labeling. The model applied in this study was, therefore, designed to utilize a collection
of training, test, and studying of old class categories to determine the formation of new classes but several data sets
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such as stock and diseases were used. Furthermore, a combined machine learning method known as the Neural
Network–Support Vector Machine was proposed to classify data and predict the class of liver cancer patients.

II. Methodology

A Neural Network–Support Vector Machine was used in this study to classify the liver cancer dataset after which
several algorithm optimizers such as Adam, AdaGrad, and Stochastic Gradient Descent (SGD) were adopted and
explained further in the following subsections.

a. Neural Network

Neural Network (NN) is a network of small processing units modeled on the human nervous system [9]. It is also an
adaptive system with the ability to replace its arrangement to break problems based on external and internal
evidence flowing past the network. This network is often called an adaptive network because of its adaptive nature.

NN is simply a non-linear exhibition tool for statistical data which is passable to model complex relationships
among input and output in order to discover schemes in data. A theorem known as the "Universal Estimation
Theorem" [10] showed that the NN with at least a hidden layer and a non-linear activation function has the ability to
model any Boreal measured process from the first dimension to another. The architecture of the network is,
therefore, illustrated in Figure 1 [11].

Figure 1 – Illustration of Neural Network Architecture [11].

As stated in the previous section, some of the optimizers usually used include Gradient Descent which is the default,
RMSprop, SGD, Adam, Adadelta, Adamax, Adagrad, and Nadam. The ones used in this research are discussed as
follows [12]:

a. Adam

Adam is an optimization algorithm designed based on former training data to iteratively reform the weights. It is an
adaptive learning rate method which calculates the individual learning rate for different parameters. This optimizer
has also been found to be different from classical stochastic gradient descent [13] estimated foremost and secondary
moments.

Adam is a prevalent algorithm in the deep learning field due to its ability to quickly produce good outcomes [13]
and show the convergence meets the theoretical analysis expectations. It has been discovered to be using the IMDB
sentiment analysis dataset, logistic regression algorithm to MNIST digit recognition, and Multilayer Perceptron
algorithm on the MNIST dataset.

b. AdaGrad
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An improvement was required to provide a different update speed for each dimension of the parameter vector based
on specific indicators apart from momentum and this was achieved through the Adaptive Sub-gradient Descent
(AdaGrad) method [14].

It is useful to provide the information on the level of changes in the value of an element in the gradient vector which
serves as the gradient scale factor while the division operation is observed to be a per element operation between 2
vectors. A decrease in the value at a particular dimension usually leads to an increment in the update speed in the
dimension and this further ensures a balance of each dimension of the gradient vector's contribution, thereby,
making the optimization path more stable [14]. The limitation attached with AdaGrad is that the value has the
potential to be very large at a particular time and this slows down the optimization process. Therefore, a small
modification is made through the addition of constants to adjust the magnitudes in order to correct this problem.

c. Stochastic Gradient Descent (SGD)

The gradient is the value of a line's inclination while comparing the abscissa and ordinate components [15] or the
slope value of a function such as the rate of change in the parameter relative to the others. It has also been
discovered that more gradient makes the slope steeper. Therefore, Gradient Descent is described as an iteration used
to find the optimal value of a parameter by applying calculus to determine the minimum value and update the weight
in Neural Network by minimizing the loss function in the backpropagation phase [15]. Several recent studies in deep
learning are making use of gradient-based optimizers and this makes them more popular and familiar.

Stochastic Gradient Descent (SGD) has become the standard optimization routine for Neural Networks due to its
fast convergence and good generalization properties [16] as well as the ability to minimize error function in
optimization problems. Moreover, it also reduced computations costs drastically by a factor due to the random
selection nature of sample I which makes it very diverse at iteration [16].

b. Support Vector Machine

Support Vector Machine (SVM) is a classification algorithm for linear and non-linear data [17]. It uses non–linear
mapping to transform initial training data into higher dimensions and also has the ability to predict both
classification and regression [18]. At first, it has a linear principle but is now developed to work on non-linear
problems [19] in order to incorporate the kernel concept into a high dimensional space and a separator which is often
called a hyperplane is determined [20]. An illustration of an SVM architecture is, therefore, presented in the
following Figure 2 [21].

Figure 2 – Illustration of Support Vector Machine Architecture [21].

Hyperplane has the ability to maximize the distance or margin between data classes [22]. It is also possible to
establish the optimal hyperplane among the classes by measuring the margin and later inference the maximum point.
Meanwhile, the attempt to discover the optimum hyperplane as a class separator is the core objective of the SVM
method [23].
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Therefore, the main formula of SVM is

( ) = ∙ + (1)

Equation (1) is for maximizing the margin using parameters w (weight) and b (biased) which leads to the further
definition in equation (2) after which the general and smaller possible errors were produced.

| ( )|
|| ||

(2)

.,
| ( )|
|| ||

(3)

The margin of equation (3) was developed as shown in the following equation

min || || (4)

. ( ∙ + ) ≥ 1 = 1,2, … , (5)

Equation (4) was later constructed as the main optimization of SVM and written as

min( || || + ∑ ξ ) (6)

. ( ∙ + ) ≥ 1 − ξ = 1,2, … , (7)

ξ ≥ 0 = 1,2, … , (8)

In equation (6), ξ and > 0 are the parameters to minimize error classification and maximize the hyperplane using
the smaller margin value.

The kernel function used for the Support Vector Machines (SVM) in this study is a Linear Kernel and it resolves the
linear dimension problems and algorithms expression in the inner product between two vectors [24]. This linear
kernel function and its parameter are presented as follows [24]:

, = ⟦ ⟧ (9)

c. Confusion Matrix

The confusion matrix presented in Table 1 was used to calculate the accuracy [25].

Table 1. Confusion Matrix.

Actual
Prediction

Positive Negative

Positive T F

Negative F T

The accuracy formula which was also used is shown in the following equation [25]:

= (10)

T : Number of samples having liver cancer and classified correctly.

F : Number of healthy individuals incorrectly classified with liver cancer.

F : Number of samples with liver cancer incorrectly classified as healthy.

T : Number of healthy individuals correctly spotted.
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2. MAIN RESULTS

I. Data
The database of Liver Cancer patients in Dr. Cipto Mangunkusumo Hospital, Indonesia was obtained with 122 data
comprising of 71 significant and 52 minor data. The class of people with liver cancer is the major and labeled '1'
while those without liver cancer were minor and the class was labeled '0' as indicated in the dataset of Table 2.

Table 2. The Samples of Liver Cancer Dataset.
Area Min Max Average SD Sum Length Target

474.93 35 124 70.67 13.49 62898 77.26 1
268.42 38 255 134.29 53.22 67011 58.15 1
314.84 40 227 118.14 37.83 68996 62.9 1
379.11 21 75 52.24 8.43 36258 69.08 0
595.06 22 113 60.75 14.22 52182 86.5 1
530.15 20 101 53.26 12.46 41436 82.09 0
532.99 26 106 54.98 10.4 43104 81.87 1
584.62 16 132 49.73 14.62 41772 85.72 1

Seven features were used in this study which are area, min, max, average, SD, sum, and length, and defined as
shown in Table 3.

Table 3. The Features of Liver Cancer Dataset
No Features of Dataset Definition
1. Area The extent or measurement of an object or surface.
2. Min The least or smallest amount or quantity possible, attainable, or required.
3. Max The greatest or highest amount possible or attained.
4. Average A number expressing the central or typical value in a set of data.
5. SD A quantity calculated to indicate the extent of deviation for a group as a whole.
6. SUM The total amount from the addition of two or more numbers, amounts, or items.
7. Length The measurement or extent of something.

II. Results
This study made use of 10% to 90% as a classification method for the testing data while 100 epochs and 32 batches
were used for the Neural Network–Support Vector Machine and the kernel function applied was Linear Kernel.
Meanwhile, the results of the comparison made for each optimizer are shown in Table 4.

Table 4. The Accuracy of Each Method.

Testing Data Accuracy of NN–SVM
Adam Optimizer AdaGrad Optimizer SGD Optimizer

10% 0.96153 0.99923 0.93846
20% 0.99000 0.98000 0.99000
30% 0.99162 0.96756 0.96756
40% 0.96102 0.99306 0.94061
50% 0.99016 0.96655 0.97377
60% 0.96810 0.96756 0.95405
70% 0.96813 0.98465 0.93488
80% 0.96122 0.96122 0.97142
90% 0.97272 0.99909 0.95454

Average 0.97383 0.97988 0.95836
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The Neural Network–Support Vector Machine was compared with some optimizers for Liver Cancer classification
and found to be correct and adequate in predicting data. The results further showed its combination with AdaGrad
Optimizer had the best accuracy value with an average of 97.98% on the test data while its use with Adam
Optimizer produced an average of 97.38% while SGD Optimizer had 95.83%. Therefore, the best optimizer for the
Liver Cancer classification was found to be the Neural Network–Support Vector Machine with AdaGrad Optimizer.

CONCLUSION

The presence of the disease was predicted by diagnosing with a machine learning method in order to help medical
staff classify the ailments. This is necessary because early detection of disease is essential based on the fact that it
allows the patient to receive the immediate and right treatment, thereby, causing an increase in survival rate and
reduction in the health risk. This research focuses on liver cancer which is a common health problem and was
conducted using 122 data collected and 7 features observed. The method used as a classifier was the combination of
Neural Network–Support Vector Machine with several optimizers such as Adam, AdaGrad, SGD optimizer, and
experimental results showed the methods were able to predict the data correctly and adequately. The findings further
showed the combination of Neural Network–Support Vector Machine with Adam Optimizer was the best model to
classify the Liver Cancer dataset as shown in Table 4 with an average of 97.98% accuracy. Therefore, this method is
expected to produce higher accuracy and be applicable in a more massive database to predict and classify different
diseases in future studies.
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Abstract. Lung cancer is one of the three most common types of cancer in Indonesia and is observed to be delineated by
unbridled cell accretion in the lung tissue. The disease has been associated with several causes ranging from diets high in
fat, pollution, and genetics with the indicators observed not to be perceptible at the early stages but easily detected with
different machine learning methods such as the Neural Network (NN). This method is popular and has a wide range of
applications due to its high accuracy. Moreover, the architecture and computation processes are inspired by knowledge of
nerve cells in the brain. A Support Vector Machine (SVM) with several kernel functions is commonly used in the
classification of diseases due to its high accuracy value as observed in more maturity in producing exact mathematical
concepts in comparison with other classification techniques. The data used in this study were the Lung Cancer sufferers'
database retrieved from Dr. Cipto Mangunkusumo Hospital, Indonesia, and consisted of 138 data which are 69 primary
and 69 minor data. The combination of NN–SVM with several kernel functions as a classifier for the lung cancer dataset
was compared and the results showed the Neural Network–Support Vector Machine with Gaussian RBF Kernel is the
best model to classify Lung Cancer with an average accuracy of 97.94%. This method is, however, expected to be
developed in future studies to produce higher accuracy and apply a more massive database to provide better results to
predict and classify different diseases.

1. INTRODUCTION

III. Lung Cancer

Lung cancer is a condition delineated by unbridled cell accretion in the lung tissue [1] and has been observed to be
one of the three most common types of cancer in Indonesia. Several factors have been associated with the cause of
lung cancer and these include diets high in fat, pollution, and genetics. However, the highly prevalent causative
factor was reported to be smoking which was found to be at 80-90%, especially for sufferers at a young age [1]. This
is associated with the aggressiveness of this disease for younger people as observed in the spread of the cell growth
more rapidly to the bones, brain, glands, kidneys, and liver. Moreover, observations have also shown that people
living with lung cancer at a young age only has the ability to survive for four months after being diagnosed.

A specimen of 10 to 15% non-smokers was suspected to have lung cancer and this was found to be due to a coalition
of genetic elements, asbestos, gas radon, and air [2]. These cell growths have the ability to disperse outside the lungs
by resolving metastasis to imminent tissues or other parts of the body when they are not treated. Moreover, the type
of cancers which start from the lungs and known as primary lung cancers include carcinomas which originate from
the epithelial cells. Some other significant types include SCLC or Small Cell Lung Cancer and NSCLC or Non–
Small Cell Lung Cancer [3] while the most generic indicators of the disease include coughing, short breath, and
weight loss.

It is possible to detect lung cancer through CT scan and Chest X–rays while the diagnosis is confirmed using biopsy
which is usually conducted via bronchoscopy procedure or guided CT. Meanwhile, the long-term treatment and
outcomes depend on the type of cancer, the patient's overall health, stage as well as the general condition, and the
treatment usually includes surgery, radiotherapy, and chemotherapy. NSCLC is usually medicated surgically while
SCLC generally responds better to chemotherapy and radiotherapy [3]. It has, however, been reported that 15% of
the population identified with this cancer generally achieved a five-year life hopefulness after diagnosis [4]. Lung
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cancer has been discovered to be the global leading cause of deaths related to cancer in men and women with 1.38
million deaths annually up to 2008 [5].

It is important to note that classification is a learning process used in data labeling and lung cancer has been
classified in previous studies using several methods such as Artificial Neural Network [6], K–Nearest Neighbor [7],
and Deep Learning [8]. The model is usually built to train, test, and study old class categories in order to determine
the formation of new classes. Furthermore, a combined method of machine learning model was proposed known as
the Neural Network–Support Vector Machine to classify data required to predict the class of lung cancer patients.

IV. Methodology

A Neural Network–Support Vector Machine was used in this study to classify the lung cancer dataset while another
optimization algorithm like Neural Network–Support Vector Machine combined with several kernel functions such
as Linear, Polynomial, and Gaussian Radial Basis Function (RBF) kernel was also adopted and compared with the
designed model. The classification methods adopted are, therefore, explained in the following sub-sections.

d. Neural Network

Artificial Neural Network or Neural Network is a computation system where architecture and computation are
inspired by knowledge of nerve cells in the brain [9]. It is a model which mimics biological neural networks'
workings with each neuron in the human brain interconnected and the stream is explained. The input with weight is
received by each of the neurons after which a dot operation is conducted and weighted sum and bias added.
Moreover, the neural network has the ability to produce a consistent response to the input sequence through the
learning process [10]. Meanwhile, there is a possibility for the input path of a neuron to contain raw data or data
from previously processed neurons while the output can be the final product or the input material for the next
neutron. The results of this operation are usually used as a parameter for the activation function which serves as the
output of the neuron [10]. The Neural Network architecture is, however, illustrated in the following Figure 1 [11].

Figure 1 – Illustration of Neural Network Architecture [11].

The architecture presented in Figure 1 is commonly referred to as the Multilayer Perceptron (MLP) or Fully-
Connected Layer with the first having three neurons on the Input Layer and two nodes on the Output Layer. The
neuron network generally consists of a collection of neuron groups arranged in layers as follows [12]:

1) The Input Layer function is a network link to the data source which only passes this data on to the next layer
without performing any operation it.

2) The Hidden Layer is a network with the ability to have more than one hidden layer or even none and the lowest
hidden layer receives input from the input layer in the cases of multiple hidden layers.

3) The Output Layer is the working principle on this layer which has the same active principle as observed in the
hidden layer and the output is already considered from the output process.

Meanwhile, the Weight and Activation Function specifications are as follows [13]:
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1) The Weight in each neuron of the MLP was interconnected as indicated by an arrow. This means weight
associated with each connection and the values were later observed to be different. It is important to note that
the bias is the hidden layers and an additional input for the output layers.

2) The Activation Function was used to determine the activeness of the neuron based on the input weighted sum.
There are, however, two general types of activation functions which are the Linear and Non–Linear.

For example, there is a neural network : → , where is a parameter set later based on the data being studied
and consists of weights and bias [14].

A supervised learning condition, , which teaches from the data pairs ( , ) and defines the loss function : ×
→ was also assumed. Meanwhile, one form of the loss function for ⊆ is the least-square error

( ( ), ) = ( ( ) − ) (1)

( ) ≔ ( ( ), ) was written to simplify the notation of equation (1) and the optimization in deep learning has
been reported to have the aim of narrowing the loss function min ( ) [14].

Therefore, the gradient of the loss function concerning was defined with the notation ∇ ( ).

e. Support Vector Machine

Support Vector Machine (SVM) is a supervised learning method which is usually used for classification and
regression [15]. It is observed to have a more mature and explicit mathematical concept in classification modeling
compared to other techniques and also has the ability to solve both linear and non-linear classification and regression
problems. Furthermore, SVM is used to determine the best hyperplane by maximizing the distance between classes
[16] and this concept has been discovered to be a function applicable to the separation of classes [16]. The SVM
architecture is, however, illustrated in Figure 2 [17].

Figure 2 – Illustration of Support Vector Machine Architecture [17].

The position of the SVM is between the two classes and this means the distance between the hyperplane and data
objects is different from the adjacent class marked with an empty and positive round [18]. Moreover, the outer data
object close to the hyperplane in the SVM is named a support vector which is the most inconvenient class to
categorize due to its practical overlap with other classes. Therefore, only the support vector was considered to have
passed through SVM's most prime hyperplane due to its serious nature [19].

The main purpose of SVM was to determine the best hyperplane as shown in the following relationship.

∙ + = 0 (2)

The optimization problem of SVM was further summarized as

|| || (3)



3rd INTERNATIONAL CONFERENCE
ON MATHEMATICAL AND RELATED SCIENCES:

CURRENT TRENDS AND DEVELOPMENTS
ICMRS 2020

20-22 NOVEMBER, 2020

102

. ( ∙ + ) ≥ 1, ∀ = 1, … , (4)

The objective of equation (3) was to determine ∈ and ∈ which is subject to equation (4) after which the
formulas of (weights) and (bias) were obtained as follows after the previous problem has been solved.

= ∑ (5)

= ∑ ( − ∑ ∈ )∈ (6)

( ) = ∙ + (7)

The decision function in equation (7) was, however, to maximize the margins.

In general, the data problem cannot be separated linearly in the input space while the SVM soft margin was unable
to determine the separator in the hyperplane and this means it was unable to provide great accuracy and effective
generalization [20]. Therefore, a kernel is needed to modify the data into a higher-dimensional space called the
kernel space which is useful for the linear separation of data [21]. It is important to note that these kernel functions
are generally Linear, Polynomial, and Gaussian Radial Basis Function (RBF) [22] with some of them illustrated in
the following Figure 3 [23].

Figure 3 – Illustration of Several Kernel Functions [23].

A kernel function was, therefore, used in the Support Vector Machines (SVM) to be compared in this study and this
is due to its ability to resolve linear dimension problems and algorithms expression in the inner product between two
vectors [24]. Several kernel functions are, however, listed with their parameters in Table 1 [24].

Table 1. Kernel Function.

Name Kernel Function

Linear , = ⟦ ⟧

Polynomial , = + ⟦ ⟧

Gaussian Radial Basis Function (RBF) , = exp (− − / )

f. Confusion Matrix

A confusion matrix was used to calculate the accuracy using the parameters presented in Table 2 and the formula
written in Equation 8 [25].

Table 2. Confusion Matrix.

Actual
Prediction

Positive Negative

Positive T F
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Negative F T

= (8)

T : Number of samples having lung cancer and classified correctly.

F : Number of healthy individuals incorrectly classified to have lung cancer.

F : Number of samples with lung cancer incorrectly classified as healthy.

T : Number of healthy individuals correctly spotted.

2. MAIN RESULTS

III. Data
The Lung Cancer sufferers' database used in this study was collected from Dr. Cipto Mangunkusumo Hospital,
Indonesia, and was found to have 38 data consisting of 69 primary and 69 minor data. The classes indicating the
presence of lung cancer were classified as major and labeled '1' while those without lung cancer were noted as minor
and labeled '0' as indicated in the lung cancer dataset of Table 3.

Table 3. The Samples of Lung Cancer Dataset.
Area Min Max Average SD Sum Length Target

106.53 -926 -773 -863 29.5 -156324 36.6 0
76.07 -924 -755 -850 29.02 -121557 31.01 0
109.76 -42 88 28.45 24.68 5576 37.17 1
135.93 -917 -683 -875 41.11 -284527 41.34 0
97.55 -12 65 32.59 14.05 7562 35.01 1
103.04 -14 66 36.39 15.22 9025 35.98 1
106.07 -869 604 -762 40.48 -162501 36.51 0
129.01 -858 -418 -746 75.5 -194800 40.27 0

Seven features were used in this research and they include area, min, max, average, SD, sum, and length with their
respective definitions presented in the following Table 4.

Table 4. The Features of Lung Cancer Dataset.
No Features of Dataset Definition
1. Area The extent or measurement of an object or surface.
2. Min The least or smallest amount or quantity possible, attainable, or required.
3. Max A maximum amount of setting reach or cause to reach the limit of capacity or ability.
4. Average A number expressing the central or constituting the result obtained.
5. SD A quantity calculated to indicate the extent of deviation for a group as a whole.
6. SUM The total result from adding two or more numbers, items, or amounts.
7. Length The measurement of the extent of a particular thing.

IV. Results
This research used 10% to 90% as the classification method to test the data while 1000 epochs and 32 batches were
used for the combination of the Neural Network with Adam Optimizer. Meanwhile, several kernel functions
combined with the Neural Network–Support Vector Machine are compared in Table 5.
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Table 5. The Accuracy of Each Method.

Testing Data Accuracy of NN–SVM
Linear Kernel Polynomial Kernel Gaussian RBF Kernel

10% 0.92857 0.92857 1.0
20% 0.96428 0.96428 0.92857
30% 0.95238 1.0 0.95238
40% 1.0 0.98214 0.98214
50% 1.0 0.97826 1.0
60% 0.98795 0.98192 0.98795
70% 0.97938 1.0 0.98969
80% 0.99099 0.95490 0.98198
90% 0.98400 0.98400 0.99200

Average 0.97639 0.97489 0.97941

The Neural Network–Support Vector Machine compared with some kernels for Lung Cancer classification was
found to have the ability to predict data correctly and adequately and each method is shown in the table to have the
highest accuracy of 100% on several test data. For the Neural Network–Support Vector Machine with Linear
Kernel, the highest accuracy of 100% was on 40% to 50%, the combination with Polynomial Kernel was on 30%
and 70% while Gaussian RBF Kernel was on 10% and 50%. Moreover, NN–SVM with Gaussian RBF Kernel was
also found to have the best accuracy value with an average of 97.94% on the test data. Therefore, the best method
for Lung Cancer classification is the Neural Network–Support Vector Machine with Gaussian RBF Kernel.

CONCLUSION

The early detection of diseases using machine learning is important in treating patients to extend their life span,
reduce the risk, and help medical staff in classifying the disease. This study was focused on lung cancer which is a
common health problem in Indonesia and the world and the research was conducted using 138 data and 7 features as
well as the combination of Neural Network–Support Vector Machine with several kernel functions such as Linear,
Polynomial, and Gaussian RBF kernel as a classifier. The experimental results showed the methods used were able
to predict the data correctly and adequately but the Neural Network–Support Vector Machine with Gaussian RBF
Kernel was found to be the best model for the Lung Cancer dataset classification with an average of 97.94%
accuracy as shown in Table 5. This method is, however, expected to be further developed in future research to
provide higher accuracy and use a more massive database to have better results in predicting and classifying
different diseases.
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Abstract. In this paper, we consider 2 types of instruments traded on the markets, stocks and cryptocurrencies. In
particular, stocks are traded in a market subject to opening hours, while cryptocurrencies are traded in a 24-hour market.
What we want to demonstrate through the use of a particular type of generative neural network (GAN) is that the
instruments of the non-timetable market have a different amount of information, and are therefore more suitable for
forecasting. In particular, through the use of real data we will also show that there are stocks following same rules as
cryptocurrencies.

1. INTRODUCTION

The time series analysis has always attracted the attention of the academic world, in particular by focusing on
predicting the future values of these series. Financial time series are optimal candidates for such an analysis. These
series base their assumptions on the random walk hypothesis, a concept introduced by Bachelier [1] in 1900 and
since then remained a central pivot in the theory of time series. Based on the random walk theory, Kendall [2]
assumed that the movement of stock prices was random while Cootner [3] defined how the movement of stock
prices could not be explained in detail but was better approximated by the Brownian motion. Traditionally the best
practice was to focus on logarithmic returns, bringing the advantage of linking statistical analysis with financial
theory. It was Taylor [4] who proposed an alternative model to the random walk, developing a price trend model: he
gave much empirical evidence that the price trend model was useful in analyzing prices on futures markets. From an
econometric point of view, Box et al. [5] introduced power transformations to statistical models, also applying them
to time series; in particular, they suggested to use a power transformation in order to obtain an adequate
Autoregressive Moving Average model (ARMA). On this basis, Hamilton [6] gave a formal (mathematically)
definition of this model. Several evolutions followed this pattern, like that Autoregressive Integrate Moving Average
(ARIMA) and Seasonal Autoregressive Integrated Moving Average (SARIMA).

Recently, thanks to the development of artificial neural networks (ANNs) and their ability to non-linear
modeling [7], there has been a strong interest in the application of these methods to time series prediction. Foster et
al. [8] were among the first to compare the use of neural networks as function approximators with the use of the
same networks to optimally combine the classically used regression methods, highlighting how the use of networks
to combine forecasting techniques have led to performance improvements.

The development of the financial time series forecasting has intensified mainly thanks to the new techniques [9]
of Machine Learning (ML) and Deep Learning (DL). As for ML techniques, Kovalerchuk et al. [10] have used
models such as Evolutionary Computations (ECs) and Genetic Programming (GCs); Li et al. [11] have developed a
model for forecasting the stock price via ANN; Mittermayer et al. [12] compared different text mining techniques
for extracting market response to improve prediction and Mitra et al. [13] have focused their attention on studying
the news for predicting anomalous returns in trading strategies. As for the DL techniques, especially in the last 10
years, increasingly complex architectures are being used such as Liu et al. [14] who use a CNN + LSTM for
strategic analysis in financial markets, Zhang et al. [15] who use an SFM to predict stock prices by extracting
different types of patterns, Long et al. [16] who propose a Multi-Filters Neural Network for feature extraction on
financial time series and extreme market prediction or Wan et al [17] who use a variant of LSTM to forecast
correlated time series. However, many other types of more complex networks can be readjusted to time series  to
make predictions, such as GAN networks used for speech synthesis [18], for the denoising  of images [19] or, as
shown by Xu et al. [20], to predict leakage of pipeline in petrochemical system. Again, other types of combinations
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of architectures are represented by DCNN (Deep Convolutional Neural Network) and CRF (Conditional Random
Field) networks, as proposed by Papandreou et al. [21] for high-resolution segmentation and a DRDL (Deep
Relative Distance Learning) network as proposed by Liu et al. [22] to calculate the distance between vehicles
through graphical analysis by translating them into a Euclidean space.

In this paper, we want to forecast problem-related to financial market hours. Many of the stock markets are
subject to certain opening and closing times. In these types of markets when news spreads or events occur outside
closing hours, price reactions will only appear after the new opening of the market. The cryptocurrency market (and
currencies in general), however, is not subject to closing times: it is open 24 hours a day. In this type of market the
“opening” price of the new day and the “closing” price of the previous day are recorded in a midnight interval every
day, creating continuity in the historical price series; for this reason the recorded prices are the sum of the events
relating to 24 hours and therefore containing more information useful for forecasting. Our goal is to verify through
an appropriate neural network how this difference of “information in prices” can lead to imbalances in the forecast,
in particular linked to the discriminative and the predictive power of the prices themselves. Some studies, such as
that of Tang [23] and Gorr [24] have shown that neural networks are capable of modeling seasonality and other
factors such as trend and cyclicity autonomously, therefore the different “quantity of information” contained in the
various types of prices would seem to be the only cause that leads to forecast imbalances.

2. GAN AND TIMEGAN

One of the main problems in time series forecasting is the choice of the optimal variables to be taken into
consideration so that the neural network is able to capture their links and dynamics over time. There are many types
of neural network architectures that can be used, however to overcome this problem we consider the generative
adversarial network (GAN) introduced in 2014 by Goodfellow et al. [25]. The GAN model consists of 2 networks: a
generative network G that produces new data based on a certain distribution and a discriminative network D that
evaluates them, producing the probability that ~ where is the distribution of training data. The
networks objective is to encourage D to find the binary classifier that provides the best possible discrimination
between real and generated data and simultaneously to encourage G to fit the true data distribution. D and G play the
following two-player minimax game [48] with value function V(G, D):

min max V(D, G) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1− D(G(z)))] (1)

In particular, Yoon et al. [26] propose a new model, the Time-series Generative Adversarial Networks
(TimeGAN) for generating realistic time-series data in various domains. Considers both unsupervised adversarial
loss and stepwise supervised loss and it uses original data as supervision. According to the authors, this type of GAN
is made up of 4 networks [26]: embedding function, recovery function, sequence generator, and sequence
discriminator. The autoencoding components are trained jointly with the adversarial components such that
TimeGAN simultaneously learns to encode features, generate representations, and it iterates across time. Usually,
GAN networks are used (regarding financial time series) for the generation and therefore the replacement of any
missing values (NaN), while in this case their main objective is to recreate a time series based on the features used
as input.

In this model, the generator is exposed to 2 types of inputs during training: the synthetic embeddings in order to
generate the next synthetic vector and the sequences of embeddings of actual data to generate the next latent vector.
In the first case, the gradient is computed on the unsupervised loss, while in the second, the gradient is computed on
the supervised loss.

3. METHODOLOGY

To highlight generated results, Yoon et al. [26] have introduced a graphical measure for visualization, the t-SNE
[27] (so as to visualize how much the generated distribution looks like the original one) and 2 scores (by optimizing
a 2-layer LSTM):

• Discriminative score, it measures the error of a standardized classifier (RNN) in distinguishing between
the real sequence and the one generated on the test set;
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• Predictive score, represents the MAE (Mean Absolute Error) and measures the ability of synthetic data
to predict next-step temporal vectors over each input sequence.

In addition, the t-SNE algorithm also returns the Kullback-Leibler Divergence (KL Divergence), which is a
measure of the difference between two probability distributions which indicates the information lost when using a
distribution (in this case the synthetic one) to approximate it an- other (the original one).

What we want to demonstrate by using this network is that instruments listed on a market subject to time
constraints have a lower discriminative and predictive capacity than instruments present in markets not subject to the
same constraints. Financial instruments subject to timetables during the continuous trading phase are representative
of the information present in those hours, while what occurs after closing cannot be captured by the price and will be
recorded at least the following day during the opening auction, which will lead to the price going up or down. On the
other hand, for instruments not subject to schedules, this problem does not arise since any type of event that may
have an effect on the price (whether it takes place day or night) will be recorded with an increase or a decrease in the
price itself.  The exchanges give the possibility  to carry out negotiations outside the closing hours (Trading in Pre
Market and After Hours) as in the case of Borsa Italiana in which the Pre Auction phase is possible from 8:00 to
9:00 a.m. while After Hours trading is possible from 17:50 to 20:30 and NASDAQ where the Pre Market trading is
possible from 4:00 to 9:30 a.m. (ET) while After Hours trading is possible from 4:00 to 8:00 p.m. (ET), but certain
time slots (which could be key) remain uncovered. In this way, the “amount of information” contained in each price
is therefore an essential element for time series forecasting. The generative adversarial network is used, in this case,
to generate synthetic data on the basis of those used as input (in such a way that the network itself understand the
links that exist between the data).  This network has been optimal to identify which are the best variables (features)
to use in order to make forecasting by observing the improvements/worsening of the predictive score and by
replacing the different features in the data sets. This network can therefore be understood as a tool to validate
financial instruments and variables on which to subsequently make predictions through any tool, so as to obtain the
best result. In particular, since many of the tools used to make predictions originate in econometrics, this type of
network can be used to “screen” financial instruments in such a way as to improve the accuracy of classical
econometric tools.

The empirical analysis was carried out on 2 types of instruments, stocks and cryptocurrencies. Specifically these
are

• Stocks (Source: finance.yahoo.com):
1. AAPL (Apple Inc.), listed on NASDAQ;
2. GOOG (Alphabet Inc., Google), listed on NASDAQ;
3. AMZN (Amazon.com), listed on NASDAQ;
4. TSLA (Tesla Inc.), listed on NASDAQ.

• Cryptocurrencies (all related to USD, Source: investing.com):
1. BTC (Bitcoin Index);
2. ETH (Ethereum Index);
3. BCH (Bitcoin Cash Index).

Prices are considered with a daily time frame, from 20/12/2017 to 31/12/2019. To test the discriminative and
predictive ability of prices, the different datasets were divided into 2 types, the first with 5 features such as Open,
High, Low, Close (Last in the case of cryptocurrencies) and Volume (generally indicated with the acronym
OHLCV) while the second with only 2 features such as Open and Close/Last (indicated with the acronym OC). As
for the hyperparameters for setting the TimeGAN, the sequence length of time series data (seq − len) has been set to
24 to represent approximately one month, the module used (the cell) is LSTM, the iterations were set to 30000 with
a batch size of 128. The number of layer (num_layer) was set to 3 for all datasets while the number of neurons
(hidden_dim) is 20 for OHLCV dataset and  8 for OC. Training and Test were carried out through Google Colab.

4 NUMERICAL ANALYSIS

In this section, we will compare first from the graphical point of view and then through the scores the capabilities
of the different time series in terms of a difference in the amount of information. This comparison is made especially
by comparing the OHLCV datasets with the OC datasets for the different instruments, so as to be able to test the
basic idea. The graphical analysis will be carried out by comparing the t-SNE plots, while the one based on the score
will be carried out by comparing the KL divergence, the discriminative score and the predictive score. The graphical
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analysis is based on the t-SNE algorithm, in order to represent a higher dimensional space in a two-dimensional
scatter plot and to realize the adhesion between the generated and synthetic data. The first t-SNE analysis concerns
the OHLCV dataset, as shown in figure 1.

(a) Apple (b) Bitcoin

(c) Google (d) Ethereum

(e) Amazon (f) Bitcoin Cash
Figure 1: t-SNE analysis of synthetic data (blue) and original data (red) dataset OHLCV

From this analysis it is possible to highlight the potential of TimeGAN in the generation of data and in particular
in the cases represented in the Figures 5(b) and 5(f) (both cryptocurrencies)  there  is  a  very  precise  adherence  of
the  synthetic  data  to  the  original real data. Obviously, in this type of data set there is the presence of greater
features that combined together allow the network to improve the forecast.  From the graphical analysis it is possible
to see how in the case of cryptocurrencies 5(b), (d), (f), the synthetic data  extend over a greater surface than the
original ones compared to the stocks (in which case they are much  more concentrated).  The second t-SNE analysis
is based precisely on the OC dataset, as shown in Figure 2.



3rd INTERNATIONAL CONFERENCE
ON MATHEMATICAL AND RELATED SCIENCES:

CURRENT TRENDS AND DEVELOPMENTS
ICMRS 2020

20-22 NOVEMBER, 2020

110

(a) Apple (b) Bitcoin

(c) Google (d) Ethereum

(e) Amazon (f) Bitcoin Cash

Figure 2: t-SNE analysis of synthetic data (blue) and original data (red) dataset OC

In this case, at first glance, it could seem like the synthetic data deviate from the real  data, however with a more
careful analysis it is possible to notice how in 6(a), 6(c) and 6(f) (all cryptocurrencies) the synthetic data overlap the
original data or imitate (albeit to a limited extent) their distribution, while in the stocks’ case the distribution of the
synthetic data is dispersive and not entirely consistent with the distribution of the original data. The hypothesis we
want to discuss is that the prices of cryptocurrencies have a greater amount of information within them and have a
greater discriminative and predictive power. This hypothesis has been supported from the graphic point of view, but
to leave no doubt we introduce the result of the analysis based on the scores (Ds indicates the discriminative score
while Ps the predictive score) and on the KL divergence ( ), as shown in table 1.
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OHLCV OC
DKL DS PS DKL DS PS

AAPL 54.3214 0.1133 0.1084 53.6518 0.0347 0.0354
GOOG 53.9618 0.1449 0.0722 55.6298 0.0378 0.0431
AMZN 52.2606 0.0755 0.1079 54.9458 0.0316 0.0254
BTC 54.7267 0.0868 0.0672 55.6924 0.0674 0.0109
BCH 53.6472 0.0569 0.0273 53.5539 0.0528 0.0136
ETH 52.9701 0.2458 0.0443 52.0232 0.0382 0.0129

Table 1:  Score of both dataset (lower the better)

From the analysis of the values it is possible to notice how, especially in the case of the  OC data set, the
cryptocurrency scores are the lowest and therefore the most significant. We  can also assume that in the markets
subject to opening/closing time,  especially close  to the closing minutes, investors are struck by “euphoria” by being
trapped in a bottleneck  and going to  generate  a  price  that  may  not  be representative  of  the  real  trend. On the
other hand, situations of this type may not exist in 24/7 markets thanks to the absence of timetables.

5 OUTLIERS

A particular situation occurred when analyzing the stocks of Tesla Inc. (TSLA) listed on NASDAQ. Despite being
listed in a market subject to timetables, this analysis, both graphically and through the scores through TimeGAN,
resulted in having a price type “loaded” with information, so much so that it achieved almost better results than
cryptocurrencies. In particular:

(a) OHLCV data set (b) OC data set

Figure 3:  t-SNE analysis of TSLA stock on the different types of datasets

Especially in the second data set, the synthetic data reproduce the distribution of the original data very well. The
analysis of the scores is shown in Table 2.

OHLCV OC
DKL DS PS DKL DS PS

TSLA 54.3992 0.2163 0.1071 55.6569 0.0082 0.0182
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Table 2:  Score of TSLA in both dataset

In this case, especially in the OC data set, it is noted that the price range has a very low discriminative and
predictive score, even higher than that of cryptocurrencies. Thanks to this “outlier” we can deduce that there are
some financial instruments listed on stock exchanges subject to timetables which despite the limitation are in any
case “completely absorbent” of the information concerning the company. This situation could be linked, for
example, to the hypothesis that negative events never occurred outside the opening hours of the stock exchange or
(in a less realistic but still possible hypothesis) to the hypothesis that  in the time range considered no external
situations occurred that could influence the price.  In these cases, the use of this type of GAN can be a “form of
control” on prices, especially when these are to be used for forecasting. There may be hidden elements that affect
the price, however we can assume that a financial instrument whose price has a “large amount of information” could
improve its prediction power compared to a financial instrument with less information.

6 CONCLUSIONS

In this paper, we have shown how TimeGAN is able to highlight which securities have a time series of prices
“loaded with information”. The prices of cryptocurrencies have shown to have a much higher discriminatory and
predictive power than stocks especially in the dataset made up only of the opening and closing prices. Furthermore,
in the complete dataset (OHLCV), the prices with high discriminative power, combined with the other features, have
made it possible to greatly improve the adherence of the synthetic data to the original ones. From this analysis it
emerged that some stocks have the same discriminative and predictive power as cryptocurrencies; for this reason
(especially since the time series forecasting is carried out mainly on stocks) it seems appropriate to screen, through
this neural network, which are the optimal titles which combined with the different features improve the forecast.
The next step is to look for, if any, a relationship between this type of stocks so as to limit the critical issues deriving
from markets subject to timetables.
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Abstract. In this paper, we obtain initial coefficients | | and | | for a certain subclass of analytic functions by means of
Chebyshev polynomials expansions in . Then, we solve Fekete-Szegö inequality | − | for functions in this subclass.
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1. INTRODUCTION

Let be the class of the functions of the form:

( ) = +  (1.1)

which are analytic in the open unit disc = { ∈ ℂ: | | < 1} and satisfying the conditions

(0) = 0 and (0) = 1.

Also, let be the subclass of consisting of the form (1.1) which are univalent in .
Let and be analytic functions in . We define that the function is subordinate to in and denoted by

( ) ≺ ( ) ( ∈ ),

if there exists a Schwarz function , which is analytic in with (0) = 0 and | ( )| < 1 ( ∈ ) such that
( ) = ( ( )) ( ∈ ).

If is a univalent function in , then

( ) ≺ ( ) ⇔ (0) = (0) and ( ) ⊂ ( ).

The classical Fekete-Szegö inequality [8], presented by means of Loewner's method, for the coefficients of ∈ is
that

| − | ≤ 1 + 2
−2
1 −

0 ≤ < 1.

As → 1⁻, we have the elementary inequality | ₃ − ₂²| ≤ 1. Moreover, the coefficient functional
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( ) = ₃ − ₂²

on the normalized analytic functions f in the unit disk plays an important role in geometric function theory. The
problem of maximizing the absolute value of the functional ( ) is called the Fekete-Szegö problem. In the
literature, there exists a large number of results about inequalities for ( ) corresponding to various subclasses of
(see [9]).

Chebyshev polynomials play a considerable role in numerical analysis. There are four kinds of Chebyshev
polynomials. The first and second kinds of Chebyshev polynomials are defined by

( ) = cos and ( ) =
sin( + 1)

sin
(−1 < < 1)

where denotes the polynomial degree and = cos . For a brief history of Chebyshev polynomials of the first kind
( ), the second kind ( ) and their applications one can refer ([1]-[7], [10]-[13]).

Now, we define a subclass of analytic functions in with the following subordination condition:

Definition 1. A function ∈ given by (1.1) is said to be in the class ( , , , ) for
≥ 1, ≥ 0, ∈ ℂ/{0} and ∈ , 1 if the following subordination hold:

1 + (1 − ) ( ) + ( ) + ( ) − 1 ≺ ( , ) = ( ∈ ). (1.2)

We consider that if = cos < < , then

( , ) =
1

1 − 2cos +
= 1 +  

sin( + 1)
sin

( ∈ ).

Thus
( , ) = 1 + 2cos + (3cos − sin ) + ⋯ ( ∈ ).

So, we write the Chebyshev polynomials of the second kind as following:

( , ) = 1 + ( ) + ( ) + ⋯ (−1 < < 1, ∈ )
where

(t) =
sin( arccos )

√1 −
( ∈ ℕ)

and we have
( ) = 2 ( ) − ( ),

( ) = 2 , ( ) = 4 − 1, ( ) = 8 − 4 , ( ) = 16 − 12 + 1, ⋯ . (1.3)

The Chebyshev polynomials ( ), ∈ [−1,1] of the first kind have the generating function of the form

 ( ) =
1 −

1 − 2 +
( ∈ ).

There is the following connection by the Chebyshev polynomials of the first kind ( ) and the second kind ( ):
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( )
= ( ), ( ) = ( ) − ( ), 2 ( ) = ( ) − ( ).

In this paper, we obtain initial coefficients | | and | | for subclass ( , , , ) by means of Chebyshev
polynomials expansions of analytic functions in . Then, we solve Fekete-Szegö problem for functions in this
subclass.

2. COEFFICIENT BOUNDS FOR THE FUNCTION CLASS ( , , , )

We begin with the following result involving initial coefficient bounds for the function class ( , , , ).

Theorem 1. Let the function ( ) given by (1.1) be in the class ( , , , ). Then

| | ≤
2 | |

1 + + 2
(2.1)

and

| | ≤
(4 + 2 − 1)| |

1 + 2 + 6
. (2.2)

Proof. Let ∈ ( , , , ). From (1.2), we have

1 +
1

(1 − )
( )

+ ( ) + ( ) − 1

= 1 + ( ) ( ) + ( ) ( ) + ⋯ (2.3)

for some analytic functions

( ) = + + + ⋯ ( ∈ ), (2.4)

such that (0) = 0, | ( )| < 1 ( ∈ ). Then, for all ∈ ℕ,

≤ 1 (2.5)

and for all ∈ ℝ

| − | ≤ max{1, | |}. (2.6)

It follows from (2.3) that

1 +
1

(1 − )
( )

+ ( ) + ( ) − 1

= 1 + ( ) + [ ( ) + ( ) ] + ⋯ . (2.7)

It follows from (2.7) that
(1 + + 2 )

= ( ) , (2.8)

and

(1 + 2 + 6 )
= ( ) + ( ) . (2.9)
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From (1.3), (2.8) and (2.5), we have

| | ≤
2 | |

1 + + 2
. (2.10)

By using (1.3) and (2.5) in (2.9), we obtain

| | ≤
(4 + 2 − 1)| |

1 + 2 + 6
(2.11)

which completes the proof of Theorem 1.

For = 1 in Theorem 1, we obtain the following corollary.

Corollary 1. Let ∈ ( , 1, , ). Then

| | ≤
2

1 + + 2
and

| | ≤
4 + 2 − 1
1 + 2 + 6

.

If we choose = 0 in Theorem 1, we get the following corollary.

Corollary 2. Let ∈ (0, , , ). Then

| | ≤
2 | |

1 + 2
and

| | ≤
(4 + 2 − 1)| |

1 + 6
.

Putting = 0 and δ = 0 in Corollary 1, we have the following corollary.

Corollary 3. Let ∈ (0,1, , 0). Then

| | ≤ 2
and

| | ≤ 4 + 2 − 1.

For = 1, γ = 1 and δ = 1 in Theorem 1, we obtain the following corollary.

Corollary 4. Let the function ( ) given by (1.1) be in the class (1,1, , 1). Then

| | ≤
2

and

| | ≤
4 + 2 − 1

9
.

3. FEKETE-SZEGÖ INEQUALITY FOR THE FUNCTION CLASS ( , , , )
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Now, we find the bounds of Fekete-Szegö functional | − | defined for ( , , , ).

Theorem 2. Let the function ( ) given by (1.1) be in the class ( , , , ). Then for some
∈ ℝ,

| − | ≤

⎩
⎪
⎨

⎪
⎧ 2 | |

1 + 2 + 6
, ∈ [ , ],

2 | |
1 + 2 + 6

4 − 1
2

−
2 (1 + 2 + 6 )

(1 + + 2 )
; ∉ [ , ],

(3.1)

where = ( )
| |( )

and = ( )
| |( )

.

Proof. Let ∈ ( , , , ). By using (2.8) and (2.9) for some ∈ ℝ, we have

| − | =
| | ( )

1 + 2 + 6
+

( )
( )

−
(1 + 2 + 6 ) ( )

(1 + + 2 )
. (3.2)

Then, in view of (2.6), we conclude that

| − | ≤
| | ( )

1 + 2 + 6
max 1,

( )
( ) −

(1 + 2 + 6 ) ( )
(1 + + 2 )

. (3.3)

Finally, by using (1.3) in (3.3), we get

| − | ≤
2 | |

1 + 2 + 6
max 1,

4 − 1
2

−
2 (1 + 2 + 6 )

(1 + + 2 )
.

Because > 0, we obtain

4 − 1
2

−
2 (1 + 2 + 6 )

(1 + + 2 )
≤ 1

⇔
(1 + + 2 ) (4 − 2 − 1)

4 | |(1 + 2 + 6 )
≤ ≤

(1 + + 2 ) (4 + 2 − 1)
4 | |(1 + 2 + 6 )

⇔ ≤ ≤ .

This proves Theorem 2.

For = 1 in Theorem 2, we obtain the following corollary.

Corollary 5. Let ∈ ( , 1, , ). Then for some ∈ ℝ,

| − | ≤

⎩
⎪
⎨

⎪
⎧ 2

1 + 2 + 6
, ∈ [ , ],

2
1 + 2 + 6

4 − 1
2

−
2 (1 + 2 + 6 )

(1 + + 2 )
; ∉ [ , ],

where = ( )
( )

and = ( )
( )

.
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If we choose = 0 in Theorem 2, we get the following corollary.

Corollary 6. Let ∈ (0, , , ). Then for some ∈ ℝ,

| − | ≤

⎩
⎪
⎨

⎪
⎧ 2 | |

1 + 6
, ∈ [ , ],

2 | |
1 + 6

4 − 1
2

−
2 (1 + 6 )

(1 + 2 )
; ∉ [ , ],

where = ( )
| |( )

and = ( )
| |( )

.

Putting = 0 and δ = 0 in Corollary 5, we have the following corollary.

Corollary 7. Let the function ( ) given by (1.1) be in the class (0,1, , 0). Then for some ∈ ℝ,

| − | ≤
2 , ∈ [ , ],

2t
4 − 1

2
− 2 ; ∉ [ , ],

where = and = .

For = 1, γ = 1 and δ = 1 in Theorem 2, we obtain the following corollary.

Corollary 8. Let the function ( ) given by (1.1) be in the class (1,1, , 1). Then for some
∈ ℝ,

| − | ≤

⎩
⎨

⎧
2
9

, ∈ [ , ],

2
9

4 − 1
2

−
9
8

; ∉ [ , ],

where = and = .
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Abstract. Studies on fractional calculus is growing rapidly in recent years. However, the application areas of the
findings are increasing day by day. In order to contribute to this field, in this study, new lemma and theorems are
obtained with the weighted fractional integrals of a function with respect to another function.

Keywords: Weighted fractional integral operator, Grüss type inequality.

1. INTRODUCTION

G. Grüss proved a useful and interesting inequality that gives and upper bound for difference between the
mean value of product of two bounded functions ( and ) and product of mean value’s of those functions. This
precious inequality is as follows:

Theorem 1. (See [2]) Let and are defined and integrable functions on [ , ]. Also let those functions be
bounded as

≤ ( ) ≤

and

≤ ( ) ≤

for all ∈ [ , ]. Then the following inequality holds:

( ) ( ) − ∫ ( ) ∫ ( )

≤ (1.1)

Many researchers continue to study and find new upper bounds for Grüss inequality(see [3]-[5]). On the
other hand studies on fractional calculations have been increasing rapidly in recent years. The increase in the
application areas of fractional calculus also plays an important role in this increase. For some recent results about
fractional calculus, particularly inequalities obtained by using different fractional integral operators, see [3]-[10] and
the references therein. The weighted versions of the fractional integral operators also help to bring a different
perspective to the literature. One of them in given in the following which is put forward by Jarad et al.

Definition 1. (See [1]) Let ( , ) ⊆ ℝ and ℎ be a monotonic, increasing and positive function on ( , ]. Also let ℎ
be a continuously differentiable function on ( , ] with ℎ(0) = 0, 0 ∈ [ , ]. Then the left and right-side of the
weighted fractional integrals of a function with respect to ℎ on [ , ] are given in the following respectively

( ℑ )( ) = ( )
( ) ∫  ℎ( ) − ℎ( ) ( ) ( )ℎ ( ) ,
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ℑ ( ) = ( )
( ) ∫  ℎ( ) − ℎ( ) ( ) ( )ℎ ( )

where < < , > 0, ( ) =
( )

and ( ) ≠ 0.

In this study new inequalities are obtained by the weighted fractional operator mentioned above.

2. MAIN RESULTS

Theorem 2. Let be an integrable function on [ , ] ⊆ [0, ∞). Assume that there exist two integrable functions
and on [0, ∞) such that

( ) ≤ ( ) ≤ ( ) (2.1)

for every ∈ [ , ]. Then for all > 0 and > 0 we have the following inequality

( ℑ )( ) ℑ ( ) + ( ℑ )( ) ℑ ( )

≥ ( ℑ )( ) ℑ ( ) + ( ℑ )( ) ℑ ( ).

Proof. Since is bounded function as stated in (2.1) we have

( ) − ( ) ( ) − ( ) ≥ 0

( ) ( ) + ( ) ( ) ≥ ( ) ( ) + ( ) ( ). (2.2)

Multiplying both sides of (2.2) with
( )

( )
ℎ ( ) ℎ( ) − ℎ( ) ( )

where ℎ is a monotone increasing, continuously differentiable and positive function on ( , ] with ℎ(0) = 0, then
integrating the resulting inequality with respect to from to we have

( ) ( )
( ) ∫  ℎ ( ) ℎ( ) − ℎ( ) ( ) ( )

+ ( ) ( )
( ) ∫  ℎ ( ) ℎ( ) − ℎ( ) ( ) ( )

≥ ( ) ( )
( ) ∫  ℎ ( ) ℎ( ) − ℎ( ) ( ) ( )

+ ( ) ( )
( ) ∫  ℎ ( ) ℎ( ) − ℎ( ) ( ) ( ) .

By using the definition of the weighted fractional integral of a function with respect to another function on [ , ] we
get

( )( ℑ )( ) + ( )( ℑ )( ) ≥ ( )( ℑ )( ) + ( )( ℑ )( ). (2.3)

Multiplying both sides of (2.3) with
( )

( )
ℎ ( ) ℎ( ) − ℎ( ) ( )

then integrating the resulting inequality with respect to from to we have

( ℑ )( ) ( )
( ) ∫  ℎ ( ) ℎ( ) − ℎ( ) ( ) ( )

+( ℑ )( ) ( )
( ) ∫  ℎ ( ) ℎ( ) − ℎ( ) ( ) ( )
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≥ ( ℑ )( ) ( )
( ) ∫  ℎ ( ) ℎ( ) − ℎ( ) ( ) ( )

+( ℑ )( ) ( )
( ) ∫  ℎ ( ) ℎ( ) − ℎ( ) ( ) ( ) .

Again by using the definition of the weighted fractional integral of a function with respect to another function on
[ , ] we get

( ℑ )( ) ℑ ( ) + ( ℑ )( ) ℑ ( )

≥ ( ℑ )( ) ℑ ( ) + ( ℑ )( ) ℑ ( )

Theorem 3. Let and be integrable functions on [ , ] ⊆ [0, ∞). Assume that there exist integrable functions ,
, and on [ , ] such that

( ) ≤ ( ) ≤ ( ) (2.4)

( ) ≤ ( ) ≤ ( ) (2.5)

for every ∈ [ , ]. Then for all > 0 and > 0 we have the following inequalities

( ℑ )( ) ℑ ( ) + ( ℑ )( ) ℑ ( ) (2.6)

≥ ( ℑ )( ) ℑ ( ) + ( ℑ )( ) ℑ ( )

( ℑ )( ) ℑ ( ) + ( ℑ )( ) ℑ ( ) (2.7)

≥ ( ℑ )( ) ℑ ( ) + ( ℑ )( ) ℑ ( )

( ℑ )( ) ℑ ( ) + ( ℑ )( ) ℑ ( ) (2.8)

≥ ( ℑ )( ) ℑ ( ) + ( ℑ )( ) ℑ ( )

( ℑ )( ) ℑ ( ) + ( ℑ )( ) ℑ ( ) (2.9)

≥ ( ℑ )( ) ℑ ( ) + ( ℑ )( ) ℑ ( )

Proof. Since and are bounded functions as stated in (2.4) and (2.5) we have

( ) − ( ) ( ) − ( ) ≥ 0

( ) ( ) + ( ) ( ) ≥ ( ) ( ) + ( ) ( ) (2.10)

Multiplying both sides of (2.10) with
( )

( )
ℎ ( ) ℎ( ) − ℎ( ) ( )

where ℎ is a monotone increasing, continuously differentiable and positive function on ( , ] with ℎ(0) = 0, then
integrating the resulting inequality with respect to from to we have

( ) ( )
( ) ∫  ℎ ( ) ℎ( ) − ℎ( ) ( ) ( )

+ ( ) ( )
( ) ∫  ℎ ( ) ℎ( ) − ℎ( ) ( ) ( )

≥ ( ) ( )
( ) ∫  ℎ ( ) ℎ( ) − ℎ( ) ( ) ( )
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+ ( ) ( )
( ) ∫  ℎ ( ) ℎ( ) − ℎ( ) ( ) ( ) .

By using the definition of the weighted fractional integral of a function with respect to another function on [ , ] we
get

( )( ℑ )( ) + ( )( ℑ )( ) ≥ ( )( ℑ )( ) + ( )( ℑ )( ) (2.11)

Multiplying both sides of (2.11) with
( )

( )
ℎ ( ) ℎ( ) − ℎ( ) ( )

then integrating the resulting inequality with respect to from to we have

( ℑ )( ) ( )
( ) ∫  ℎ ( ) ℎ( ) − ℎ( ) ( ) ( )

+( ℑ )( ) ( )
( ) ∫  ℎ ( ) ℎ( ) − ℎ( ) ( ) ( )

≥ ( ℑ )( ) ( )
( ) ∫  ℎ ( ) ℎ( ) − ℎ( ) ( ) ( )

+( ℑ )( ) ( )
( ) ∫  ℎ ( ) ℎ( ) − ℎ( ) ( ) ( ) .

Again by using the definition of the weighted fractional integral of a function with respect to another function on
[ , ] we get

( ℑ )( ) ℑ ( ) + ( ℑ )( ) ℑ ( )

≥ ( ℑ )( ) ℑ ( ) + ( ℑ )( ) ℑ ( )

which is the desired result. To prove (2.7), (2.8) and (2.9) one can choose the statements given in (2.12), (2.13) and
(2.14) respectively.

( ) − ( ) ( ) − ( ) ≥ 0 (2.12)

( ) − ( ) ( ) − ( ) ≥ 0 (2.13)

( ) − ( ) ( ) − ( ) ≥ 0 (2.14)

Lemma 1. Let be an integrable function on [ , ] ⊆ [0, ∞). Assume that there exist two integrable functions
and on [0, ∞) such that

( ) ≤ ( ) ≤ ( ) (2.15)

for every ∈ [ , ]. Then for all > 0 and > 0 we have the following identity

( ℑ )( ) ℑ 1 ( ) + ℑ ( )( ℑ 1)( )

= ℑ ( ) ( ) ℑ 1 ( ) − ( ℑ )( ) ℑ 1 ( )

+ ℑ ( ) ( ) ℑ 1 ( ) + ℑ ( )( ℑ 1)( )

− ℑ ( )( ℑ 1)( ) + ℑ ( )( ℑ 1)( )

− ℑ ( − )( − ) ( ) ℑ 1 ( )

− ℑ ( − )( − ) ( )( ℑ 1)( ).

Proof. Since is bounded function as stated in (2.15) we have
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( ) − ( ) ( ) − ( ) + ( ) − ( ) ( ) − ( )

− ( ) − ( ) ( ) − ( ) − ( ) − ( ) ( ) − ( )

= ( ) + ( ) − 2 ( ) ( ) + ( ) ( ) + ( ) ( ) − ( ) ( )

+ ( ) ( ) + ( ) ( ) − ( ) ( ) − ( ) ( ) + ( ) ( )

− ( ) ( ) − ( ) ( ) + ( ) ( ) − ( ) ( ). (2.16)

Multiplying both sides of (2.16) with
( )

( )
ℎ ( ) ℎ( ) − ℎ( ) ( )

where ℎ is a monotone increasing, continuously differentiable and positive function on ( , ] with ℎ(0) = 0. Then
integrating the resulting inequality with respect to from to we have

( ) − ( ) ( ℑ )( ) − ( ℑ )( )

+ ( ℑ )( ) − ( ℑ )( ) ( ) − ( )

− ℑ ( − )( − ) ( )

− ( ) − ( ) ( ) − ( ) ( ℑ 1)( ) (2.17)

= ( ℑ )( ) + ( )( ℑ 1)( ) − 2 ( )( ℑ )( )

+ ( )( ℑ )( ) + ( )( ℑ )( ) − ( )( ℑ )( )

+ ( )( ℑ )( ) + ( )( ℑ )( ) − ( )( ℑ )( )

− ℑ ( ) ( ) + ( ℑ )( )

− ℑ ( ) ( ) − ( ) ( )( ℑ 1)( )

+ ( ) ( )( ℑ 1)( ) − ( ) ( )( ℑ 1)( )

Multiplying both sides of (2.17) with
( )

( )
ℎ ( ) ℎ( ) − ℎ( ) ( )

then integrating the resulting inequality with respect to from to we have

ℑ ( ) − ℑ ( ) ( ℑ )( ) − ( ℑ )( )

+ ( ℑ )( ) − ( ℑ )( ) ℑ ( ) − ℑ ( )

− ℑ ( − )( − ) ( ) ℑ 1 ( )

− ℑ ( − )( − ) ( )( ℑ 1)( )

= ( ℑ )( ) ℑ 1 ( ) + ℑ ( )( ℑ 1)( ) − 2 ℑ ( )( ℑ )( )

+ ℑ ( )( ℑ )( ) + ℑ ( )( ℑ )( ) − ℑ ( )( ℑ )( )

+ ℑ ( )( ℑ )( ) + ℑ ( )( ℑ )( ) − ℑ ( )( ℑ )( )

− ℑ ( ) ( ) ℑ 1 ( ) + ( ℑ )( ) ℑ 1 ( )

− ℑ ( ) ( ) ℑ 1 ( ) − ℑ ( )( ℑ 1)( )
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+ ℑ ( )( ℑ 1)( ) − ℑ ( )( ℑ 1)( )

which is the desired result.

Theorem 4. Let and be integrable functions on [ , ] ⊆ [0, ∞). Assume that there exist integrable functions ,
, and on [ , ] such that

( ) ≤ ( ) ≤ ( ) (2.18)

( ) ≤ ( ) ≤ ( ) (2.19)

for every ∈ [ , ]. Then for all > 0 and > 0 we have the following inequality

ℑ ( ) ( ) ℑ 1 ( ) − ( ℑ )( ) ℑ ( )

−( ℑ )( ) ℑ ( ) + ( ℑ 1)( ) ℑ ( ) ( )

≤ ( , , ) × ( , , )

where ( , , ) is defined by

( , , ) = ℑ ( ) ( ) ℑ 1 ( ) + ℑ ( ) ( ) ℑ 1 ( )

+ ℑ ( )( ℑ 1)( ) + ℑ ( )( ℑ 1)( )

−2( ℑ )( ) ℑ ( ).

Proof. Let and be two integrable functions defined on [0, ∞) satisfying (2.18) and (2.19). We define

( , ): = ( ) − ( ) ( ) − ( ) , , ∈ [ , ] ⊆ [0, ∞).

Multiplying both sides with

( )
( )

ℎ ( )ℎ ( ) ℎ( ) − ℎ( ) ℎ( ) − ℎ( ) ( ) ( )

and integrating the resulting identity with respect to and from to and from to respectively, we obtain

( )
( ) ∫  ∫  ℎ ( )ℎ ( ) ℎ( ) − ℎ( ) ℎ( ) − ℎ( )

× ( ) ( ) ( , )

= ( )
( ) ∫  ℎ ( ) ℎ( ) − ℎ( ) ( )

× ∫  ℎ ( ) ℎ( ) − ℎ( ) ( )
× [ ( ) ( ) − ( ) ( ) − ( ) ( ) + ( ) ( )]

= ℑ ( ) ( ) ℑ 1 ( ) − ( ℑ )( ) ℑ ( )

−( ℑ )( ) ℑ ( ) + ( ℑ 1)( ) ℑ ( ) ( ) (2.20)

where ℎ is a monotone increasing, continuously differentiable and positive function on ( , ] with ℎ(0) = 0.
Applying the Cauchy-Schwarz inequality to (2.20) we get

ℑ ( ) ( ) ℑ 1 ( ) − ( ℑ )( ) ℑ ( )

−( ℑ )( ) ℑ ( ) + ( ℑ 1)( ) ℑ ( ) ( )



3rd INTERNATIONAL CONFERENCE
ON MATHEMATICAL AND RELATED SCIENCES:

CURRENT TRENDS AND DEVELOPMENTS
ICMRS 2020

20-22 NOVEMBER, 2020

127

≤
( ℑ )( ) ℑ 1 ( ) − ( ℑ )( ) ℑ ( )
−( ℑ )( ) ℑ ( ) + ( ℑ 1)( ) ℑ ( )

×
( ℑ )( ) ℑ 1 ( ) − ( ℑ )( ) ℑ ( )
−( ℑ )( ) ℑ ( ) + ( ℑ 1)( ) ℑ ( )

=
( ℑ )( ) ℑ 1 ( ) − 2( ℑ )( ) ℑ ( )
+( ℑ 1)( ) ℑ ( )

×
( ℑ )( ) ℑ 1 ( ) − 2( ℑ )( ) ℑ ( )
+( ℑ 1)( ) ℑ ( )

. (2.21)

From Lemma 1 we have

( ℑ )( ) ℑ 1 ( ) + ℑ ( )( ℑ 1)( )

≤ ℑ ( ) ( ) ℑ 1 ( ) + ℑ ( ) ( ) ℑ 1 ( )

+ ℑ ( )( ℑ 1)( ) + ℑ ( )( ℑ 1)( )

since

( ℑ )( ) ℑ 1 ( ) ≥ 0

ℑ ( )( ℑ 1)( ) ≥ 0

ℑ ( ) − ( ) ( ) − ( ) ℑ 1 ( ) ≥ 0

ℑ ( ) − ( ) ( ) − ( ) ( ℑ 1)( ) ≥ 0.

So we have

( ℑ )( ) ℑ 1 ( ) − 2( ℑ )( ) ℑ ( )

+( ℑ 1)( ) ℑ ( )

≤ ℑ ( ) ( ) ℑ 1 ( ) + ℑ ( ) ( ) ℑ 1 ( )

+ ℑ ( )( ℑ 1)( ) + ℑ ( )( ℑ 1)( )

−2( ℑ )( ) ℑ ( )

= ( , , ) (2.22)

and similarly

( ℑ )( ) ℑ 1 ( ) − 2( ℑ )( ) ℑ ( )

+( ℑ 1)( ) ℑ ( )

≤ ℑ ( ) ( ) ℑ 1 ( ) + ℑ ( ) ( ) ℑ 1 ( )

+ ℑ ( )( ℑ 1)( ) + ℑ ( )( ℑ 1)( )

−2( ℑ )( ) ℑ ( )

= ( , , ). (2.23)

Using (2.21), (2.22) and (2.23) we get the desired result.
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Abstract. Recently, the q - derivative operator has been used to investigate several subclasses of analytic functions in different
ways with different perspectives by many researchers and their interesting results are too voluminous to discuss. For example, the
extension of the theory of univalent functions can be used to describe the theory of q - derivative. The q - derivative operator
are also used to construct subclasses of analytic functions and so on.

In this study, we introduce certain subclasses of analytic and univalent functions on the open unit disk in the complex plane
defined by q - derivative. Here, we aim to find conditions for analytic and univalent functions to belonging to these classes.

1. INTRODUCTION

Let A be the class of analytic functions f on the open unit disk { }:  1U z z= Î < in the complex plane,

normalized by ( ) ( )0 0 0 1f f ¢= = - of the form

( ) 2 3
2 3

2
,n n

n n n
n

f z z a z a z a z z a z a
¥

=

= + + + ××× + + ××× = + Îå . (1.1)

Also, let’s S be the family of all functions in A which are univalent in U .
Furthermore, we will denote by T the subclass of all functions f in A of the form

( ) 2 3
2 3

2
,  0n n

n n n
n

f z z a z a z a z z a z a
¥

=

= - - - ×××- - ××× = - ³å .                            (1.2)

As well-known that some of the important and well-investigated subclasses of the univalent functions class S

include the classes ( ) ( )*  andS Ca a , respectively, starlike and convex functions of order a [ )( )0,1aÎ on

the open unit disk U .

By definition, we have (see for details, [2, 3], also [8])

( ) ( )
( ) ( ) ( )

( )
* :  Re ,   ,  :  Re 1 ,

zf z zf z
S f S z U C f S z U

f z f z
a a a a

ì ü ì üæ ö æ ö¢ ¢¢ï ï ï ï= Î > Î = Î + > Îç ÷ ç ÷í ý í ýç ÷ ç ÷¢ï ï ï ïè ø è øî þ î þ
.
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For [ )0,1b Î , interesting generalization of the function classes ( ) ( )*  andS Ca a are the classes ( )* ,S a b

and ( ),C a b , which are defined as follows

( ) ( )
( ) ( )

* , :  Re ,
(1 )

zf z
S f S z U

zf z f z
a b a

b b

ì üæ ö¢ï ï= Î > Îç ÷í ýç ÷¢ + -ï ïè øî þ
,

( ) ( ) ( )
( ) ( )

, :  Re ,
f z zf z

C f S z U
f z zf z

a b a
b

ì üæ ö¢ ¢¢+ï ï= Î > Îç ÷í ýç ÷¢ ¢¢+ï ïè øî þ
.

We will use ( ) ( )* *, ,TS T Sa b a b= Ç and ( ) ( ), ,TC T Ca b a b= Ç .

The classes ( )* ,TS a b and ( ),TC a b were extensively studied by Altintaş and Owa [1] and certain conditions
for hypergeometric functions and generalized Bessel functions for these classes were studied Moustafa [5] and
Porwal and Dixit [7].

A generalization of the function classes ( )* ,S a b and ( ),C a b is the class ( )* , ;S C a b g for [ ]0,1g Î ,
which defined as follows

( ) ( ) ( )
( ) ( )( ) ( ) ( ) ( ) ( )( )

2
* , ; : Re , .

1 1
zf z z f z

S C f S z U
z f z zf z zf z f z

g
a b g a

g b g b b

ì üæ ö¢ ¢¢+ï ï= Î > Îç ÷í ýç ÷¢ ¢¢ ¢+ + - + -ï ïè øî þ

Also, let’s ( ) ( )* *, ; , ;TS C T S Ca b g a b g= Ç .

In his fundamental paper [4] Jackson, for ( )0,1qÎ introduced the q - derivative operator qD of the an analytic

function f as follows

( )
( ) ( )
( )
( )

,     0,
1

0              ,    0.
q

f z f qz
if z

q zD f z
f if z

ì -
¹ï -= í

ï ¢ =î

The formulas for the q - derivative of a product and a quotient of functions are

[ ] 1n n
q q

D z n z -= , nÎ ,

where

[ ] 1

1

1
1

n n
k

q
k

qn q
q

-

=

-
= =

- å

is the q - analogue of the natural numbers n .
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It is clear that

[ ]0 0
q
= , [ ]1 1

q
= , [ ]

1
lim

qq
n n

-®
=

and

( ) ( )
1

lim q
q

D f z f z
-®

¢=

for the function f AÎ .

For ( )0,1qÎ and [ )0,1aÎ , we define by ( )*
qS a and ( )qC a the subclasses of A which we will call,

respectively, q - starlike and q - convex functions of order a

( ) ( )
( )

* :  Re ,q
q

zD f z
S f S z U

f z
a a

ì üï ï= Î > Îí ý
ï ïî þ

, ( )
( )( )

( )
:  Re ,q q

q
q

D zD f z
C f S z U

D f z
a a

ì üï ï= Î > Îí ý
ï ïî þ

.

Also, let’s ( ) ( )* *
q qTS T Sa a= and ( ) ( )q qTC T Ca a= .

Interesting generalization of the function classes ( ) ( )*  andq qS Ca a for [ )0,1b Î are the classes ( )* ,qS a b

and ( ),qC a b , which we give as follows

( ) ( )
( ) ( )

* , :  Re ,
(1 )

q
q

q

zD f z
S f A z U

zD f z f z
a b a

b b

ì üæ öï ï= Î > Îç ÷í ýç ÷+ -ï ïè øî þ
,

( ) ( ) ( )
( ) ( )

2

2, :  Re ,q q
q

q q

D f z zD f z
C f A z U

D f z zD f z
a b a

b

ì üæ ö+ï ï= Î > Îç ÷í ýç ÷+ï ïè øî þ
.

Let use ( ) ( )* *, ,q qTS T Sa b a b= Ç and ( ) ( ), ,q qTC T Ca b a b= Ç .

Inspired by the studies mentioned above, we define a generalization of the function classes ( )* ,qS a b and

( ),qC a b as follows.

Definition 1. A function f given by (1.1) is said to be in the class ( )* , ;q qS C a b g , [ ), 0,1 ,a b Î [ ]0,1g Î if
the following condition is satisfied

( ) ( )
( ) ( )( ) ( ) ( ) ( ) ( )( )

2 2

2
Re ,

1 1
q q

q q q

zD f z z D f z
z U

z D f z zD f z zD f z f z
g

a
g b g b b

æ ö+
ç ÷ > Î
ç ÷+ + - + -è ø

.

Also, we will use ( ) ( )* *, ; , ;q q q qTS C T S Ca b g a b g= Ç .
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It is clear that ( ) ( )* *, ;0 ,q q qS C Sa b a b= , ( ) ( )* , ;1 ,q q qS C Ca b a b= , ( )*

1
lim , ;q q
q

S C a b g
-®

( )* , ;S C a b g= and ( ) ( )* *

1
lim , ; , ;q q
q

TS C TS Ca b g a b g
-®

= .

So, function classes ( )* , ;q qS C a b g and ( )* , ;q qTS C a b g are generalization of the previously known function

classes ( )* ,qS a b , ( ),qC a b , ( )* , ;S C a b g and ( )* , ;TS C a b g of analytic functions, respectively.

The object of this study is to examine characteristic properties of the classes ( )* , ;q qS C a b g and

( )* , ;q qTS C a b g . Here, we give some conditions for an analytic and univalent function to belonging to these
classes.

2. MAIN RESULTS

In this section, we will give a sufficient condition for the functions to belonging to the class * ( , ; )q qS C a b g , and

necessary and sufficient conditions  for the functions to belonging to the class * ( , ; )q qTS C a b g .

This conditions are given in the following Theorem 1 and Theorem 2, respectively.

Theorem 1. Let f AÎ . Then, ( )* , ;q qf S C a b gÎ if the following condition is satisfied

[ ] ( ) [ ]( ) ( ) ( )( ){ }
2

1 1 1 1 1 1 1nq q
n

n n aab g b ag a b g a
¥

=

é ù- + - - - - - - £ -ë ûå . (2.1)

The result obtained here is sharp.

Proof. Suppose that satisfied the condition (2.1). Let us show that ( )* , ;q qf S C a b gÎ .

From the Definition 1, as known that ( )* , ;q qf S C a b gÎ , [ ) [ ], 0,1 , 0,1a b gÎ Î if and only if

( ) ( )
( ) ( )( ) ( ) ( ) ( ) ( )( )

2 2

2
Re ,

1 1
q q

q q q

zD f z z D f z
z U

z D f z zD f z zD f z f z
g

a
g b g b b

æ ö+
ç ÷ > Î
ç ÷+ + - + -è ø

. (2.2)

It can be easily shown that the condition (2.2) holds true if

( ) ( )
( ) ( )( ) ( ) ( ) ( ) ( )( )

2 2

2
1 1

1 1
q q

q q q

zD f z z D f z
z D f z zD f z zD f z f z

g
a

g b g b b

+
- £ -

+ + - + -
. (2.3)

So, ( )* , ;q qf S C a b gÎ if satisfied the condition (2.3). Accordingly, it will be sufficient to show that the
condition (2.3) is fulfilled within the scope of the theorem's hypothesis.

By simple computation, we write
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( ) ( )
( ) ( )( ) ( ) ( ) ( ) ( )( )

[ ] [ ] ( ) [ ]( ) ( )

[ ]( )[ ] ( ) [ ]( )

[ ] [ ] ( ) [ ]( ) ( )

[ ]( )[ ] ( ) [ ]( )

2 2

2

2

2

2

2

1
1 1

1 1 1 1

1 1 1 1 1

1 1 1 1
 .

1 1 1 1 1 1

q q

q q q

n
nq q q

n

n
nq q q

n

nq q q
n

nq q q
n

zD f z z D f z
z D f z zD f z zD f z f z

n n n a z

z n n n a z

n n n a

n n n a

g

g b g b b

g g b

g b g b

g g b

g b g b

¥

=
¥

=

¥

=
¥

=

+
-

+ + - + -

é ù- + - - -ë û
=

é ù+ + - + - + -ë û

é ù- + - - -ë û
£

é ù- + - + - + -ë û

å

å

å

å

It can be easily seen that last expression of the above inequality is bounded by 1 a- if and only if satisfied the
condition (2.1). Also, we can easily see that the condition (2.3) is satisfied if last expression of the above inequality
is bounded by 1 a- , which equivalent to the condition (2.1). With this, the desired result in the theorem has been
proved.

Also, it is clear that the result obtained in the theorem is sharp for the functions

[ ] ( ) [ ]( ) ( ) ( )( )
1( ) ,  ,  2,3,... .

1 1 1 1 1 1
n

n

q q

f z z z z U n
n n

a

ab g b ag a b g

-
= + Î =

é ù- + - - - - - -ë û

Thus, the proof of Theorem 1 is completed.

From the Theorem 1, we can readily deduce the following results.

Corollary 1. Let f AÎ . Then, *( , )qf S a bÎ if the following condition is satisfied

[ ] [ ]( )( )
2

1 1nq q
n

n n aa ab a
¥

=

- - - £ -å .

The result obtained here is sharp for the functions

[ ] [ ]( )
1( ) ,  ,  2,3,... .

1
n

n

q q

f z z z z U n
n n

a

a ab

-
= + Î =

- - -

Corollary 2. Let f AÎ . Then, ( , )qf C a bÎ if the following condition is satisfied

( )[ ] [ ]
2

1 1 1 1nq q
n

n n aa ab a
¥

=

é ù- + - - £ -ë ûå .
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The result obtained here is sharp for the functions

[ ] [ ]( )
1( ) ,  ,  2,3,... .

1
n

n

q q

f z z z z U n
n n

a

a ab

-
= - Î =

- - -

As can be seen from the following theorem, for the function ( )* , ;q qf TS C a b gÎ the converse of Theorem 1 is
also true.

Theorem 2. Let f TÎ . Then, ( )* , ;q qf TS C a b gÎ if and only if satisfied the following condition

[ ] ( ) [ ]( ) ( ) ( )( ){ }
2

1 1 1 1 1 1 1nq q
n

n n aab g b ag a b g a
¥

=

é ù- + - - - - - - £ -ë ûå . (2.1)

The result obtained here is sharp.

Proof. The proof of the sufficiency of the theorem can be proved similarly to the proof of Theorem 1.
We will prove only the necessity of the theorem.

Assume that * ( , ; )q qf TS C a b gÎ , [ ) [ ] ( ), 0,1 , 0,1 , 0,1qa b gÎ Î Î . That is,

( ) ( )
2 2

2

( ) ( )
Re ,

( ) ( ) (1 ) ( ) (1 ) ( )
q q

q q q

zD f z z D f z
z U

z D f z zD f z zD f z f z
g

a
g b g b b

ì ü+ï ï > Îí ý
+ + - + -ï ïî þ

.

Then, by simple computation, we write

( ) ( )

[ ] [ ]( )

( ) [ ]( ) [ ] [ ]( )

2 2

2

2

2 2

( ) ( )
Re

( ) ( ) (1 ) ( ) (1 ) ( )

1 1
Re .

1 1 1 1

q q

q q q

n
n

n

n n
n n

n n

zD f z z D f z
z D f z zD f z zD f z f z

z n n a z

z n a z n n a z

g

g b g b b

g
a

b g g b g

¥

=
¥ ¥

= =

ì ü+ï ï
í ý

+ + - + -ï ïî þ
ì ü- + -ï ïï ï= >í ý
ï ï- - + - - - +
ï ïî þ

å

å å

The last expression in the brackets of the above inequality is real if choose z real. Hence, from the previous
inequality letting 1z® through real values, we can write

[ ] [ ]( ) ( ) [ ]( ) [ ] [ ]( )
2 2 2

1 1 1 1 1 1 1 1n n n
n n n

n n a n a n n ag a b g g b g
¥ ¥ ¥

= = =

ì ü- + - ³ - - + - - - +í ý
î þ

å å å .

This follows
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[ ] ( ) [ ]( ) ( ) ( )( ){ }
2

1 1 1 1 1 1 1nq q
n

n n aab g b ag a b g a
¥

=

é ù- + - - - - - - £ -ë ûå ,

which is the same as the condition (2.1). With this the result of the theorem was proven.

Furthermore, it is clear that the result obtained in the theorem is sharp for the functions

[ ] ( ) [ ]( ) ( ) ( )( )
1( ) ,  ,  2,3,... .

1 1 1 1 1 1
n

n

q q

f z z z z U n
n n

a

ab g b ag a b g

-
= - Î =

é ù- + - - - - - -ë û

Thus, the proof of Theorem 2 is completed.

From the Theorem 2, we can readily deduce the following results.

Corollary 3. Let f TÎ . Then, ( )* ,qf TS a bÎ if and only if satisfied the following condition

[ ] [ ]( )( )
2

1 1nq q
n

n n aa ab a
¥

=

- - - £ -å .

The result obtained here is sharp.

Corollary 4. Let f TÎ . Then, ( ),qf TC a bÎ if and only if satisfied the following condition

( )[ ] [ ]
2

1 1 1 1nq q
n

n n aa ab a
¥

=

é ù- + - - £ -ë ûå .

The result obtained here is sharp.

Remark 1. The results obtained in Theorem 1, Theorem 2 and Corollary 1-4 are generalization of the results
obtained in Theorem 1,2 and Corollary 1-4 in [6].
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Abstract. In this work, we extend the Pell-Fibonacci sequence to groups and we redefine the Pell-Fibonacci sequence by
means of the elements of groups which is called the Pell-Fibonacci orbit. Also, we consider the Dihedral groups 2nD ,

( )2n ³ and then, we give the lengths of the periods of the Pell-Fibonacci orbit in the Dihedral groups 2nD , ( )2n ³ as
applications of the results obtained.

1. INTRODUCTION

In [5], Deveci defined the Pell-Fibonacci sequence which is directly related to the Pell and Fibonacci numbers as
follows:

( ) ( ) ( ) ( )4 3 3 3 1P F n P F n P F n P F n- + = - + - - + - - (1)

for 0n ³ with initial constants ( ) ( ) ( )0 1 2 0P F P F P F- = - = - = and ( )3 1P F- = .

By the equation (1), we can write the following companion matrix:

3

.

3 0 3 1
1 0 0 0
0 1 0 0
0 0 1 0

M

- -é ù
ê ú
ê ú=
ê ú
ê ú
ë û

Also, by an inductive argument, he obtained that

( )

3 3 3 3 3 3
4 2 3 4 3 4 5 3

3 3 3 3 3 3
3 1 2 3 2 3 4 2

3 3 3 3 3 3 3
2 1 2 1 2 3 1

3 3 3 3 3 3
1 1 1 1 2

n n n n n n n n

n n n n n n n n n

n n n n n n n n

n n n n n n n n

x F x x F x x x
x F x x F x x x

M
x F x x F x x x
x F x x F x x x

+ + + + + + + +

+ + + + + + + +

+ + + + + + +

+ - + + +

é ù+ - + - -
ê ú+ - + - -ê ú=
ê ú+ - + - -
ê ú

+ - + - -ê úë û

for 1n ³ . It is important to note that 3det 1M = .

Definition 1.1. The dihedral group 2nD of order 2n is defined by the presentation

( )22
2 , : n

nD x y x y xy e= = = =

for 2n ³ .
It is well-known that a sequence is periodic if, after certain points, it consists only of repetitions of a fixed
subsequence. The number of elements in the repeating subsequence is the period of the sequence. A sequence is
simply periodic with period k if the first k elements in the sequence form a repeating subsequence.
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The study of the linear recurrence sequences in groups began with the earlier work of Wall [10] where the ordinary
Fibonacci sequences in cyclic groups were investigated. In the mid-eighties, Wilcox [11] extended the problem to
abelian groups. The concept extended to some special linear recurrence sequences by several authors; see for
example, [1-4, 6-9]. In this work, we study the Pell-Fibonacci sequence in groups and then we define the the Pell-
Fibonacci orbit. Finally, we obtain the lengths of the periods of the Pell-Fibonacci orbit in the dihedral group 2nD ,

( )2n ³ as applications of the results obtained.

2. MAIN RESULTS

Let G be a finite j-generator group and let X be the subset of
j

G G G G´ ´ ´ such that ( )0 1 1, , , jx x x X- Î if

and only if G is generated by 0 1 1, , , jx x x - . We call ( )0 1 1, , , jx x x - a generating j-tuple for G .

Definition 2.1. For a generating j -tuple ( )0 1 1, , , jx x x X- Î we define the Pell-Fibonacci orbit as shown:

( ) ( )( ) ( )( ) ( )( )1 3 3
4 1 3PF n PF n PF n PF n

- -
+ = + +

for 0n ³ , with initial conditions

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 3 4

1 2 3

1 2

0 , 1 , 2 , 4 if 4,
0 , 1 , 2 , 4 if 3,
0 , 1 , 2 , 4 if 2.

PF x PF x PF x PF x j
PF x PF x PF x PF e j
PF x PF x PF e PF e j

= = = = =ì
ï = = = = =í
ï = = = = =î

For a generating j-tuple ( )0 1 1, , , jx x x X- Î , the Pell-Fibonacci orbit is denoted by ( )0 1 1: , , , jG x x x
PF

-
.

Theorem 2.1. A Pell-Fibonacci orbit ( )0 1 1: , , , jG x x x
PF

-
of a finite group G is simply periodic.

Proof. Let k be the order of the group G , then it is clear that there are 4n distinct 4-tuples of elements of G .
Then, it is easy to see that at least one of the 4-tuples appears twice in the Pell-Fibonacci orbit ( )0 1 1: , , , jG x x x

PF
-

.

Because of the repeating, the Pell-Fibonacci orbit of the group G is periodic. Since the Pell-Fibonacci orbit

( )0 1 1: , , , jG x x x
PF

-
is periodic, there exist natural number u and v with ( )mod 4u vº , such that

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), 1 1 , 2 2 , 3 3PF u PF v PF u PF v PF u PF v PF u PF v= + = + + = + + = +
By the definition of the Pell-Fibonacci orbit ( )0 1 1: , , , jG x x x

PF
-

, we can easily derive

( ) ( )( ) ( )( ) ( )( )1 3 3
4 1 3PF n PF n PF n PF n

- -
+ = + + .

Therefore, we obtain ( ) ( )PF u PF v= , and it then follows that

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 , 1 1 , 2 2 , 3 3PF u v PF PF u v PF PF u v PF PF u v PF- = - + = - + = - + = .
which implies that the Pell-Fibonacci orbit ( )0 1 1: , , , jG x x x

PF
-

is simply periodic.

□

Let the notation ( )0 1 1: , , , jG x x x
LPF

-
denote the length of the period of the Pell-Fibonacci orbit ( )0 1 1: , , , jG x x x

PF
-

.
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Corollary 2.1. The lengths of the periods of the Pell-Fibonacci orbit in some the Dihedral groups 2nD are given in
following table.

2n = ( )2 : , 6
nD x yLPF =

3n = ( )2 : , 18
nD x yLPF =

4n = ( )2 : , 12
nD x yLPF =

5n = ( )2 : , 12
nD x yLPF =

6n = ( )2 : , 18
nD x yLPF =

7n = ( )2 : , 24
nD x yLPF =

8n = ( )2 : , 24
nD x yLPF =

9n = ( )2 : , 18
nD x yLPF =

10n = ( )2 : , 12
nD x yLPF =

11n = ( )2 : , 18
nD x yLPF =

12n = ( )2 : , 36
nD x yLPF =

13n = ( )2 : , 42
nD x yLPF =

14n = ( )2 : , 24
nD x yLPF =

15n = ( )2 : , 36
nD x yLPF =

16n = ( )2 : , 48
nD x yLPF =

17n = ( )2 : , 54
nD x yLPF =

Example 2.1. For 10n = , we consider the length of the period of Pell-Fibonacci orbit in the Dihedral group 20D .

Using the relations of Dihedral group 20D , we have the sequence

( ) ( ) ( ) ( ) ( ) ( )10 , 1 , 2 , 3 , 4 , 5 ,PF x PF y PF e PF e PF x y PF x-= = = = = =

( ) ( ) ( ) ( ) ( ) ( )3 2 4 1 76 , 7 , 8 , 9 , 10 , 11 ,PF x PF y PF x PF x PF x y PF x- -= = = = = =

( ) ( ) ( ) ( )12 , 13 , 14 , 15 .PF x PF y PF e PF e= = = =

Since ( ) ( )0 12PF PF x= = , ( ) ( )1 13PF PF y= = , ( ) ( )2 14PF PF e= = and ( ) ( )3 15PF PF e= = the length of

the period of the Pell-Fibonacci orbit ( )20 : ,D x yLPF is 12 .

Example 2.2. For 17n = , we consider the length of the period of Pell-Fibonacci orbit in the Dihedral group 34D .

Using the relations of Dihedral group 34D , we have the sequence

( ) ( ) ( ) ( ) ( ) ( )10 , 1 , 2 , 3 , 4 , 5 ,PF x PF y PF e PF e PF x y PF x-= = = = = =
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( ) ( ) ( ) ( ) ( ) ( )3 7 5 8 6 26 , 7 , 8 , 9 , 10 , 11 ,PF x PF x y PF x PF x PF x y PF x- - - -= = = = = =

( ) ( ) ( ) ( ) ( ) ( )6 4 4 7 612 , 13 , 14 , 15 , 16 , 17 ,PF x PF xy PF x PF x PF x y PF x-= = = = = =

( ) ( ) ( ) ( ) ( ) ( )8 7 5 6 618 , 19 , 20 , 21 , 22 , 23 ,PF x PF xy PF x PF x PF x y PF x- - -= = = = = =

( ) ( ) ( ) ( ) ( ) ( )6 7 3 1 124 , 25 , 26 , 27 , 28 , 29 ,PF x PF x y PF x PF x PF x y PF e- - -= = = = = =

( ) ( ) ( ) ( ) ( ) ( )1 3 8 530 , 31 , 32 , 33 , 34 , 35 ,PF e PF y PF x PF x PF x y PF x- - -= = = = = =

( ) ( ) ( ) ( ) ( ) ( )8 5 2 6 2 436 , 37 , 38 , 39 , 40 , 41 ,PF x PF x y PF x PF x PF x y PF x- - -= = = = = =

( ) ( ) ( ) ( ) ( ) ( )4 8 6 8 2 742 , 43 , 44 , 45 , 46 , 47 ,PF x PF x y PF x PF x PF x y PF x- - - -= = = = = =

( ) ( ) ( ) ( ) ( ) ( )5 5 6 6 8 348 , 49 , 50 , 51 , 52 , 53 ,PF x PF x y PF x PF x PF x y PF x- - -= = = = = =

( ) ( ) ( ) ( )54 , 55 , 56 , 57 .PF x PF y PF e PF e= = = =

Since ( ) ( )0 54PF PF x= = , ( ) ( )1 55PF PF y= = , ( ) ( )2 56PF PF e= = and ( ) ( )3 57PF PF e= = the length of

the period of the Pell-Fibonacci orbit ( )34 : ,D x yLPF is 54 .
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Abstract: One of the important problems of stochastic process theory is to define the Laplace transformations for the distribution
of this process. With this purpose, we will investigate a semi-Markovian random walk process with positive tendency and
negative jumps in this article. The first falling moment to a certain level of this process is constructed as mathematically and the
Laplace transform of this random variable is obtained.
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1. INTRODUCTION

In recent years, random walks with one or two barriers are being used to solve a number of very interesting

problems in the fields of inventory, queues and reliability theories, mathematical biology etc. Many good

monographs in this field exist in literature (see references [1]-[3] and etc.).

In particular, a number of very interesting problems of stock control, queues and reliability theories can be expressed

by means of random walks with two barriers. These barriers can be reflecting, delaying, absorbing, elastic, etc.,

depending on concrete problems at hand. For instance, it is possible to express random levels of stock in a

warehouse with finite volumes or queueing systems with finite waiting time or sojourn time by means of random

walks with two delaying barriers. Furthermore, the functioning of stochastics systems with spare equipment can be

given by random walks with two barriers, one of them is delaying and the other one is any type barrier.

It is known that the most of the problems of stock control theory is often given by means of random walks or

random walks with delaying barriers (see References 1-2 etc.).  Numerous studies have been done about step

processes of semi-Markovian random walk with two barriers of their practical and theoretical importance. But in the

most of these studies the distribution of the process has free distribution. Therefore the obtained results in this case

are cumbersome and they will not be useful for applications ([1]-[4] and etc.).

The investigations of the distributions for the processes of semi-Markovian random process have an important value

in the random process theory. There are number of works devoted to definition of the Laplace transforms for the

distribution of the first passage time of the zero level. Some authors are used the asymptotic, factorization and etc.

methods (see references [1], [2] and [5]). But other authors narrowing the class of distributions of walking are found

the evident form for Laplace transforms for distributions and its main characteristics (see [3], [4]).
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The purpose of the present article is to find the Laplace transforms for Erlang distribution of the semi-Markovian

random processes with positive tendency and negative jumps. The first passage of the zero level of the semi-

Markovian process with positive tendency and negative jumps will be included as a random variable. The Laplace

transform for the distribution of this random variable is defined.

2. MAIN RESULTS

Suppose that {( , )}, = 1,2,3, … is a sequence of identically and independently distributed pairs of random

variables, defined on any probability space ( , ℱ, ) such that ’s are positive valued, i.e., { > 0} = 1, =

1,2,3, ….  In addition, the random variables and are mutually independent as well.

Also let us denote the distribution function of and

( ) = { < }, Ϝ( ) = { < }, ∈ ℝ , ∈ ℝ , (2.1)

respectively. By using the random pairs ( , ) we can construct the following process of a semi-Markovian random

walk

( ) = + . − ∑ , i ∑ ≤ < ∑ , = 0,1,2, … , > 0 , (2.2)

where the number (0) = > 0 is given. ( ) process is called as a semi-Markovian random walk process with

positive tendency and negative jumps. One of the realizations of the process ( ) will be in the following form:

ξ + ξ ξ + ξ + ξ

Fig. 2.1 A View of The Semi-Markovian Random Walk Process with
positive tendency and negative jumps.

X(t)

Ζ

ξ0
t
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Now, we introduce the random variables and as follows:

= { : ( ) ≥ }, = 0,1,2, … (3.1)

= ( ) − .                                                                                             (3.2)

In this case, random variable denotes the first falling time to ( > 0) -level  of the process ( ). Furthermore,

we get = +∞ when ( ) < for every t . Also, the random variable denotes the first jumping time from

( > 0) − level of the process ( ). This random variables play an important role in solving of most probability

problems arising in control of random levels of stocks in a warehouse which is functioning according to the process

( )tX . For this reason, the consideration with detailed of random variables and seems very interesting from

scientific and practical point of view.

The aim of the present work is to determine the Laplace-Stieltjes transform of the common distribution function of

the random variables and . Denote the Laplace transform of the common distribution function of the random

variables and by

| (0) = , > 0, μ > 0.

Now, let us give an analytical expression for random variable ( , ):

= . , = 0,1,2, …

We can interprete random variable − the number of jumps during the first passing time to ( > 0) -level of

the process ( ). Note that the process ( ) can  be pass  from ( > 0) -level  on the time of any step, for

example, first, second or etc. Therefore we can write ( , ) as follows:

( , ) =

⎩
⎨

⎧ = ( − ) , = + − , + >

= + , = + − − , + <

where and are identically and independently distributed random variables. Denote the Laplace transform of the

conditional common distribution of the random variable ( , ) by

L( , μ| ) = | (0) = , > 0, μ > 0 (3.3)

Now, we can give an integral equation for the Laplace transform of the conditional common  distribution of the

random variable ( , ). According to the total probability formula, we can write

L( , μ| ) = | (0) =

= ∫ ( ) ( ) ( ) (3.4)
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+ ∫ ( ) ∑ ∑ ( | (0) = + − )

by using (2.2). Applying some substitutions, we obtain that

L( , μ| ) = ( )( ) ∫ ( ) + ( ) (3.5)

. ∫ ( ) ∑ ∑ ( | (0) = + − ).

On the other hand, since can be the numbers 1,2, … and etc., according to the total probability formula, we can

write

L( , μ| ) = ( )( ) ∫ ( )

+ ( ) ∑ ∫ ( ) ∑ ∑

. ( | (0) = + − ) ( = | (0) = ) (3.6)

from the expression (3.4). By substituting = , = ℎ , ≥ 1 and = , we get the following integral

equation for L( , μ| ):

L( , μ| ) = ( )( ) ∫ . ( < t)( ) + ( )

.∫ ( . ) L( | + . − ℎ ). ( < ) { < ℎ }

. ∑ ∫ { < } … ∫ { < } (3.7)

.∫ { < ℎ } … ∫ { < ℎ } { = | (0) = }

In this case, L( | + . − ℎ ) –is the Laplace-Stieltjes transform of the first passing time from ( >

0) − level of the process ( ). Therefore we can  get + . − ℎ as the initial position of the process

( ).

Let us denote

(μ. ) = ∫ . { < t}

(μ) = ∫ { < ℎ }.

Then, it is rewritten (3.7) as follows
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L( , μ| ) = ( )( ) ∫ . ( < t)( ) + ( )

. ∫ ∫ ( . ) L( | + t. − ℎ ) ( < t) { < h}( )

. ∑ (μ. ) (μ) (3.8)

since random variables and , ≥ 1, are independent.

Now, assume that there are the following functions for the random variable :

(μ. tan ) (μ) < 1.

ψ(μ) = ∑ (μtan ) (μ) . (3.9)

Therefore, we can write the Laplace-Stieltjes transform of the conditional common distribution of random

variable ( , ) as the following integral equation:

L( , μ| ) = ( )( )

.∫ . ( < t)( ) + ( )ψ(μ) (3.10)

. ∫ ∫ ( . )( ) L( | ) ( < ( + ℎ − ) ) { < h}

from (3.8) by substituting = + t. − ℎ ⟹ = ( + ℎ − ) . The integral equation given in (3.10)

for L( , μ| ) can be solved by method of successive approximations for arbitrarily distributed random variables

and , ≥ 1, but it is unsuitable for applications. On the other hand, this equation has a solution in explicit form in

the classes of Erlang distributions. Therefore, this integral equation will be solved in the cases that the random

variables ξ and have an Erlang distribution of first order with the parameters and respectively. In this case,

we have

{ < t} = 1 − ( ), > 0

{ < t} = 1 − ( ), > 0 (3.11)

where
î
í
ì

>
<

=
0.        t,1
0,       t,0

)(te

Therefore, aaccording to the total probability formula, we have the following integral equation for the Laplace

transform of the conditional distribution of random variables ξ and

(μ ) = ∫ . = ,
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(μ) = ∫ = , > μ .

So, the general solution of integral equation (3.10) will be as follows:

ψ(μ) = ( )( )
( )

,

L( , μ| ) = ( ( ) )( ) +

+
( )

( )
ψ( ).

( )( ) ( . ) ( )

( . ) ( )

Conclusion: In this article we have defined Laplace transforms for Erlang distribution of the first falling time to

zero level of semi-Markovian random process with positive tendency and negative jump. The obtained results can be

applied in the theores of queuing, insurance, finance, and inventory management.
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Abstract. The q - derivative operator has been used to investigate several subclasses of analytic functions in different ways
with different perspectives by many researchers and their interesting results are too voluminous to discuss.  For example, the
extension of the theory of univalent functions can be used to describe the theory of q - derivative. The q - derivative operator
are also used to construct subclasses of analytic functions and so on.

In this study, we introduce and investigate certain subclasses of analytic and univalent functions defined by q - derivative. Here,
we give some conditions for an analytic and univalent function to belong to these classes. Also, in the study, we define two
integral operators involving analytic functions, which defined by q – Poisson Distortion series. Here, we aim to find the
conditions for this operators to belong to these subclasses of analytic functions.

1. INTRODUCTION

Let A be the class of analytic functions f on the open unit disk { }:  1U z z= Î < in the complex plane,

normalized by ( ) ( )0 0 0 1f f ¢= = - of the form

( ) 2 3
2 3

2
,n n

n n n
n

f z z a z a z a z z a z a
¥

=

= + + + ××× + + ××× = + Îå .                               (1.1)

Also, by S we will denote the family of all functions in A which are univalent in U .
Let T denote the subclass of all functions f in A of the form

( ) 2 3
2 3

2
,  0n n

n n n
n

f z z a z a z a z z a z a
¥

=

= - - - ×××- - ××× = - ³å .                            (1.2)

Some of the important and well-investigated subclasses of the univalent functions class S include the classes

( ) ( )*  andS Ca a , respectively, starlike and convex functions of order a [ )( )0,1aÎ on the open unit disk

U in the complex plane.

By definition, we have (see for details, [2, 3], also [8])

( ) ( )
( ) ( ) ( )

( )
* :  Re ,   ,  :  Re 1 ,

zf z zf z
S f A z U C f A z U

f z f z
a a a a

ì ü ì üæ ö æ ö¢ ¢¢ï ï ï ï= Î > Î = Î + > Îç ÷ ç ÷í ý í ýç ÷ ç ÷¢ï ï ï ïè ø è øî þ î þ
.

For [ )0,1b Î , interesting generalization of the function classes ( ) ( )*  andS Ca a are the classes ( )* ,S a b

and ( ),C a b , which defined as follows
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( ) ( )
( ) ( )

* , :  Re ,
(1 )

zf z
S f S z U

zf z f z
a b a

b b

ì üæ ö¢ï ï= Î > Îç ÷í ýç ÷¢ + -ï ïè øî þ
,

( ) ( ) ( )
( ) ( )

, :  Re ,
f z zf z

C f S z U
f z zf z

a b a
b

ì üæ ö¢ ¢¢+ï ï= Î > Îç ÷í ýç ÷¢ ¢¢+ï ïè øî þ
.

Let us ( ) ( )* *, ,TS T Sa b a b= Ç and ( ) ( ), ,TC T Ca b a b= Ç .

The classes ( )* ,TS a b and ( ),TC a b were extensively studied by Altintaş and Owa [1] and certain conditions
for hypergeometric functions and generalized Bessel functions for these classes were studied Moustafa [5] and
Porwal and Dixit [7].

A generalization of the function classes ( )* ,S a b and ( ),C a b is the function class ( )* , ;S C a b g for

[ ]0,1g Î , which defined as follows

( ) ( ) ( )
( ) ( )( ) ( ) ( ) ( ) ( )( )

2
* , ; : Re , .

1 1
zf z z f z

S C f S z U
z f z zf z zf z f z

g
a b g a

g b g b b

ì üæ ö¢ ¢¢+ï ï= Î > Îç ÷í ýç ÷¢ ¢¢ ¢+ + - + -ï ïè øî þ

In his fundamental paper [4] Jackson introduced the q - derivative operator qD of the function f , for ( )0,1qÎ
. The formulas for the q - derivative qD of a product and a quotient of functions are

[ ] 1n n
q q

D z n z -= , nÎ ,

where

[ ] 1

1

1
1

n n
k

q
k

qn q
q

-

=

-
= =

- å

is the q - analogue of the natural numbers n .
It is clear that

[ ]0 0,
q
= [ ]1 1,

q
= [ ]

1
lim

qq
n n

-®
=

and

( ) ( )
1

lim q
q

D f z f z
-®

¢=

for the function f AÎ .

For ( )0,1qÎ and [ )0,1aÎ , we define by ( )*
qS a and ( )qC a the subclasses of A which we will call,

respectively, q - starlike and q - convex functions of order a
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( ) ( )
( )

* :  Re ,q
q

zD f z
S f S z U

f z
a a

ì üï ï= Î > Îí ý
ï ïî þ

, ( )
( )( )

( )
:  Re ,q q

q
q

D zD f z
C f S z U

D f z
a a

ì üï ï= Î > Îí ý
ï ïî þ

.

Also, let’s ( ) ( )* *
q qTS T Sa a= and ( ) ( )q qTC T Ca a= .

Interesting generalization of the function classes ( ) ( )*  andq qS Ca a for [ )0,1b Î are the classes ( )* ,qS a b

and ( ),qC a b , which we define as follows

( ) ( )
( ) ( )

* , :  Re ,
(1 )

q
q

q

zD f z
S f A z U

zD f z f z
a b a

b b

ì üæ öï ï= Î > Îç ÷í ýç ÷+ -ï ïè øî þ
,

( ) ( ) ( )
( ) ( )

2

2, :  Re ,q q
q

q q

D f z zD f z
C f A z U

D f z zD f z
a b a

b

ì üæ ö+ï ï= Î > Îç ÷í ýç ÷+ï ïè øî þ
.

Inspired by the studies mentioned above, we introduce a generalization of the function classes ( )* ,qS a b and

( ),qC a b by the following definition.

Definition 1. A function f given by (1.1) is said to be in the class ( )* , ;q qS C a b g , [ ), 0,1 ,a b Î [ ]0,1g Î if
the following condition is satisfied

( ) ( )
( ) ( )( ) ( ) ( ) ( ) ( )( )

2 2

2
Re ,

1 1
q q

q q q

zD f z z D f z
z U

z D f z zD f z zD f z f z
g

a
g b g b b

æ ö+
ç ÷ > Î
ç ÷+ + - + -è ø

.

We will use ( ) ( )* *, ; , ;q q q qTS C T S Ca b g a b g= Ç .

It is clear that ( ) ( )* *, ;0 ,q q qS C Sa b a b= , ( ) ( )* , ;1 ,q q qS C Ca b a b= , ( )*

1
lim , ;q q
q

S C a b g
-®

( )* , ;S C a b g= and ( ) ( )* *

1
lim , ; , ;q q
q

TS C TS Ca b g a b g
-®

= . So, function classes ( )* , ;q qS C a b g and

( )* , ;q qTS C a b g are generalization of the previously known function classes ( )* ,qS a b , ( ),qC a b ,

( )* , ;S C a b g and ( )* , ;TS C a b g of analytic functions, respectively.

A variable x is said to have q - Poisson Distribution if it takes the values 0,1,2,3,… with probabilities
2 3

,  ,  ,  ,...
1! 2! 3!

p p p p
q q q q

p p pe e e e- - - -
, respectively, where p a parameter and

[ ] [ ] [ ] [ ]
2 3

0
1

2 ! 3 ! ! !

n n
x
q

nq q q q

x x x xe x
n n

¥

=

= + + + + ×××+ + ××× = å
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is q - exponential function and

[ ] [ ] [ ] [ ] [ ]! 1 2 3
q q q q q

n n= × × ×××

is the q - analogue of factorial

! 1 2 3n n= × × ××× .

Thus, for q - Poisson Distribution, we have

[ ]
( ) ,  0,1, 2,3,...

!

n
p

q q
q

pP x n e n
n

-= = = .

Now, we introduce a q - Poisson Distribution series as follows

[ ]
1

2
,

1 !

n p
q n

n q

p e
z z z U

n

- -¥

=

+ Î
-å . (1.3)

We can easily show that series (1.3) is convergent and the radius of convergence is infinity.

Let us, we define function :qF ® by

( ) [ ]
1

2
,

1 !

n p
q n

q
n q

p e
F z z z z U

n

- -¥

=

= + Î
-å . (1.4)

Let’s

( ) ( ) [ ]
1

2
2 ,

1 !

n p
q n

q q
n q

p e
G z z F z z z z U

n

- -¥

=

= - = - Î
-å . (1.5)

It is clear that qF AÎ and qG TÎ , respectively.

Now, we introduce two integral operators involving these functions qF and qG , respectively, as follows

( ) ( )
0

ˆ
z

q
q q

F t
F z d t

t
= ò (1.6)

and

( ) ( )
0

ˆ
z

q
q q

G t
G z d t

t
= ò . (1.7)
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In this study, using q - derivative we introduce certain subclasses of analytic and univalent functions on the open
unit disk in the complex plane. Here, we give some conditions for an analytic and univalent function to belong to
these classes. Applications of a q - Poisson Distribution series on the analytic functions are also given. In the study,

we introduce two integral operators ˆ
qF and ˆ

qG involving functions qF and qG defined, respectively, by (1.4) and
(1.5), and we aim to find the conditions for this integral operators to belonging to subclasses of analytic functions
defined above.

2. MAIN RESULTS

In this section, we will give sufficient condition for the integral operator ˆ
qF defined by (1.6), belonging to the class

( )* , ;q qS C a b g , and necessary and sufficient condition for the integral operator ˆ
qG defined by (1.7), belonging

to the class ( )* , ;q qTS C a b g , respectively.

In order to prove our main results, we need the following theorems, which one can be proved easily.

Theorem 1. Let f AÎ . Then, ( )* , ;q qf S C a b gÎ if the following condition is satisfied

[ ] ( ) [ ]( ) ( ) ( )( ){ }
2

1 1 1 1 1 1 1nq q
n

n n aab g b ag a b g a
¥

=

é ù- + - - - - - - £ -ë ûå .

The result obtained here is sharp.

Theorem 2. Let f TÎ . Then, ( )* , ;q qf TS C a b gÎ if and only if

[ ] ( ) [ ]( ) ( ) ( )( ){ }
2

1 1 1 1 1 1 1nq q
n

n n aab g b ag a b g a
¥

=

é ù- + - - - - - - £ -ë ûå .

The result obtained here is sharp.

A sufficient condition for the function ˆ
qF defined by (1.6) to belonging to the class ( )* , ;q qS C a b g is given by

the following theorem.

Theorem 3. Let 0p > and the following condition is satisfied

( ) ( )( ) ( )( )11 1 1 1 1 1p p
q qp e p eab g a b g a- -é ù- + - - - - £ -ë û . (2.1)

Then, the function ˆ
qF defined by (1.6) belongs to the class * ( , ; )q qS C a b g .

Proof. Since
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( ) [ ]
1

2

ˆ ,
!

n
p n

q q
n q

pF z z e z z U
n

-¥
-

=

= + Îå

according to Theorem 1, the function ˆ
qF belongs to the class * ( , ; )q qS C a b g if the following condition is satisfied

[ ] ( ) [ ]( ) ( ) ( )( ){ } [ ]
1

2
1 1 1 1 1 1 1

!

n
p

qq q
n q

pn n e
n

ab g b ag a b g a
-¥

-

=

é ù- + - - - - - - £ -ë ûå . (2.2)

Let

[ ] ( ) [ ]( ) ( ) ( )( ){ } [ ]
1

2
( , ; ) 1 1 1 1 1 1

!

n
p

q qq q
n q

pL n n e
n

a b g ab g b ag a b g
-¥

-

=

é ù= - + - - - - - -ë ûå .

Setting

[ ] ( ) [ ]( ) ( ) ( )( )

[ ] ( ) [ ] [ ] ( ) ( )( )

1 1 1 1 1 1

1 1 1 1 1 1

q q

q q q

n n

n n n

ab g b ag a b g

ab b ag ab g a b g

é ù- + - - - - - -ë û
= - - - + - - - - -é ùë û

and by simple computation, we write

( ) [ ] ( ) [ ] [ ] ( ) ( )( ){ } [ ]
( ) ( )( ) ( )( ) ( )( )

1

2

1

, ; 1 1 1 1 1 1
!

                      = 1 1 1 1 1 1 1 .

n

q pq q q
n q

p p
q q

pL n n n
e n

p e p e

a b g ab b ag ab g a b g

ab g a b g a

-¥

=

- - -

= - - - + - - - - -é ùë û

- + - - - - + - -

å

Therefore, condition (2.2) holds true if

( ) ( ) ( ) ( )( ) ( ) ( )11 1 1 1 1 1 1 1p p
q qp e p eab g a b g a a- - -- + - - - - + - - £ - ,

which is equivalent to (2.1).
Thus, the proof of Theorem 3 is completed.

From the Theorem 3, we can readily deduce the following results.

Corollary 1. If 0p > and satisfied the following condition

( ) ( )( )11 1 1 1p p
q qe p ea b a- -- - - £ - ,

then the function ˆ
qF defined by (1.6) belongs to the class *( , )qS a b .
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Corollary 2. If 0p > and satisfied the following condition

( )1 1ppeab a- £ -

then the function ˆ
qF defined by (1.6) belongs to the class ( , )qC a b .

Now, we give necessary and sufficient condition for the function ˆ
qG defined by (1.7), to belonging to the class

( )* , ;q qTS C a b g with the following theorem.

Theorem 4. If 0p > , then the function ˆ
qG defined by (1.7) belongs to the class * ( , ; )q qTS C a b g if and only if

satisfied the following condition

( ) ( )( ) ( )( )11 1 1 1 1 1p p
q qp e p eab g a b g a- -é ù- + - - - - £ -ë û . (2.3)

Proof. Firstly, let us prove the sufficiency of the theorem.
First of all, let us state that we will use Theorem 2 to prove the theorem.

It is clear that ˆ
qG TÎ . Let us show that the function ˆ

qG satisfies the sufficiency condition of Theorem 2.
From process of the proof of Theorem 3, we write

[ ] ( ) [ ]( ) ( ) ( )( ){ } [ ]
( ) ( )( ) ( )( ) ( )( )

1

2

1

1 1 1 1 1 1
!

1 1 1 1 1 1 1 .

n
p

q q
n q

p p
q q

pn n e
n

p e p e

ab g b ag a b g

ab g a b g a

-¥
-

=

- - -

é ù- + - - - - - -ë û

= - + - - - - + - -

å
(2.4)

Now, suppose that condition (2.3) is satisfied. It follows that

( ) ( )( ) ( )( ) ( )11 1 1 1 1 1p p
q qp e p eab g a b g a- - -- + - - - - £ - ,

which is equivalent to

( ) ( ) ( ) ( )( ) ( ) ( )11 1 1 1 1 1 1 1p p
q qp e p eab g a b g a a- - -- + - - - - + - - £ - .

Hence, from (2.4), we have

[ ] ( ) [ ]( ) ( ) ( )( ){ } [ ]
1

2
1 1 1 1 1 1 1

!

n
p

q q
n q

pn n e
n

ab g b ag a b g a
-¥

-

=

é ù- + - - - - - - £ -ë ûå . (2.5)

Thus, the function ˆ
qG satisfies the sufficiency condition of Theorem 2. Hence, the function ˆ

qG belongs to the

class * ( , ; )q qTS C a b g .
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With this, the proof of the sufficiency of theorem is completed.

Now, let us we prove of the necessity of theorem.

Assume that
*ˆ ( , ; )q q qG TS C a b gÎ . Then, from Theorem 2, we can write that condition (2.5) is satisfied.

It follows from (2.4) that

( ) ( ) ( ) ( )( ) ( ) ( )11 1 1 1 1 1 1 1 ,p p
q qp e p eab g a b g a a- - -- + - - - - + - - £ -

which is equivalent to the condition (2.3).
This completes proof of the necessity of theorem.
So, the proof of Theorem 4 is completed.

From the Theorem 4, we can readily deduce the following results.

Corollary 3. If 0p > , then the function ˆ
qG defined by (1.7) belongs to the class ( )* ,qTS a b if and only if

satisfied the following condition

( )1 1(1 ) (1 ) 1p
qp e pb a a- -- - + £ - .

Corollary 4. If 0p > , then the function ˆ
qG defined by (1.7) belongs to the class ( ),qTC a b if and only if

satisfied the following condition

( )1 1p
qpeab a- £ - .

Remark 1. The results obtained in Theorem 3, Theorem 4 and Corollary 1-4 are generalization of the results
obtained in Theorem 5,6 and Corollary 9-12 in [6].
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Abstract. In this paper, along with the investigation of their many attributes, the concept of neighborhood, connectedness
and compactness on pythagorean fuzzy soft topological space has been investigated. Some related theorems have been
established as well.

1. INTRODUCTION

The most popular theories dealing with uncertainty are fuzzy set theory [27], intuitionistic fuzzy set theory
[1], soft set theory [13], and rough set theory [16]. One of these theories, soft set theory, introduced by Molodtsov
[13], and is distinct from other established theories due to its parametrization tools. Soft set theory is free from fuzzy
set theory, rough set theory, underlying complexities and unclear information. Molodtsov introduced the basic
findings of the new theory and successfully applied it in a variety of ways, such as smoothness of functions, game
theory, operational analysis, Riemann integration, Peron integration, probability theory, etc. Maji et al. [10, 11, 12]
focused on soft set theory and introduced the application of soft sets to decision-making problems.

Applications of these ideas occur in topology and many fields of mathematics. Chang [3], Shabir and Naz
[21], Tanay et al.[23], D. Coker [4] and Z. Li et al. [9] were introduced the topological concepts of fuzzy, soft, fuzzy
soft, intuitionistic fuzzy and intuitionistic fuzzy soft, respectively. Also, Karatas and Akdag [7] studied intuitionistic
fuzzy soft continuous mapping, Osmanoglu and Tokat [15] studied intutionistic fuzzy soft topology, compactness
and connectedness.

Defining intuitionistic fuzzy sets as + ≤ 1 causes it to be useless in some problems. Therefore,
pythagorean fuzzy set (PFS) proposed in Yager [24, 25] is a new method for dealing with vagueness given
membership grade and non-membership grade satisfying condition + ≤ 1. Pythagorean fuzzy set theory
has a very similar relationship with intuitionistic fuzzy set theory. To define unclear information more adequately
and reliably than intuitionistic fuzzy sets, the notion of pythagorean fuzzy sets can be used. This theory has recently
attracted the attention of researcher [2, 6, 17, 19, 22, 28]. The Pythagorean fuzzy soft set theory was defined by Peng
et al. [18], and its significant properties were studied. The Pythagorean fuzzy soft matrix and its different potential
forms were investigated by Guleria and Bajaj [5]. M. Kirisci [8] defined the current Pythagorean fuzzy soft set form
and suggested a decision-making problem solution. Pythagorean fuzzy topology was introduced by Olgun et al [14].
Riaz et al. [20] and Yolcu and Ozturk [26] investigated Pythagorean fuzzy soft topological spaces.

In this paper, we will discuss the concept of neighbourhood in a pythagorean fuzzy soft topological space,
pythagorean fuzzy soft compactness and pythagorean fuzzy soft connectedness with some simple theorems.

2. PRELIMINARIES

Definition 1 [27] Let X be a universe. A fuzzy set F in X, F = {(x, μ (x)): x ∈ X}, where μ : X → 0,1] is the
membership function of the fuzzy set F; μ (x) ∈ 0,1] is the membership of x ∈ X in f. The set of all fuzzy sets over
X will be denoted by FS(X).

Definition 2. [1] An intuitionistic fuzzy set F in X is F = {(x, μ (x), v (x)): x ∈ X}, where μ : X → 0,1], v : X → 0,1]
with the condition 0 ≤ μ (x) + v (x) ≤ 1, ∀x ∈ X. The numbers μ , v ∈ 0,1] denote the degree of membership and
non-membership of x to F, respectively. The set of all intuitionistic fuzzy sets over X will be denoted by IFS(X).
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Definition 3. [13] Let E be a set of parameters and X be the universal set. A pair (F, E) is called a soft set over X,
where F is a mapping F: E → (X). In other words, the soft set is a parameterized family of subsets of the set X.

Definition 4. [10] Let E be a set of parameters and X be the universal set. A pair (F, E) is called a fuzzy soft set over
X, If F: E → FS(X) is a mapping from E into FS(X) where FS(X) is the set of all fuzzy subset of X.

Definition 5. [11] Let X be an initial universe E be a set of parameters. A pair (F, E) is called an intuitionistic fuzzy
soft set over X, where F is a mapping given by, F: E → IFS(X).

In general, for every e ∈ E, F(e) is an intuitionistic fuzzy set of X and it is called intuitionistic fuzzy value
set of parameter e. Clearly, F(e) can be written as a intuitionistic fuzzy set such that F(e) = {(x, μ (x), v (x)): x ∈
X}

Definition 6. [24] Let X be a universe  of discourse. A pythagorean fuzzy set (PFS) in X is given by, P =
{(x, μ (x), v (x)): x ∈ X} where, μ : X → 0,1] denotes the degree of membership and v : X → 0,1] denotes the
degree of nonmembership of the element x ∈ X to the set P with the condition that 0 ≤ (μ (x)) + (v (x)) ≤ 1.

Definition 7. [18] Let X be a universal set and E be a set of parameters. The pythagorean fuzzy soft set is defined as
the pair (F, E) where, F: E → PFS(X) and PFS(X) is the set of all Pythagorean fuzzy subsets of X. If μ (x) + v (x) ≤
1 and μ (x) + v (x) ≤ 1, then pythagorean fuzzy soft sets degenerate into intuitionistic fuzzy soft sets.

Definition 8. [18] Let A, B ⊆ E and (F, A), (G, B) be two pythagorean fuzzy soft sets over X. (F, A) is said to be
pythagorean fuzzy soft subset of (G, B) denoted by (F, A) ⊆ (G, B) if,

1. A ⊆ B
2. ∀e ∈ A, F(e) is a pythagorean fuzzy subset of G(e) that is, ∀x ∈ U and ∀e ∈ A, μ ( )(x) ≤ μ ( )(x) and

v ( )(x) ≥ v ( )(x). If (F, A) ⊆ (G, B) and (G, B) ⊆ (F, A) then (F, A), (G, B) are said to be equal.

Definition 9. [18] Let X be an initial universe E be a set of parameters and (F, E) be pythagorean fuzzy soft sets over
X. The complement of (F, E) is denoted by (F, E) and is defined by

(F, E) = {(e, (x, v ( )(x), μ ( )(x)): x ∈ X): e ∈ E}

Definition 10. [8]
a) A pythagorean fuzzy soft set (F, E) over the universe X is said to be a null pythagorean fuzzy soft set if μ ( )(x) =
0 and v ( )(x) = 1; ∀e ∈ E, ∀x ∈ X. It is denoted by 0( , ).
b) A pythagorean fuzzy soft set (F, E) over the universe X is said to be an absolute pythagorean fuzzy soft set if
μ ( )(x) = 1 and v ( )(x) = 0; ∀e ∈ E, ∀x ∈ X. It is denoted by 1( , ).

Definition 11. [8] Let (F, A) and (G, B) be two pythagorean fuzzy soft sets over the universe set X and E be a
parameter set and A, B ⊆ E. Then,
a) Extended union of (F, A) and (G, B) is denoted by (F, E) ∪ (G, B) = (H, C) where C = A ∪ B and (H, C) defined
by

(H, C) = {(e, (x, μ ( )(x), v ( )(x)): x ∈ X): e ∈ E}
where

μ ( )(x) =
μ ( )(x) , if e ∈ A − B
μ ( )(x) , if e ∈ B − A
max μ ( )(x), μ ( )(x) , if e ∈ A ∩ B

v ( )(x) =
v ( )(x) , if e ∈ A − B
v ( )(x) , if e ∈ B − A
min μ ( )(x), μ ( )(x) , if e ∈ A ∩ B
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b) Extended intersection of (F, A) and (G, B) is denoted by (F, E) ∩ (G, B) = (H, C) where C = A ∪ B and (H, C)
defined by

(H, C) = {(e, (x, μ ( )(x), v ( )(x)): x ∈ X): e ∈ E}
where

μ ( )(x) =
μ ( )(x) , if e ∈ A − B
μ ( )(x) , if e ∈ B − A
min μ ( )(x), μ ( )(x) , if e ∈ A ∩ B

v ( )(x) =
v ( )(x) , if e ∈ A − B
v ( )(x) , if e ∈ B − A
max μ ( )(x), μ ( )(x) , if e ∈ A ∩ B

Let X be an initial universe and PFS(X) denote the family of pythagorean fuzzy sets over X and PFSS(X, E)
the family of all pythagorean fuzzy soft sets over X with parameters in E.

Definition 12. [26]Let X ≠ ∅ be a universe set and τ ⊂ PFSS(X, E) be a collection of pythagorean fuzzy soft sets
over X, then τ is said to be on pythagorean fuzzy soft topology on X if

(i) 0( , ), 1( , ) belong to τ,
(ii) The union of any number of pythagorean fuzzy soft sets in τ belongs to τ,
(iii) The intersection of any two pythagorean fuzzy soft sets in τ belongs to τ.

The triple (X, τ, E) is called an pythagorean fuzzy soft topological space over X. Every member of τ is called a
pythagorean fuzzy soft open set in X.

Definition 13. [26]
a) Let X be an initial universe set, E be the set of parameters and τ = 0( , ), 1( , ) . Then τ is called a pythagorean
fuzzy soft indiscrete topology on X and (X, τ, E) is said to be a pythagorean fuzzy soft indiscrete space over X.
b) Let X be an initial universe set and E be the set of parameters and τ be the collection of all pythagorean fuzzy soft
sets which can be defined over X. Then τ is called a pythagorean fuzzy soft discrete topology on X and (X, τ, E) is
said to be a pythagorean fuzzy soft discrete space over X.

Definition 14. [26] Let (X, τ, E) be a pythagorean fuzzy soft topological space over X. A pythagorean fuzzy soft set
(F, E) over X is said to be a pythagorean fuzzy soft closed set in X, if its complement (F, E) belongs to τ.

Proposition 1. [26] Let (X, τ, E) be a pythagorean fuzzy soft topological space over X. Then, the following
properties hold.

(i) 0( , ), 1( , ) are pythagorean fuzzy soft closed sets over X.
(ii) The intersection of any number of pythagorean fuzzy soft closed sets is a pythagorean fuzzy soft

closed set over X.
(iii) The union of any two pythagorean fuzzy soft closed sets is a pythagorean fuzzy soft closed set over X.

Definition 15. [26] Let (X, τ, E) be a pythagorean fuzzy soft topological space over X and (F, E) be a pythagorean
fuzzy soft set over X. The pythagorean fuzzy soft closure of (F, E) denoted by pcl(F, E) is the intersection of all
pythagorean fuzzy soft closed supersets of (F, E).

Clearly pcl(F, E) is the smallest pythagorean fuzzy soft closed set over X which contains (F, E).

Definition 16. [26] Let (X, τ, E) be a pythagorean fuzzy soft topological space over X and (H, E) ∈ PFSS(X, E). The
pythagorean fuzzy soft interior of (H, E), denoted by pint(H, E), is the union of all the pythagorean fuzzy soft open
sets contained in (H, E).
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Definition 17. [26] Let (X, τ , E) , (Y, τ , E ) be two pythagorean fuzzy soft topological spaces and ψ: X → Y,
σ: E → E be mappings. Then a mapping f = (ψ, σ): PFSS(X, E) → PFSS(Y, E ) is defined as: for (H, A) ∈
PFSS(X, E), the image of (H, A) under f, denoted by f((H, A)), is a pythagorean fuzzy soft set in PFSS(Y, E ) given
by

μ ( )(e )(y) =
sup

∈ ( )∩ , ∈ ( )
μ ( )(x) , if ψ (y) ≠ ∅

0 , otherwise

v ( )(e )(y) =
inf

∈ ( )∩ , ∈ ( )
v ( )(x) , if ψ (y) ≠ ∅

1 , otherwise

For (F, B) ∈ PFSS(Y, E ), the inverse image of (F, B) under f, denoted by f ((F, B)), is a pythagorean fuzzy soft set
in PFSS(X, E) given by:

μ ( )(e)(x) = μ ( ( ))(ψ(x)),
v ( )(e)(x) = v ( ( ))(ψ(x))

for all e ∈ E and x ∈ X.

Definition 18. [26]  Let (X, τ , E) and (Y, τ , E ) be two pythagorean fuzzy soft topological spaces, a pythagorean
fuzzy soft mapping f = (ψ, σ): PFSS(X, E) → PFSS(Y, E ) is called a pythagorean fuzzy soft continuous if
f ((G, B)) ∈ τ for all (G, B) ∈ τ .

Definition 19. [20] A pythagorean fuzzy set (F, E) is called pyhagorean fuzzy soft point (PFS point), denoted as e ,
if for the element e ∈ E,
1. F(e) = 0( , )

2. F(e ) = 1( , ) for all e ∈ E\{e}.

3. MAIN RESULTS

Definition 20. Let (X, τ, E) be pythagorean fuzzy soft topological space over X. A pythagorean fuzzy soft set (F, E)
in (X, τ, E) is called a pythagorean fuzzy soft neighbourhood of the pythagorean fuzzy soft point e ∈ (F, E), if
there exists a pythagorean fuzzy soft open set (G, E) such that e ∈ (G, E) ⊆ (F, E).

Theorem 1. Let (X, τ, E) be pythagorean fuzzy soft topological space and (F, E) ∈ PFSS(X, E). Then (F, E) is a
pythagorean fuzzy soft open set if and only if (F, E) is a pythagorean fuzzy soft neighbourhood of its pythagorean
fuzzy soft points.

Proof. Let (F, E) be a pythagorean fuzzy soft open set and e ∈ (F, E). Then e ∈ (F, E) ⊆ (F, E). Therefore, (F, E)
is a pythagorean fuzzy soft neighbourhood of e .

Conversely, let (F, E) be a pythagorean fuzzy soft neighbourhood of its pythagorean fuzzy soft points and
e ∈ (F, E). Since (F, E) is a pythagorean fuzzy soft neighbourhood of the pythagorean fuzzy soft point e , there
exist (G, E) ∈ τ such that e ∈ (G, E) ⊆ (F, E). Since (F, E) =∪ {e : e ∈ (F, E)}, it follows that.(F, E) is a union of
pythagorean fuzzy soft open sets and hence (F, E) is a pythagorean fuzzy soft open set.

3.1 Compactness

Definition 21. A family Ω of PFSS(X, E) is a cover of a pythagorean fuzzy soft set (F, E) if
(F, E) ⊆∪ {(F , E): (F , E) ∈ Ω, i ∈ I}.

It is a pythagorean fuzzy soft open cover if each member of Ω is a pythagorean fuzzy soft open set. A subcover of Ω
is a subfamily of Ω which is also cover.
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Definition 22. Let (X, τ, E) be pythagorean fuzzy soft topological space and (F, E) ∈ PFSS(X, E). (F, E) is called
compact if each pythagorean fuzzy soft open cover of (F, E) has a finite subcover. Also (X, τ, E) is called
pythagorean fuzzy soft compact spaces if each pythagorean fuzzy soft open cover of (X, E) has a finite subcover.

Example 1. If X is finite then (X, τ, E) is pythagorean fuzzy soft compact space.

Example 2. Let (X, τ , E) and (Y, τ , E) be two pythagorean fuzzy soft topological spaces and τ ⊂ τ . Then,
(X, τ , E) is pythagorean fuzzy soft compact space if (Y, τ , E) is pythagorean fuzzy soft compact space.

Theorem 2. Let (X, τ, E) be pythagorean fuzzy soft topological space and (F, E) ∈ PFSS(X, E). (F, E) is a
pythagorean fuzzy soft compact set if and only if every pythagorean fuzzy soft open cover of (F, E) has a finite
pythagorean fuzzy soft subcover.

Proof. Let (F, E) ∈ PFSS(X, E) be a pythagorean fuzzy soft compact set and the family Ω = {(F , E): i ∈ I} is a
pythagorean fuzzy soft open cover of (F, E). Then we obtain

(F, E) ⊆ ∪
∈

(F , E) ⇒ (F, E) = ∪
∈

((F, E) ∩ (F , E)).
For each i ∈ I, ((F, E) ∩ (F , E)) ∈ τ, {(F, E) ∩ (F , E)} ∈ is a pythagorean fuzzy soft open cover of (F, E) and
(X, τ, E) is pythagorean fuzzy soft compact space for

∃i , . . . , i (F, E) = ∪ (F, E) ∩ (F , E) ⊆ ∪ F , E

is obtained. That is {(F , E)} , is a pythagorean fuzzy soft finite subcover of (F, E).
Conversely, Let {(G , E)} , be a pythagorean fuzzy soft open cover of (X, τ, E) . Since each i ∈ I ,

(G , E) ∈ τ there is (F , E) ∈ τ such that (G , E) = (F, E) ∩ (F , E). Thus {(F , E): i ∈ I} is a pythagorean fuzzy soft
open cover of (F, E) in (X, τ, E) and

∃(F , E), . . . , (F , E): (F, E) ⊆ ∪ F , E ⇒ (F, E) = (F, E) ∩ ∪ F , E

= ∪ (F, E) ∩ F , E = ∪ G , E

So, we obtain from the condition of theorem.

Theorem 3. Let (X, τ, E) be pythagorean fuzzy soft compact space and (F, E) be a pythagorean fuzzy soft closed
set over X. Then (F, E) is also pythagorean fuzzy soft compact.

Proof. Suppose that (G , E) be any open cover of (F, E). Then (X, E) ⊆ ∪
∈

(G , E) ∪ (F, E) , that is (G , E) together
with pythagorean fuzzy soft open set (F, E) is a open cover of (X, E). Therefore there exist a finite subcover
(G , E), (G , E), . . . , (G , E), (F, E) . So

(X, E) ⊆ (G , E) ∪ (G , E) ∪ . . .∪ (G , E) ∪ (F, E) .
Therefore

(F, E) ⊆ (G , E) ∪ (G , E) ∪ . . .∪ (G , E) ∪ (F, E)
which clear implies

(F, E) ⊆ (G , E) ∪ (G , E) ∪ . . .∪ (G , E)
since (F, E) ∩ (F, E) = 0( , ). Hence (F, E) has a finite subcover and so is pythagorean fuzzy compact.

Theorem 4. (X, τ, E) is pythagorean fuzzy soft compact space if and only if each family of pythagorean fuzzy soft
closed sets with the finite intersection property has a non-null intersection.

Proof. (⇒) Let Ω be any family of pythagorean fuzzy soft closed set such that ∩ {(F , E): (F , E) ∈ Ω, i ∈ I} = 0( , ).
Consider Ψ = {(F , E) : (F , E) ∈ Ω, i ∈ I}. So Ψ is a pythagorean fuzzy soft open cover of (X, τ, E) . As pythagorean



3rd INTERNATIONAL CONFERENCE
ON MATHEMATICAL AND RELATED SCIENCES:

CURRENT TRENDS AND DEVELOPMENTS
ICMRS 2020

20-22 NOVEMBER, 2020

159

fuzzy soft topological space is compact, there exist a finite subcovering (F , E) , (F , E) , . . . , (F , E). Then
∩ (F , E) = (X, E)\ ∪ (F , E) = (X, E)\(X, E) = 0( , ). Hence Ω cannot have finite intersection property.

(⇐) Suppose that a pythagorean fuzzy soft topological space is not compact. Then any pythagorean fuzzy
soft open cover of (X, E) has not a finite subcover. Let {(F , E): i ∈ I} be an open cover of (X, E). So ∪ (F , E) ≠

(X, E). Therefore ∩ (F , E) ≠ 0( , ). Thus {(F , E): i = 1, . . . , n} have finite intersection property. By using

hypothesis, ∩ (F , E) ≠ 0( , ) and so ∪ (F , E) ≠ (X, E). This is a contradiction. Thus pythagorean fuzzy soft
topological space is compact.

3.2 Connectedness

Definition 23. Let (X, τ, E) be pythagorean fuzzy soft compact space over X. A pythagorean fuzzy soft separation
of 1( , ) is a pair (F, E), (G, E) of no-null pythagorean fuzzy soft open sets such that

1( , ) = (F, E) ∪ (G, E), (F, E) ∩ (G, E) = 0( , )

Definition 24. A pythagorean fuzzy soft topological spaces (X, τ, E) is said to be pythagorean fuzzy soft connected
if there does not exist a pythagorean fuzzy soft separation of (X, E). Otherwise, (X, τ, E) is called a disconnected.

Example 3. Let X = {x , x }, E = {e , e } and τ = {0( , ), 1( , ), (F , E), (F , E)} where pyhagorean fuzzy soft set
(F , E), (F , E) are defined as following:

(F , E) = (e , {(x , 1,0), (x , 0,0)})
(e , {(x , 0,1), (x , 1,0)})

(F , E) = (e , {(x , 0,1), (x , 1,0)})
(e , {(x , 1,0), (x , 0,1)})

The pair (F , E) and (F , E) are  pythagorean fuzzy soft separation of 1( , ). Therefore (X, τ, E) is
pythagorean fuzzy soft disconnected spaces.

Theorem 5. A pythagoren fuzzy soft topological space (X, τ, E) is pythagorean fuzzy soft connected if and only if
the only soft sets in PFSS(X, E) that are both pythagorean fuzzy soft open and pythagorean fuzzy soft closed are only
0( , ) 1( , ).

Proof. Let (X, τ, E) be pythagorean fuzzy soft connected space. On the contrary, we suppose that (F, E) is both
pythagorean fuzzy soft open and closed different from 0( , ), 1( , ). Then (F, E) is also bouth pythagorean fuzzy
soft open and closed different from 0( , ), 1( , ). Also (F, E) ∩ (F, E) = 1( , ).Therefore (F, E), (F, E) is a
pythagorean fuzzy soft separation of 1( , ). This is a contradiction. So, the only pythagorean fuzzy soft closed and
open sets in PFSS(X, E) are 0( , ) and 1( , ).

Conversely, let (F, E), (G, E) be a pythagorean fuzzy soft separation of (X, τ, E) . Then (F, E) ≠ (G, E) i.e,
(F, E) = (G, E) . This shows that (G, E) is both pythagorean fuzzy soft open and pythagorean fuzzy soft closed
different from 0( , ), 1( , ). This is a contradiction. Hence, (X, τ, E) is connected.

Example 4. Since the only pythagorean fuzzy soft sets in PFSS(X, E) that are both pythagorean fuzzy soft open and
pythagorean fuzzy soft closed are 0( , ), 1( , ), pythagorean fuzzy soft indiscrete topological space (X, τ, E) is
pythagorean fuzzy soft connected.
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Example 5. Pythagorean fuzzy soft discrete topological space (X, τ, E) is pythagorean fuzzy soft disconnected.
Because for at least one pythagorean fuzzy soft set (F, E) in PFSS(X, E), pythagorean fuzzy soft set (F, E) is both
pythagorean fuzzy soft open and pythagorean fuzzy soft closed.

Corollary 1. Let (X, τ, E) be pythagorean fuzzy soft compact space over X. Then following statements are
equivalent.

1. (X, τ, E) is pythagorean fuzzy soft connected,
2. No-null pythagorean fuzzy soft open sets (F, E),(G, E)and 1( , ) = (F, E) ∪ (G, E) , (F, E) ∩ (G, E) = 0( , ).
3. The only pythagorean fuzzy soft sets in PFSS(X, E) that are both pythagorean fuzzy soft open and pythagorean

fuzzy soft closed in 0( , ) and 1( , ).

4. CONCLUSION

In this study, we introduced pythagorean fuzzy soft neighbourhood, pythagorean fuzzy soft compactness and
pythagorean fuzzy soft connectedness. Also we gave some basic properties of these concepts. We hope this study
will be useful.
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Abstract. The objective of this study is to determine the mathematical model to apply the effect of the laser scan speed on groove
size that is created on polyvinyl chloride (PVC). Polyvinyl chloride (PVC) which is a polymer is widely used in several industrial
segments [1]. Polyvinyl chloride (PVC) plates can be used as a dust collecting material of WMESP with its good chemical
stability, high strength, high corrosion and ageing resistance, insulation performance, and smooth surface [2]. When the scan
speed is increased, the interaction time between the laser beam and the material decreases. In this mathematical model obtained,
the change to groove size depending on the laser scan speed was modeled. To validate the mathematical model, the surfaces of
the PVC plate with 4.5 mm thickness were ablated with different scan speed at constant power. Since the CO2 lasers are more
widely used in the industry, the CO2 laser that has 10600 nm wavelengths and 130 Watts maximum power was used in the
ablation. The images of ablated PVC surfaces were taken with a Leica stereo microscope. Size measurements were made from
top view images obtained with optical microscope.
Keywords: Polyvinyl chloride (PVC), Laser ablation, CO2 lasers, Surface texture, Polymers.

1. INTRODUCTION

Polymer surfaces can be modified by chemical modification and physical modification. Surface texturing is used for
many applications such as changing the tribology properties of surface, increasing the wettability, manipulating the
adhesion property and hydrofobization. Numerous methods have been designed and used commercially, especially
for modifying polymer surfaces [3]. Chemical and mechanical methods used before laser processing of polymer
surfaces have many disadvantages. Chemical surface treatment has very limited use due to the difficulty of
controlling chemical reactions, especially environmental pollution. The main disadvantages in the processing of
polymer surfaces by mechanical methods are the wear of the tools used and the process precision is not continuous.

The use of a laser in material machining has many advantages. Since the laser beam can be adjusted with suitable
lenses to the desired focus, the laser beam of the desired beam intensity can be obtained. The laser with a suitable
wavelength of selection can be made according to each material and desired product type. Other important
advantages of using laser in material processing are that it can be processed precisely and the precision of the
processes is continuous. Although the ablation mechanism in laser material processing has not been fully explained,
it is strictly dependent on material properties and process parameters. The thermophysical properties of the material
such as specific heat, absorption coefficient, and thermal conduction are effective in the ablation mechanism.
Besides the laser properties such as the wavelength, frequency and power of the laser used, process parameters such
as scan speed, overlap rate, number of pulses and beam size determine the ablation and therefore the quality of the
processed material.
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In order to obtain surface textures such as grooves and dimples with the desired shape and size, the effects of laser
parameters on the surface texture were investigated in many studies [4,5]. Many optimization studies have been
carried out to determine the effects of process parameters for different materials and different purposes on material
quality and to obtain optimum parameters [6,7,8].
Mathematical modeling of the ablation mechanism and heat dissipation within the material in polymer processing
with laser are quite compatible with experimental studies [9,10,11]. This shows that mathematical modeling is
applicable in laser material processing.
In this study, the mathematical modeling of the width of the grooves created by laser on the PVC plate is made. In
the mathematical model, the Fourier method with a homogenous approach is used. To obtain a numerical model, the
effects of the laser scan speed on the groove size of PVC sheet were investigated and a simple mathematical model
of the heat distribution on surface is proposed. The initial conditions and boundary conditions

The heat distribution equation on surface can be written as below;
( , ) = ( , ) (1)

where, T is the temperature as a function of time "t" and distance "x", α is the thermal diffusivity of the investigate
material. The initial condition can be defined as; ( , 0) = , 0 < < . The boundary condition is; ( , ) = 0,

( , ) = 0 ( > 0). The boundary condition is homogeneous.

The temperature distribution as a function was obtained as given below;

( , ) = ckj + ( , )
2 ( ) 2

+ skj + ( , )
2 ( ) 2

−
l

(2)
Where S(x,t) is the heat source obtained from laser beam.

2. MATERIAL AND EXPERIMENTAL SETUP

The surfaces of 10 mm thick PVC sheets to be used were polished before ablation to cleaning and increase the
transparency of the surfaces. Some physical and thermal properties of PVC sheet which were used in ablation and
mathematical modeling have been listed in Table 1.

In the ablation process commercial 130 W CO2 laser was used with different scan speeds at constant power. Laser
spot diameter is 160 mm the laser beam intensity 6.5´109 W/m2.

Table 1
Some physical and thermal properties of PVC

Properties Value Unit
Density 1350 kg/m3

Coefficient of Thermal Expansion 5 cm / (cm °C)
Melting point 200 °C
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Heat Deflection Temperature at 0.5 MPa 70 °C
Heat Deflection Temperature at 1.8 MPa 69 °C
Thermal Conductivity x 10-5 0.15 W/mK

3. RESULTS AND DISCUSSION

In this study, mathematical model has been proposed for the groove formation on PVC sheet with various scan
speeds and constant power. Groove sizes were measured from optical microscope images of ablated surfaces of PVC
sheets.

Then we calculated Heat Deflection Zone boundary and molten zone boundary distances as 1648 mm and 1432 mm
respectively. Temperatures at Heat Deflection boundary and molten zone boundary are 343 K and 473 K
respectively. These values are used in temperature distribution equation obtain the Fourier coefficients which are
depends on the material properties. The sizes of grooves were used in the calculation of coefficients. The groove
widths were measured from images as seen in Table 2.
The coefficients in the temperature distribution equation (2) were calculated as jc (=221,7) and js (-315.4). These
are the coefficients depend on the PVC. Then, in order to verify the validity of mathematical model, new grooves
were obtained using 200, 300, 400, 500 mm/s scan speeds. These coefficients were used to calculate temperature
distribution for the same material and different scan speed.

Table 2 Laser scan speeds and groove widths measured from images.

Scan
Speed
mm/s

Molten
Zone width
(mm)

Heat Deflection
Zone Width
(mm)

100 1432 1648
200 1404 1604
300 1368 1570
400 1322 1520
500 1250 1430

Each laser scan speed and the coefficients obtained previously were used in the temperature distribution equation to
calculate the temperatures for each speed of laser beam. The calculated temperatures for boundaries are given in
Table 3.

Table 3. The theoretical and calculated temperatures for boundaries.
Scan speed

mm/s
T(x,t) (K) T(x,t) (K)

(calculated)
%

error
200 Melting 473 475.416 0.51
200 Heat Deflection 343 342.215 0.23
300 Melting 473 469.335 0.77
300 Heat Deflection 343 340.854 0.63
400 Melting 473 465.119 1.67
400 Heat Deflection 343 332.108 3.18
500 Melting 473 456.058 3.58
500 Heat Deflection 343 330,217 3.73
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4. CONCLUSION

Grooves were formed on the PVC material surface with different scanning speeds by laser. The geometries of the
formed grooves were examined with an optical microscope. Groove widths were measured from optical microscope
images. The heat distribution that causes the formation of grooves is modeled with the Fourier method. First,
material-specific coefficients were calculated with the proposed mathematical model. In order to prove the validity
of these coefficients, 3 different grooves obtained with 3 different scanning speeds were examined. The results
obtained show that the proposed mathematical model is reliable.
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Abstract. James’ Distortion theorems played a vital role to investigate Banach spaces containing nice copies of or ℓ and
their failure of the fixed point property for nonexpansive mappings. His tools leaded researchers to see that every classical
nonreflexive Banach space contains an isomorphic copy of either or ℓ . There have been many researches done using these
tools developed by James and followed by Dowling, Lennard and Turett mainly to see if a Banach space can be renormed to have
the fixed point property for nonexpansive mappings when there is failure. Recently, in a study in preparation, the first author
joined with his student Güven obtained alternative asymptotically isometric properties implying failure of the fixed point
property inside copies of or ℓ . Inspired by their study, we investigate James’ results and find relations with some new
properties originated from their alternative asymptotically isometric properties. Then, we show that we get some properties that
are alternative for Banach spaces to have isomorphic copies of or ℓ . So we obtain some results that imply failure of fixed
point property besides nonreflexivity.

1. INTRODUCTION AND PRELIMINARIES

A Banach space is called to have the fixed point property for non-expansive mappings [fpp(n.e.)] if any non-
expansive self-mappings defined on any non-empty closed, bounded and convex subset of the Banach space has a
fixed point. It has been seen that most classical Banach spaces fail the fixed point property and especially there is a
fact that if a Banach space is a non-reflexive Banach lattice then it fails the fixed point property if it contains either
an isomorphic copy of c or ℓ , Banach space of scalar sequences converging to 0, or an isomorphic copy of ℓ ,
Banach space of absolutely summable scalar sequences [6].
James [5] developed a tool which leaded researchers to understand if a Banach space contains an isomorphic copy of
c or ℓ . Strengthening James’ Distortion theorems, Dowling et al. [2] obtained new tools to test if a Banach space
contains an asymptotically isometric copy of ℓ which implies the failure of the fixed point property for
nonexpansive mappings. Considering the class of uniformly lipschitzian maps on closed, bounded, convex subsets
of a Banach space, they saw that James’s theorems can be used to get results concerning fixed points. Contiuning to
investigate James’ distortion theorems and their connection with fixed points, they also noticed that Banach spaces
containing an isomorpic copy of fail the fixed point property for asymtotically nonexpansive mappings. Next,
they worked on the concept of a Banach space containing an ai copy of ℓ or which is used as an important tool
in identifying Banach spaces failing FPP(n.e.).
Dowling et al. [4] showed an example of a Banach space such that their example and its all infinite dimensional
subspaces fail the fixed point property while none does not contain any asymptotically isometric copy of c .
The notions of asymptotically isometric copies of the classical Banach spaces c and ℓ have applications in metric
fixed point theory because they arise naturally in many places. For example, every non-reflexive subspace of
(L [0, 1], ‖. ‖ ), every infinite dimensional subspace of (ℓ ‖. ‖ ), and every equivalent renorming of ℓ contains an
asymptotically isometric copy ℓ and so all of these spaces fail the fixed point property [1, 3]. The concept of
containing an asymptotically isometric copy ℓ also arises in the isometric theory of Banach spaces in an intriguing
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way: a Banach space X contains an asymptotically isometric copy ℓ if and only if X∗ contains an isometric copy of
(L [0, 1], ‖. ‖ ) [3].

In a recent joint study under preparation, the first author and his student Güven recently introduced new properties
for a Banach space to check if it fails the fixed point property. They proved that a Banach space contains an
asymptotically isometric copy of ℓ if and only if it has one of the properties they introduced. So they obtained
equivalent properties. More importantly, in their study, they obtained alternative asymptotically isometric properties
to the notion of asymptotically isometric copy of . They also proved that if a Banach space has that alternative
asymptotically isometric property, then it fails the fixed point property for nonexpansive mappings. Then, as their
vital result, they showed that if a Banach space contains an asymptotically isometric copy of c then it has the
property he introduced but the converse is not true.
Inspired by their study, in this study, rather than the notions of asymptotic isometric copies of c or ℓ , we consider
the notion of isomorphic copy of c or ℓ . We investigate James’ results and find relations with some new properties
originated from their alternative asymptotically isometric properties. Then, we show that we get some properties that
are alternative for Banach spaces to have isomorphic copies of or ℓ . So we obtain some results that imply failure
of fixed point property besides nonreflexivity.
Now we provide some preliminaries before giving our main results.
Definition 1. Let be a non-empty closed, bounded, convex subset of a Banach space ( , ∥⋅∥). Let : → be a
mapping. We say is  nonexpansive if ∥ ( ) − ( ) ∥≤∥ − ∥ , ∈ . Also, we say that has the
fixed point property for nonexpansive mappings [fpp(n.e.)] if for all nonexpansive mappings : → , there exists

∈ with ( ) = .

As usual, (c , ∥⋅∥ ) is given by c : = x = (x ) ∈ : each x ∈ ℝ and lim
→

x = 0 . Further, ∥ x ∥ : = sup
∈

|x |,

for all x = (x ) ∈ ∈ c . Also, c is the space of sequences with finetely many nonzero terms. Furthermore,
(ℓ , ∥⋅∥ ) is the vector space of all absolutely summable scalar sequences such that ∥ x ∥ : = ∑  |x | for all
x = (x ) ∈ ∈ ℓ .
Note that throughout the study, we will denote the sequence ∗: = ( ∗) ∈ℕ by decreasig rearrangement of the finite
sequence = ( ) ∈ℕ; that is, the squence whose terms contain all non-zero terms of | | = (| |) ∈ℕ, arranged in
non-increasing order, followed by infinitely many zeros when | | has only finitely many non-zero terms.
Definition 2. [5] Let ( , ∥⋅∥) be a Banach space. We say that if contains an isomorphic copy of then there exist
a sequence ( ) in and scalars 0 < ≤ < ∞ such that for all finite sequences ( ) ,

| | ≤  ≤ | | .

Definition 3. [5] Let ( , ∥⋅∥) be a Banach space. We say that if contains an isomorphic copy of ℓ then there
exist a sequence ( ) in and scalars 0 < ≤ < ∞ such that for all ( ) ∈ ℓ ,

 | | ≤  ≤  | | .

Theorem 1. [5] If a Banach space ( , ∥⋅∥) contains an isomorphic copy of , then there exists a sequence ( ) in
such that for every > 0 and for all ( ) ∈ ,
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(1 − ) | | ≤  ≤ | | .

Theorem 2. [5] If a Banach space ( , ∥⋅∥) contains an isomorphic copy of ℓ , then there exists a sequence ( ) in
such that for every > 0 and for all ( ) ∈ ℓ ,

(1 − )  | | ≤  ≤  | | .

The following two theorems can be directly deduced from James’ work [5].

Theorem 3. A Banach space ( , ∥⋅∥) contains an isomorphic copy of if and only if there exist a sequence ( )
in and scalars 0 < ≤ < ∞ such that for all finite sequences ( ) ,

| | ≤  ≤ | |

and
→

∥ ∥= .

Theorem 4. A Banach space ( , ∥⋅∥) contains an isomorphic copy of ℓ if and only if there exist a sequence ( )
in and scalars 0 < ≤ < ∞ such that for all ( ) ∈ ℓ ,

 | | ≤  ≤  | |

and
→

∥ ∥= .

Theorem 5. [3] A Banach space contains an isomorphic copy of ℓ if and only if there is a null sequence ( ) in
(0,1) and a sequence ( ) in so that

(1 − )  | | ≤  ≤  | | ,

for all ( ) ∈ ℓ and for all ∈ ℕ.
Theorem 6. [3] A Banach space contains an isomorphic copy of if and only if there is a decreasing null
sequence ( ) in (0,1) and a sequence ( ) in so that

(1 − ) | | ≤  ≤ (1 + ) | |,

for all ( ) ∈ and for all ∈ ℕ.
Theorem 7. [3] A Banach space contains an isomorphic copy of if and only if there is a null sequence ( ) in
(0,1) and a sequence ( ) in so that

| | ≤  ≤ (1 + ) | | ,

for all ( ) ∈ and for all ∈ ℕ.
Theorem 8. [3] If a Banach space contains an isomorphic copy of , then fails the fixed point property for
asymptotically nonexpansive mappings on closed bounded convex subsets of . (A mapping : → is said to be
asymptotically nonexpansive if ∥ − ∥≤ ∥ − ∥ for all , ∈ and for all ∈ ℕ, where ( ) is a
sequence of real numbers converging to 1.)
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Theorem 9. [3] If a Banach space contains an isomorphic copy of ℓ , then fails the fixed point property for
uniformly Lipschitzian mappings on closed bounded convex subsets of . (A mapping : → is said to be
uniformly Lipschitzian if there exists ∈ [1, ∞) such that ∥ − ∥≤ ∥ − ∥ for all , ∈ and for all

∈ .)

Theorem 10. [6] The following properties are equivalent for every Banach lattice .
1. is reflexive
2.  No subspace of is isomorphic to ℓ or .

2. MAIN RESULTS

In this section, define a new property that implies the failure of the fixed point property for some classes of
nonexpansive mappings. That is, we show that if a Banach space has the property we introduce then it fails to have
the fixed point property for those classes of nonexpansive mappings. But firstly we show the relations of our
properties with the notions of copies of ℓ or . We show that we get equivalent properties for Banach spaces to
contain isomorphic copies of ℓ or so the properties we show also imply nonreflexivity of Banach lattices. Now,
let’s see the properties we are interested in. Note that from the properties below, the alternative asymptotically
idometric properties have been derived by Nezir and Güven in their recent study under preparation.
Definition 4. We will say a Banach space ( , ∥⋅∥) has property N-AIP-ℓ − 1 (which stands for new alternative
isomorphic property for spaces in a copy of ℓ ) if there exist a sequence ( ) in and scalars 0 < ≤ < ∞
such that for all ( ) ∈ ℓ ,

 | | +  
| |
2

≤  ≤  | | +  
| |
2

and
→

∥ ∥= .

Definition 5. We will say a Banach space ( , ∥⋅∥) has property N-AIP-ℓ − 2 if there exist a sequence ( ) in
and scalars 0 < ≤ < ∞ such that for all ( ) ∈ ℓ ,

 | | +  
| |
2

≤  ≤  | | +  
| |
2

and
→

∥ ∥= .

Definition 6. We will say a Banach space ( , ∥⋅∥) has property N-AIP- − 1 (which stands for new alternative
isomorphic property for spaces in a copy of ) if there exist a sequence ( ) in and scalars 0 < ≤ < ∞
such that for all finite sequences ( ) ,

| | +  
| |
2

≤  ≤ | | +  
| |
2

and
→

∥ ∥= .

Definition 7. We will say a Banach space ( , ∥⋅∥) has property N-AIP- − 2 if there exist a sequence ( ) in
and scalars 0 < ≤ < ∞ such that for all finite sequences ( ) ,
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∗

2
≤  ≤  

∗

2
and

→
∥ ∥= .

Theorem 11. A Banach space ( , ∥⋅∥) has property N-AIP-ℓ − 1 if and only if it contains an isomorphic copy of
ℓ .
Proof. Assume that a Banach space (X, ∥⋅∥) has property N-AIP-ℓ − 1. Then, there exist a sequence (x ) in X
and scalars 0 < k ≤ K < ∞ such that for all (a ) ∈ ℓ ,

k  |a | +  
|a |
2

≤  a x ≤ K  |a | +  
|a |
2

and lim
→

∥ x ∥= K. Now for each n ∈ ℕ, define y : = x . Then, for all (a ) ∈ ℓ ,

k  |a | ≤  a y ≤ K  |a |

and lim
→

∥ y ∥= K. Thus, by Theorem 4, X contains an isomorphic copy of ℓ .

Now, conversely, assume that X contains an isomorphic copy of ℓ . Then, there exist a sequence (x ) in X and
scalars 0 < k ≤ K < ∞ such that for all (a ) ∈ ℓ ,

k  |a | ≤  a x ≤ K  |a |

and lim
→

∥ x ∥= K. Thus,

2k
3

 |a | +  
|a |
2

≤  a x ≤ K  |a | +  
|a |
2

and lim
→

∥ x ∥= K. Therefore, X has property N-AIP-ℓ − 1 by Definition 4.

Theorem 12. A Banach space ( , ∥⋅∥) has property N-AIP-ℓ − 1 if and only if there is a null sequence ( ) in
(0,1) and a sequence ( ) in so that

(1 − )  | | +  
| |
2

≤  ≤  | | +  
| |
2

,

for all ( ) ∈ ℓ and for all ∈ ℕ.

Proof. Assume that a Banach space (X, ∥⋅∥) has property N-AIP-ℓ − 1. Let ( ) ∈ ℓ and fix ∈ ℕ. Then, by
the previous theorem and by Theorem 5, there is a null sequence ( ) in (0,1) and a sequence ( ) in so that

(1 − )  | |
1 + 2

2
≤  

1 + 2
2

≤  | |
1 + 2

2
.

Now define for each n ∈ ℕ, y : = x , then we get

(1 − )  |t | +  
|t |
2

≤  ≤  |t | +  
|t |
2

.

Conversely, assume that there is a null sequence ( ) in (0,1) and a sequence ( ) in so that
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(1 − )  |t | +  
|t |
2

≤  ≤  |t | +  
|t |
2

,

for all ( ) ∈ ℓ and for all ∈ . Then, pick ( ) ∈ ℓ and ∈ ℕ. Next for each n ∈ ℕ, define y : = x .

Then,

(1 − )  | | ≤  ≤  | | .

Hence, by Theorem 5, X contains an isomorphic copy of ℓ . Then, by the previous theorem, X has property N-AIP-
ℓ − 1.

Theorem 13. A Banach space ( , ∥⋅∥) has property N-AIP-ℓ − 2 if and only if it contains an isomorphic copy of
ℓ .
Proof. Assume that a Banach space (X, ∥⋅∥) has property N-AIP-ℓ − 2. Then, there exist a sequence (x ) in X
and scalars 0 < k ≤ K < ∞ such that for all (a ) ∈ ℓ ,

k  | | +  
| |
2

≤  a x ≤ K  | | +  
| |
2

and lim
→

∥ x ∥= K. Now for each n ∈ ℕ, define y : = x . Then, for all (a ) ∈ ℓ ,

2k
3

 |a | ≤  a y ≤ K  |a |

and lim
→

∥ y ∥= K. Thus, by Theorem 4, X contains an isomorphic copy of ℓ .

Now, conversely, assume that X contains an isomorphic copy of ℓ . Then, there exist a sequence (x ) in X and
scalars 0 < k ≤ K < ∞ such that for all (a ) ∈ ℓ ,

k  |a | ≤  a x ≤ K  |a |

and lim
→

∥ x ∥= K. Thus,

2k
3

 | | +  
| |
2

≤  a x ≤ K  | | +  
| |
2

and lim
→

∥ x ∥= K. Therefore, X has property N-AIP-ℓ − 2 by Definition 5.

Theorem 14. A Banach space ( , ∥⋅∥) has property N-AIP-ℓ − 2 if and only if there is a null sequence ( ) in
(0,1) and a sequence ( ) in so that

(1 − )  | | +  
| |
2

≤  ≤  | | +  
| |
2

,

for all ( ) ∈ ℓ and for all ∈ ℕ.
Proof. Assume that a Banach space (X, ∥⋅∥) has property N-AIP-ℓ − 2. Let ( ) ∈ ℓ and fix ∈ ℕ. Then, by
the previous theorem and by Theorem 5, there is a null sequence ( ) in (0,1) and a sequence ( ) in so that
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(1 − )  | | ≤  ≤  | | .

Then, take for each ∈ ℕ, ≔ 1 − (1 − ) . So

(1 − )
1 + 2

2
 | | ≤  ≤  | | ≤  | | +  

| |
2

.

But since for each ≥ ,

(1 − )  | |
1 + 2

2
≤ (1 − )  | |

1 + 2
2

,

we have

(1 − )  | | +  
| |
2

≤  ≤  | | +  
| |
2

.

Conversely, assume that there is a null sequence ( ) in (0,1) and a sequence ( ) in so that

(1 − )  | | +  
| |
2

≤  ≤  | | +  
| |
2

,

for all ( ) ∈ ℓ and for all ∈ . Fix an increasing sequence ( ) in ℕ and define for each ∈ ℕ, : =
∑  with : = 0 and = ∑  .

Then, we get for each ∈ ℕ,

∥ ∥≤
1
+ 1

( + 1) = 1

and thus, for all ( ) ∈ ℓ ,

 ≤  | |

 =

1
+ 1

 +
1

+ 1
 

+
1

+ 1
 + ⋯ +

1
+ 1

 + ⋯

≥  | |
+ 1

+  
| |
2 + 1

≥ (1 − )
+ 1

 | |

Then, for each k ∈ ℕ, define ≔ 1 − (1 − ) . Then,

(1 − )  | | ≤  ≤  | | .

Hence, by Theorem 5, X contains an isomorphic copy of ℓ . Then, by the previous theorem, X has property N-AIP-
ℓ − 2.
Theorem 15. If a Banach space has property N-AIP-ℓ − 1 or if it has property N-AIP-ℓ − 1, then fails the
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fixed point property for uniformly Lipschitzian mappings on closed bounded convex subsets of .
Proof. If a Banach space has property N-AIP-ℓ − 1 or if it has property N-AIP-ℓ − 1, then contains an
isomorphic copy of ℓ so fails the fixed point property for uniformly Lipschitzian mappings on closed bounded
convex subsets of .
Theorem 16. If a Banach space ( , ∥⋅∥) has property N-AIP- − 1 then it contains an isomorphic copy of .
Proof. Assume that a Banach space (X, ∥⋅∥) has property N-AIP- − 1. Then, there exist a sequence ( ) in
and scalars 0 < ≤ < ∞ such that for all finite sequences ( ) ,

| | +  
| |
2

≤  ≤ | | +  
| |
2

and
→

∥ ∥= . Hence,

| | ≤  ≤
3
2

| |

and
→

∥ ∥= .

Theorem 17. If a Banach space ( , ∥⋅∥) has property N-AIP- − 2 then it contains an isomorphic copy of .

Proof. Assume that a Banach space (X, ∥⋅∥) has property N-AIP- − 2. Then, there exist a sequence ( ) in
and scalars 0 < ≤ < ∞ such that for all finite sequences ( ) ,

 
∗

2
≤  ≤  

∗

2
and

→
∥ ∥= . Hence,

| | ≤  ≤ 2 | |

and
→

∥ ∥= .
Theorem 18. If a Banach space has property N-AIP- − 1 or if it has property N-AIP- − 2, then fails the
fixed point property for asymptotically nonexpansive mappings on closed bounded convex subsets of .

Proof. If a Banach space has property N-AIP- − 1 or if it has property N-AIP- − 2, then contains an
isomorphic copy of so fails the fixed point property for asymptotically nonexpansive mappings on closed
bounded convex subsets of .

Theorem 19. Let be a Banach lattice. If has one of the properties N-AIP- − 1, N-AIP- − 2, N-AIP-ℓ − 1
or  N-AIP-ℓ − 2 then is nonreflexive.

Proof. If has property N-AIP- − 1 or if it has property N-AIP- − 2, then contains an isomorphic copy of .
But if has property N-AIP-ℓ − 1 or if it has property N-AIP-ℓ − 2, then contains an isomorphic copy of ℓ . So,
it contains either or ℓ . Then, by Theorem 10, is nonreflexive.
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Abstract. In the paper, the authors introduce and investigate a new subclasses of meromorphic functions, which by making use
of the principle of subordination between analytic functions and a family of multiplier transforms. Some subordination and
superordination results associated with the multiplier transforms are proved and several sandwich-type results are also obtained.

1. INTRODUCTION

Let S denote the class of functions of the form

,=)(
0=

1 k
k

k
zazzf å

¥
- + (1.1)

which are analytic in the punctured open unit disk
{0}.\=:1}<<0a:{:=* UCU zndzz Î

Let )(UH be the linear space of all analytic functions in U . For NÎn and CÎa , we let

}.=)(:)({:=],[ 1
1 L+++Î +
+

n
n

n
n zazaazffna UHH

Let SÎgf , , where f is given by (1.1) and g is defined by

.=)(
0=

1 k
k

k
zbzzg å

¥
- +

Then the functions f and g with the Hadamard product (or convolution) gf * can be defined by

).)(*(=::=))(*(
0=

1 zfgzbazzgf k
kk

k
å
¥

- +

For two functions f and g , analytic in U , we say that the function f is subordinate to g in U , and write
),()()( UÎzzgzf p

if there exists a Schwarz function w , which is analytic in U with

)(1<)(a0=(0) UÎzznd ww
such that

( ) ).()(=)( UÎzzgzf w
As is known to all that

).()(a(0)=(0))()()( UUU gfndgfzzgzf ÌÞÎp

Furthermore, we have the following equivalence if the function g is univalent in U ,
).()(a(0)=(0))()()( UUU gfndgfzzgzf ÌÛÎp
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For the functions SÎf , the multiplier transform ln,
lD can be defined as follows [4]

).{0};:=0;0;>;(

1)(:=)(

0
*

0=

1,

ÈÎÎ

÷
ø
ö

ç
è
æ ++

+å
¥

-

NNU

D

nlz

zaklzzf k
k

n

k

ln

l
l

l
l (1.2)

We can note that the multiplier transforms ,1n
lD and ,1

1
nD are the operators introduced and studied by Sarangi and

Uralegaddi [13], and Uralegaddi and Somanatha [17, 18], respectively. Inspired by Wang and Wang[19], we can
easily find from the multiplier transforms that

),(
1)(1)!(

)(=)( *1

0=

1,
, UI Î÷÷

ø

ö
çç
è

æ
+++

+ +
¥

- å zza
klk

zzf k
k

n
k

k

ln

l
lm

ml (1.3)

where k)(m is the Pochhammer symbol defined by

ï
î

ï
í

ì

Î-++ ).(1)(1)(

0),=(1
:=)(

Nkk

k

k

mmm
m

L

Obviously, the multiplier transforms )( 0
,1
, NI Înn
ml is the well-known Cho-Kwon-Srivastava operator (see, for more

details, [2, 3, 5, 11, 14, 15] and references cited in).
It is readily verified from (1.3) that

( ) ),(1)()(=)( ,
,

,
1,

,
, zfzfzfz lnlnln

mlmlml mm III +-+ (1.4)
and

( ) ).()()(=)( 1,
,

,
,

1,
, zflzfzflz lnlnln ++ +- mlmlml ll III (1.5)

with 0.>a0>0,>0; ml ndln

2. PRELIMINARIES RESULTS

In order to prove our main results, we need the following definitions and lemmas.

Definition 1 ([1, p.440, Definition 1]) Let CUC ®´4:y , )(zq and )(zh be univalent in U . If )(zp is
analytic in U and satisfies the third-order differential subordination

),());(),(),(),(( 32 zhzzpzzpzzpzzp p¢¢¢¢¢¢y (2.1)

then )(zp is called a solution of the differential subordination. is called a dominant of the solutions of the
differential subordination or more simply a dominant if )()( zqzp p for all )(zp satisfying (2.1). A dominant

)(zq
²

that satisfies

),()( zqzq p
²

for all dominants of (2.1) is called the best dominant of (2.1).
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Be similar to the second order differential superordinations studied by Miller and Mocanu [8], Tang et al.
[16] defined the following third order differential superordinations.
Definition 2 ([16, p.3, Definition 5]) Lety : CUC ®´4 and the function )(zh be analytic in U . If the

function )(zp and

));(),(),(),(( 32 zzpzzpzzpzzp ¢¢¢¢¢¢y
are univalent in U and satisfies the third order differential superordination

),);(),(),(),(()( 32 zzpzzpzzpzzpzh ¢¢¢¢¢¢yp (2.2)

then )(zp is called a solution of the differential superordination.An analytic function )(zq is called a subordinant
of the solutions of the differential superordination or more simply a subordinant if )()( zpzq p satisfies (2.2) for

)(zp satisfies (2.2), A univalent subordinant )(zq
²

that satisfies

)()( zqzq
²

p

for all superordinants )(zq of (2.2) is said to be the best superordinant.

Lemma 1 (See [4]) Let q be convex univalent in U and CÎgy , with

.0,max>
)(
)(1

þ
ý
ü

î
í
ì

÷÷
ø

ö
çç
è

æ
-Â÷÷

ø

ö
çç
è

æ
+Â

g
y

zq
zzq

'

''

If p is analytic in U and

),()()()( zzqzqzzpzp '' gygy ++ p
then ,qp p and q is the best dominant.

Lemma 2 ([8, p.132],[9, p.190]) Let UÎq be univalent and fq , be analytic in a domain D containing )(Uq
with 0)( ¹wf when )(UqÎw . Set ))(()(=)( zqzqzzQ f¢ , and )())((=)( zzqzh sq + . Suppose that

UinstarlikeiszQ )(1. ,

0.>
)(
)(2. ÷÷
ø

ö
çç
è

æ ¢
Â

zQ
zhz

If (0),1][qp HÎ for some NÎn with DU Ì)(p and
)),(()())(())(()())(( zqzqzzqzpzpzzp fqfq ¢+¢+ p (2.3)

then qp p and q is the best dominant.

Lemma 3 ([6, p.332]) Let q be univalent in U and fq , be analytic in a domain D containing )(Uq . Suppose
that

Uinstarlikeiszqzqz ))(()(1. f¢ ,

0.>
))((
))((2. ÷÷
ø

ö
çç
è

æ ¢
Â

zq
zq

f
q

If Qqp ÇÎ (0),1][H , with DU Í)(p ; ))(()())(( zpzpzzp fq ¢+ is univalent in U and
)),(()())(())(()())(( zpzpzzpzqzqzzq fqfq ¢+¢+ p

then pq p and q is the best dominant.
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Lemma 4 ([7, p.822]) Let UÎq be univalent and CÎg , with 0>)(gÂ . If
)()(,(0),1][ zpzzpQqp ¢+ÇÎ gH is univalent in U and

),()()()()( UÎ¢+¢+ zzpzzpzqzzq gg p
then pq p and q is the best dominant.

Lemma 5 (See [12]) The function
0)()(1 )(1log ¹º- - nnn zez

is univalent in U if and only if n is either in the closed disk 1|1| -n or in the closed disk 1|1| +n .

The main purpose of the present paper is to investigate subordination, superordination and double sandwich
theorems results involving the multiplier transformation )(,

, zfln
mlI .

3. THE MAIN RELATIONSHIPS

Throughout this section unless otherwise mentioned the parameters ,,,,,,,, dsmlxg ln and ba, are
constrained as follows:

0.w,,,0,>0,>0,>0;0,0, ¹+Î¹¹ baithbaln Cdsmlxg
Firstly, we present following result.
Theorem 1 Let q be convex univalent in U with

0).(0,max>
)(
)(1 ¹

þ
ý
ü

î
í
ì

÷÷
ø

ö
çç
è

æ
-Â÷÷

ø

ö
çç
è

æ
+Â h

h
m

zq
zzq

'

''

(3.1)

If SÎf satisfies the subordination

,)()()()(1)( ,
,

,
1, m

hhh mlml
zzqzqzfzzfz

'
lnln +-++ pII (3.2)

then
),()(,

, zqzfz ln pmlI (3.3)
and q is the best dominant.

Proof. Suppose that the function h given by
).(:=)( ,

, zfzz ln
mlIh (3.4)

Taking logarithm derivative on both sides both sides of (3.4), we can get

( )
.

)(
)(

1=
)(
)(

,
,

,
,

zf
zfz

z
zz

ln

'ln'

ml

ml

I
I

h
h

+ (3.5)

By virtue of (1.4), (3.2) and (3.4), we have

.)()()()(
m

h
m

h zzqzqzzz
''

++ p
hh

According to Lemma 1, with
m
hg = and 1=y leads to (3.3).
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Corollary 1 Let 1<1 AB- and

0).(0,max>
1
1

¹
þ
ý
ü
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í
ì

÷÷
ø

ö
çç
è

æ
-Â÷

ø
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è
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+
-

Â h
h
m
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If SÎf satisfies the subordination

,
)(1
)(

1
1)()(1)( 2

,
,

,
1, Bz

zBA
Bz
Azzfzzfz lnln

+
-

+
+
+

-++ m
hhh mlml pII

then

,
1
1)(,

, Bz
Azzfz ln

+
+

pmlI

and
Bz
Az

+
+

1
1

is the best dominant.

On the basis of the method proving Theorem 1, considering (1.5) and Lemma 1, we easily get the following
results.

Corollary 2 Let q be convex univalent in U with

0).(0,max>
)(
)(1 ¹

þ
ý
ü
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í
ì
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(3.6)

If SÎf satisfies the subordination

,)()()()(1)( 1,
,

,
, l

hhh mlml
zlzqzqzfzzfz

'
lnln +-+ + pII

then
),()(1,

, zqzfz ln p+
mlI

and )(zq is the best dominant.

Corollary 3 Let 1<1 AB- and
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If SÎf satisfies the subordination

,
)(1
)(

1
1)()(1)( 2

1,
,

,
, Bz

zBAl
Bz
Azzfzzfz lnln

+
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+
+
+

-+ +

l
hhh mlml pII

then

,
1
1)(1,

, Bz
Azzfz ln

+
++ pmlI

and
Bz
Az

+
+

1
1

is the best dominant.

Theorem 2 Let q be univalent in U . Suppose that q satisfies
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0.>
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(3.7)

Let

( ) ( )
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If
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and q is the best dominant.

Proof. Defined the function p by
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Then, differentiating both sides of (3.10) with respect to z logarithmically, we have
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If we take

,=)(and1=)(
w
gwfwq

such that )(wq is analytic in C and that 0)( ¹wf is analytic in {0}.\C Also let
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From (3.7), we find that )(zQ is starlike univalent in U , and
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Thus, through Lemma 2 to (3.8), we obtain the desired result.

Taking 1=1,=0,= gba and
Bz
Azzq

+
+

1
1=)( in Theorem 2, we derive the following results.

Corollary 4 Let 0.1,<1 ¹- xAB If ,SÎf and
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)(1

)(
)(

11 ,
,

,
,

BzAz
zBA

zf
zfz

ln

'ln

++
-

+÷
÷

ø

ö

ç
ç

è

æ
++ p

ml

mlx
I
I

then
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p
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is the best dominant.

With the method of proof of Theorem 2, similarly, we easily get the following result.
Corollary 5 Let q be univalent in U . Suppose that q satisfies (3.7). Let
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and q is the best dominant.

Theorem 3 Let q be univalent in U . Suppose that q satisfies
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and q is the best dominant.

Proof. Let us consider a function F defined by
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0).0;(
)()(

:=)(
,
,

,
1, ¹+¹÷

÷
ø

ö
ç
ç
è

æ

+
+

F + ba
ba

zfbzzfaz
z

lnln

x
x

mlml II
(3.14)

Differentiating on both sides of (3.14) logarithmically, we get
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Thus, the result follows from Lemma 2, immediately.

Taking 1==0,= gba and
Bz
Azzq

+
+

1
1=)( in Theorem 3, we derive the following corollary.

Corollary 6 Let
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1
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is the best dominant.

By applying the method of proof of Theorem 3, similarly, we easily obtain the following result.

Corollary 7 Let q be univalent in U. Suppose that q satisfies (3.12) and
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+

+

+

zfbzfa
zfbzzfaz

ba
zfbzzfaz

z

lnln

'ln'ln

lnln

II
II

II

(3.15)

If
),()()( zzqzqz 'gdsv ++p

then

),(
)()( 1,

,
,
, zq

ba
zfbzzfaz lnln

p

x

mlml

÷
÷
ø

ö
ç
ç
è

æ

+
+ +II

and q is the best dominant.

In view of Lemma 2 and Lemma 5, we get the following results.

Theorem 4 Let 1<0 a . Suppose that CÎg with 0¹g and satisfy either 1|1)(12| +-amg or
1.|1)(12| --amg If f satisfies

,>
)(
)(

,
,

,
1, a

ml

ml

÷
÷
ø

ö
ç
ç
è

æ
Â +

zf
zf

ln

ln

I
I

(3.16)

then

( ) ),(=
)(1
1)( )(12

,
, zq

z
zfz ln

amg

g
ml --

pI

and q is the best dominant.

Proof. Let

( ) ).()(=)( ,
, UI ÎY zzfzz ln g
ml (3.17)

Combining (1.4),(3.16) and (3.17), we derive

).(
1

)2(11
)(
)(1 UÎ

-
-+

Y
Y

+ z
z

z
z
zz ' a

mg
p (3.18)

If we set

,1=)(and1=)(,
)(1
1=)( )(12 mgw

wfwqamg -- z
zq

then q is univalent by the condition of the theorem and Lemma 5. Furthermore, it is easy to show that )(, wqq
and )(wf satisfy the conditions of Lemma 2. Since

z
zzqzzqzQ '

-
-

1
)2(1=))(()(=)( af

is univalent starlike in U and

z
zzQzqzh

-
-+

+
1

)2(11=)())((=)( aq

satisfy the conditions of Lemma 2. Thus we redily arrive at the result follows from (3.18) immediately.
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Corollary 8 Let 1<0 a and 1.g If SÎf satisfies the condition (3.16) then

( ) gamg
ml

1/)(12,
, 2>)( --

Â zfz lnI
and the bound g1/2- is the best possible.

By similarly applying the method of proof of Theorem 4 we easily get the following results.

Corollary 9 Let 1.<0 a Suppose that CÎg with 0¹g and satisfy either 1|1)/(12| +- lagl or
1.|1)/(12| -- lagl If f satisfies

,>
)(
)(

1,
,

,
, a
ml

ml

÷
÷
ø

ö
ç
ç
è

æ
Â + zf

zf
ln

ln

I
I

(3.19)

then

( ) ),(=
)(1

)( )(12
1,

, zq
z

lzfz ln
agl

g
ml -
+

-
pI

and q is the best dominant.

Corollary 10 Let 1<0 a and 1.g If SÎf satisfies the condition (3.19), then

( ) gagl
ml

1/)/(121,
, 2>)( --+Â

lln zfzI
and the bound g1/2- is the best possible.

Next, we present some superordination results involving the multiplier transformation )(,
, zfln
mlI .

Theorem 5 Let q be convex univalent in U and 0.>)(hÂ Also let

Qqzfz ln ÇÎ (0),1][)(,
, HI ml

and
)()(1)( ,

,
,

1, zfzzfz lnln
mlml hh II -++

is univalent in U . If

),()(1)()()( ,
,

,
1, zfzzfzzzqzq lnln

'

mlml hh
m

h II -++ +p (3.20)

then
),()( ,

, zfzzq ln
mlIp (3.21)

and q is the best subordinant.

Proof. Let
).(=)( ,

, zfzz ln
mle I

We easily get that

)()(1)(=)()( ,
,

,
1, zfzzfzzzz lnln

'

mlml hh
m
ehe II -++ + (3.22)

Next, combining (3.20), (3.22) and Lemma 4, we easily derive the assertion (3.21) of Theorem 5.
With the aid of (1.5) and Lemma 4 and by similarly applying the method of proof of Theorem 5, we can get

the following result.
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Corollary 11 Let q be convex univalent in U and 0.>)(hÂ Also let

Qqzfz ln ÇÎ+ (0),1][)(1,
, HI ml

and
)()(1)( 1,

,
,
, zfzzfz lnln +-+ mlml hh II

is univalent in U. If

),()(1)()()( 1,
,

,
, zfzzfzzlzqzq lnln

'
+-++ mlml hh

l
h IIp

then
),()( 1,

, zfzzq ln+
mlIp

and q is the best subordinant.

By virtue of Lemma 3, and with similarly applying the method of proof of Theorem 5, we get the following
results.
Corollary 12 Let q be convex univalent in U . Also let

,(0),1][
)()( ,

,
,

1, Qq
ba

zfbzzfaz lnln

ÇÎ÷
÷
ø

ö
ç
ç
è

æ

+
++ H

II
x

mlml

and k be defined by (3.8) is univalent in U . If

),(
)(
)(1 z

zq
zzq'

kg p+

then

,
)()(

)(
,
,

,
1,

x

mlml

÷
÷
ø

ö
ç
ç
è

æ

+
++

ba
zfbzzfaz

zq
lnln II

p

and q is the best subordinant.

Corollary 13 Let q be convex univalent in U . Also let

,(0),1][
)()( 1,

,
,
, Qq

ba
zfbzzfaz lnln

ÇÎ÷
÷
ø

ö
ç
ç
è

æ

+
+ +

H
II

x

mlml

and r be defined by ((3.11) is univalent in U. If

),(
)(
)(1 z

zq
zzq'

rg p+

then

,
)()(

)(
1,

,
,
,

x

mlml

÷
÷
ø

ö
ç
ç
è

æ

+
+ +

ba
zfbzzfaz

zq
lnln II

p

and q is the best subordinant.

Corollary 14 Let q be convex univalent in U . Also let

,(0),1][)(,
, Qqzfz ln ÇÎHI ml
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and t be defined by (3.13) is univalent in U. If q satisfies

0>)(
÷÷
ø

ö
çç
è

æ
Â

g
s zq'

(3.23)

and
),()()( zzzqzq ' tgds p++

then

,
)()(

)(
,
,

,
1,

x

mlml

÷
÷
ø

ö
ç
ç
è

æ

+
++

ba
zfbzzfaz

zq
lnln II

p

and q is the best subordinant.

Corollary 15 Let q be convex univalent in U . Also let

,(0),1][)(1,
, Qqzfz ln ÇÎ+ HI ml

and v be defined by (3.15) is univalent in U. If q satisfies (3.25) and

),()()( zzzqzq ' jgds p++
then

,
)()(

)(
1,

,
,
,

x

mlml

÷
÷
ø

ö
ç
ç
è

æ

+
+ +

ba
zfbzzfaz

zq
lnln II

p

and q is the best subordinant.

Finally, combining the results of subordination and superordination mentioned above, we get the following
sandwich-type results.

Corollary 16 Let 1q and 2q be convex univalent in ,U and 0.>)(hÂ Suppose that 2q satisfies (3.1) and

.(0),1][)(,
, Qqzfz ln ÇÎHI ml Let

)()(1)( ,
,

,
1, zfzzfz lnln

mlml hh II -++

is univalent in U . If

,)()()()(1)()()( 2
2

,
,

,
1,

1
1 m

hhh
m

h
mlml

zzqzqzfzzfzzzqzq
'

lnln
'

+-++ + pp II

then
),()()( 2

,
,1 zqzfzzq ln pp mlI

and 1q and 2q are, respectively, the best subordinant and the best dominant.

Corollary 17 Let 3q and 4q be convex univalent in ,U and 0.>)(hÂ Suppose that 4q satisfies (3.6) and

(0),1][)(1,
, qzfz ln HI Î+
ml Ç Q. Let

)()(1)( 1,
,

,
, zfzzfz lnln +-+ mlml hh II

is univalent in U. If

,)()()()(1)()()( 4
4

1,
,

,
,

3
3 l

hhh
l

h
mlml

zlzqzqzfzzfzzlzqzq
'

lnln
'

+-++ + pp II
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then
),()()( 4

1,
,3 zqzfzzq ln pp +
mlI

and 3q and 4q are, respectively, the best subordinant and the best dominant.

Corollary 18 Let 5q be convex univalent and 6q be univalent in U . Suppose that If 6q satisfies (3.7) and

.(0),1][
)()( ,

,
,

1, Qq
ba

zfbzzfaz lnln

ÇÎ÷
÷
ø

ö
ç
ç
è

æ

+
++ H

II
x

mlml

Let k be defined by (3.8) is univalent in U. If

,
)(
)(1)(

)(
)(1

6

6

5

5

zq
zzqz

zq
zzq ''

gkg ++ pp

then

),(
)()(

)( 6

,
,

,
1,

5 zq
ba

zfbzzfaz
zq

lnln

pp

x

mlml

÷
÷
ø

ö
ç
ç
è

æ

+
++ II

and 5q and 6q are, respectively, the best subordinant and the best dominant.

Corollary 19 Let 7q be convex univalent and 8q be univalent in U . Suppose that 8q satisfies (3.7) and

.(0),1][
)()( 1,

,
,
, Qq

ba
zfbzzfaz lnln

ÇÎ÷
÷
ø

ö
ç
ç
è

æ

+
+ +

H
II

x

mlml

Let r be defined by (3.11) is univalent in U . If

,
)(
)(1)(

)(
)(1

8

8

7

7

zq
zzqz

zq
zzq ''

grg ++ pp

then

),(
)()(

)( 8
1,

,
,

7 zq
ba

zfbzQzfaz
zq

ln

pp

xl
baml

÷
÷
ø

ö
ç
ç
è

æ

+
+ +I

and 7q and 8q are, respectively, the best subordinant and the best dominant.

Corollary 20 Let 9q be convex univalent and 10q be univalent in U . Suppose that 9q satisfies (3.23), 10q
satisfies (3.12) and

.(0),1][)(,
, Qqzfz ln ÇÎHI ml

Let t be defined by (3.13) is univalent in U . If
),()()()()( 101099 zzqzqzzzqzq '' gdstgds ++++ pp

then

),(
)()(

)( 10

,
,

,
1,

9 zq
ba

zfbzzfaz
zq

lnln

pp

x

mlml

÷
÷
ø

ö
ç
ç
è

æ

+
++ II

and 9q and 10q are, respectively, the best subordinant and the best dominant.
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Corollary 21 Let 11q be convex univalent and 12q be univalent in U . Suppose that 11q satisfies (3.23), 12q
satisfies (3.12), and

.(0),1][)(1,
, Qqzfz ln ÇÎ+ HI ml

Let v be defined by (3.15) is univalent in U . If
),()()()()( 12121111 zzqzqzzzqzq '' gdsvgds ++++ pp

then

),(
)()(

)( 12

1,
,

,
,

11 zq
ba

zfbzzfaz
zq

lnln

pp

x

mlml

÷
÷
ø

ö
ç
ç
è

æ

+
+ +II

and 11q and 12q are, respectively, the best subordinant and the best dominant.
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The Hadamard-type Padovan-p Sequences Modulo m
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Abstract. In [1], Akuzum defined the Hadamard-type Padovan-p sequence by using Hadamard-type product of characteristic
polynomials of Padovan sequence and the Padovan-p sequence as shown:

2 3 1
h h h h h

n p n p n n nP P P P P+ + + + += - + -

for 4p ³ and 0n ³ with initial constants 0 1 0h h h
pP P P= = = = and 1 1h

pP + = . Also, Akuzum [1] obtained

miscellaneous properties of the Hadamard-type Padovan-p sequence. The study of recurrence sequences in groups began with
the earlier work of Wall [10] where the ordinary Fibonacci sequences in cyclic groups were investigated. In this work, we
obtain the cyclic groups which are produced by generating matrix of the Hadamard-type Padovan-p sequence when read
modulo m . Also, we study the Hadamard-type Padovan-p sequence modulo m , and then we derive the relationship between
the order of the cyclic groups obtained and the periods of the Hadamard-type Padovan-p sequence modulo m .

1. INTRODUCTION

In [1], Akuzum defined the Hadamard-type Padovan-p sequence by using Hadamard-type product of characteristic
polynomials of Padovan sequence and the Padovan-p sequence as shown:

2 3 1
h h h h h

n p n p n n nP P P P P+ + + + += - + - (1)

for 4p ³ and 0n ³ with initial constants 0 1 0h h h
pP P P= = = = and 1 1h

pP + = .

Also in [1], the Hadamard-type Padovan-p matrix was given as:

( ) ( )2 2

0 1 0 0 1 0 1 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

p

p p

M

+ ´ +

- -é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú=
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ë û

L
L

L
L

L
M O O O O O O M M

L
L

L

Then the author in [1] obtained that
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( )

1 2 1 2 1

1 2 3 1 2 1

1 3 4 2 3 2
*

1 2 1 2 1

h h h h h h h
n p n p n p n p n p n p n p

h h h h h h h
n p n p n p n p n p n p n p
h h h h h h h

n n p n p n p n p n p n p n p
p

p
h h h h h h h

n n n n n n n
h

n n

P P P P P P P
P P P P P P P

P P P P P P P
M

M
P P P P P P P
P P

+ + + + + - + - + + - +

+ + + + - + - + - + - + -

+ - + + - + - + - + - + -

+ + - - -

+

- - -
- - -
- - -

=

- - -
M M M M M

1 2 3 1 2 1
h h h h h h

n n n n nP P P P P- - - - -

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú

- - -ê úë û

(2)

where *
pM is a ( ) ( )3 3p p- ´ - matrix as follow:

3 1 4 2 2 1 2 3

2 3 1 2 2 2 4

1 1 2 2 3 2 5

3 1 4 2 1 3

2 3 1

h h h h h h
n p n p n p n p n p n p

h h h h h h
n p n p n p n p n p n p
h h h h h h

n p n p n p n p n p n p

h h h h h h
n n n n n p n p

h h h
n n n n

P P P P P P
P P P P P P
P P P P P P

P P P P P P
P P P P

+ + + + + + + + + - + -

+ + + + + + + + - + -

+ + + - + + + + - + -

+ + + + + - + -

+ + +

- - -
- - -
- - -

- - -
- -

L
L
L

M M M
L

2 4 .
h h h

n p n pP P+ - + -

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú

-ê úë ûL

It is important to note that ( )det 1 p
pM = - .

The study of recurrence sequences in groups began with the earlier work of Wall [10] where the ordinary Fibonacci
sequences in cyclic groups were investigated. Then, the concept extended to some special linear recurrence
sequences by many studies; see for example, [2-9, 11]. In most of these studies, the linear recurrence sequences
were examined by modulo m and the cyclic groups via some special matrices were obtained. In this work, we obtain
the cyclic groups which are produced by generating matrix of the Hadamard-type Padovan-p sequence when read
modulo m . Also, we study the Hadamard-type Padovan-p sequence modulo m , and then we derive the relationship
between the order of the cyclic groups obtained and the periods of the Hadamard-type Padovan-p sequence modulo
m .

2. MAIN RESULTS

Given an integer matrix ijH hé ù= ë û , ( )H modm means that all entries of H are modulo m, that is

( ) ( )( )ijH modm h modm= .  Let us consider the set ( ){ }mod  0i
m

H H m i= ³ . If ( )gcd ,det =1m H ,

then the set
m

H is a cyclic group.  Let the notation
m

H denote the order of the set
m

H .

Since ( )det 1 p
pM = - it is clear that the set p m

M is a cyclic group for every positive integer m .

Theorem 1. Let r be a prime number and k the largest positive integer such that = kp pr r
M M . Then

= .w k
wp pr r

M r M- for every w k³ . In particular, if 2p pr r
M M¹ , then

1= .w
wp pr r

M r M- for every 2w³ .



3rd INTERNATIONAL CONFERENCE
ON MATHEMATICAL AND RELATED SCIENCES:

CURRENT TRENDS AND DEVELOPMENTS
ICMRS 2020

20-22 NOVEMBER, 2020

192

Proof. Suppose that t is a positive integer and mp r
M is denoted by ( )mhP r . Since

( ) ( )
1

1mod
thP r t

pM I r
+

+º , we can write ( ) ( )
1

mod
thP r t

pM I r
+

º where I is the ( ) ( )2 2p p+ ´ + identity

matrix. Thus we get that ( )thP r divides ( )1thP r + . Also, writing ( ) ( ) ( )( )=
thP r t t

p ijM I m r+ , we obtain

( ) ( ) ( )( )( ) ( )( ) ( )1

=0
= = mod

rt r ihP r r t tt t t
p ij ij

i

r
M I m r m r I r

i
× +æ ö

+ ºç ÷
è ø

å

by the binomial expansion. So we get that ( )1thP r + divides ( )thP r r× . Thus, ( ) ( )1t thP r hP r+ = or

( ) ( )1t thP r hP r r+ = × . It is clear that ( ) ( )1t thP r hP r r+ = × holds if and only if there exists an ( )t
ijm integer

which is not divisible by r . Since k is the largest positive integer such that ( ) ( )khP r hP r= , we have

( ) ( )1k khP r hP r +¹ . Then there is an ( )1k
ijm + which is not divisible by r . So we get that

( ) ( )1 2 .k khP r hP r+ +¹ The proof is finished by induction on k .

If we reduce the Hadamard-type Padovan-p sequence { }h
nP modulo m and denote ( )modh

nP m by ,h m
nP , then

we obtain the following repeating sequence:

{ } { }, , , , ,
0 1 2, , , , ,h m h m h m h m h m

n iP P P P P= K K

Note that it has the same recurrence relation as in (1).

A sequence is periodic if, after a certain point, it consists only of repetitions of a fixed subsequence. The number of
elements in the shortest repeating subsequence is called the period of the sequence. For example, the sequence

, , , , , , , , , ,a b c d b c d b c d K is periodic after the initial element a and has period 3. A sequence is simply periodic
with period k if the first k elements in the sequence form a repeating subsequence. For example, the sequence

, , , , , , , , , , , ,a b c d a b c d a b c d K is simply periodic with period 4.

Theorem 2. The sequence { },h m
nP is simply periodic.

Proof. Let us consider set ( ){ }0 1 1 i= , , ,   g 's are integers such that  0 1p p iG g g g g m+ £ £ -K . Then, we

have 2p
pG g += . Since there are 2pm + distinct 2p + -tuples of elements of mZ , at least one of the 2p + -

tuples appears twice in the sequence { },h m
nP . So, the subsequence following this 2p + -tuple repeats; hence, the

sequence is periodic. Let
, , , , , ,
1 1 2 2 1 1, , ,h m h m h m h m h m h m

i j i j i p j pP P P P P P+ + + + + + + +º º ºK

such that >i j , then ( )mod 2i j pº + . From the definition of the Hadamard-type Padovan-p sequence, we can
easily get that
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, , , , , ,
1 1 0, , ,h m h m h m h m h m h m

i j i j i jP P P P P P- - -º º ºK

which implies that the { },h m
nP is a simply periodic sequence.

The period of the sequence { },h m
nP is denoted by ( )pLP m .

It is easily seen from equation (2) that ( )p p m
LP m M= .

Theorem 3. If m has the prime factorization ( )
=1

= ,
k

ei
i

i

m rÕ ( )k 1³ , then ( )pLP m equals the least common

multiple of the ( )( )ei
p iLP r .

Proof. The statement, “ ( )( )ei
p iLP r is the length of the period of ( ){ }, ei

ih r
nP ,” implies that the

sequence ( ){ }, ei
ih r

nP repeats only after blocks of length ( )( )ei
p iLP rl × , ( )NlÎ ; and the

statement, “ ( )pLP m is the length of the period { },h m
nP ,” implies that ( ){ }, ei

ih r
nP repeats after

( )pLP m terms for all values i . Thus, ( )pLP m is of the form ( )( )ei
p iLP rl × for all values of i ,

and since any such number gives a period of { },h m
nP , we easily obtain that

( ) ( )( ) ( )( ) ( )( )1 2
1 2= , , ,e e ek

p p p p kLP m lcm LP r LP r LP ré ù
ë û

K .
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Abstract. In this study, we give renewed concepts of neutrosophic soft graph and neutrosophic soft subgraph, and present
illustrative examples. We also define union and intersection operations on neutrosophic soft graphs and derive their basic
properties.

1. INTRODUCTION

The concept of neutrosophic set which is a powerful mathematical tool to struggle incomplete, indeterminate and
inconsistent information was firstly presented by Smarandache [36]. Neutrosophic sets are generalization of the
theory of fuzzy sets [38], intuitionistic fuzzy sets [12] and interval-valued intuitionistic fuzzy sets [13]. The
neutrosophic sets are characterized by a truth-membership function , an indeterminacy-membership function and
a falsity membership function independently. Some more work on neutrosophic sets and their applications may be
found on [8, 9, 10, 19, 20, 21, 40, 41].

The concept of soft sets was firstly introduced by Molodtsov [34]. The applications on algebraic structure of soft set
have been studied in more detail [1, 6, 7, 11, 17, 23, 26, 37]. Maji et al. [29] gave the notion of fuzzy soft sets and
investigated some properties of it. Thereafter many researchers have applied this concept on different branches of
mathematics in [14, 18, 24, 25, 27, 32]. The concept of neutrosophic soft sets was firstly given by Maji [31].

Euler [22] first introduced the concept of graph theory. A graph is used to create a relationship between a given set
of elements. Each element can be represented by a vertex and the relationship between them can be represented by
an edge. The theory of graph is extremely useful tool for solving combinatorial problems in different areas such as
geometry, algebra, number theory, topology, operation research, optimization and computer science, etc..
Dhavaseelan et al. [21] gave the concept of neutrosophic graph and investigated some properties of this concept.
Rosenfeld [35] introduced the concept of fuzzy graphs. Thereafter many researchers have studied the different
notions of graph theory using the fuzzy sets. Some operations on fuzzy graphs were introduced in [15, 34]. Akram
et al. [2, 3, 4, 5] introduced many new concepts such as interval valued fuzzy graphs, soft graphs, fuzzy soft graphs
and neutrosophic soft graphs. In this paper, renewed concept of neutrosophic soft graphs is given. Also some new
operations such as extended union, restricted union, restricted intersection and extended intersection on fuzzy soft
graphs are defined and some related properties are investigated.

2. PRELIMINARIES

Definition 2.1 [22] A graph ∗ consists of set of finite objects = { , , , … , } called vertices and other set
= { , , , … , } whose elements are called edges. Usually a graph is denoted as ∗ = ( , ). Let ∗ be a

graph and { , } and edge of ∗. We may write instead of { , }.

Definition 2.2 [33] Let be an inital universe set, be a set of parameters, ⊆ and ℘( ) be denote power set of
. Then, a pair ( , ) is called a soft set over , where is mapping given by : → ℘( )

Definition 2.3 [36] A neutrosophic set on the universe of discourse is defined as
= {⟨ , ( ), ( ), ( )⟩, ∈ }, where , , : → [0,1] and 0 ≤ ( ) + ( ) + ( ) ≤ 3 for all ∈ .

Definition 2.4 [31] Let ( ) be set of all neutrosophic sets on universal set , be the set of parameters and ⊆
. A pair ( , ) is called a neutrosophic soft set over , where is a mapping given by : → ( ).
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Definition 2.5 [31] Let ( , ) be a neutrosophic soft set over . Then,
i. ( , ) is called a null neutrosophic soft set if ( )( ) = 0, ( )( ) = 1 and ( )( ) = 1 for all ∈ , ∈ .
ii. ( , ) is called a whole neutrosophic soft set if ( )( ) = 1, ( )( ) = 0 and ( )( ) = 0 for all ∈ , ∈

.

Definition 2.6 [31] Let ( , ) and ( , ) be two neutrosophic soft sets over , then ( , ) is said to be a
neutrosophic soft subset of ( , ) if
i. ⊆
ii. ( )( ) ≤ ( )( ), ( )( ) ≥ ( )( ), ( )( ) ≥ ( )( ) for all ∈ and ∈ .

Definition 2.7 [21] A neutrosophic graph of a graph ∗ = ( , ) is given by a pair = ( , ), where =<
, , > is a neutrosophic set on and =< , , > is a neutrosophic relation on such that

( ) ≤ { ( ), ( )}
( ) ≥ { ( ), ( )}
( ) ≥ { ( ), ( )}

for all ∈ .

3. RENEWED NEUTROSOPHIC SOFT GRAPHS WITH SOME NEW
OPERATIONS

Definition 3.1 A neutrosophic soft graph is an order 4-tuple = ( ∗, , , ) such that
i. ∗ = ( , ) is a simple graph
ii. is non-empty set of parameters
iii. ( , ) is a neutrosophic soft set over
iv. ( , ) is a neutrosophic soft set over ×
v. ( ( ), ( )) is a neutrosophic graph for all ∈ . That is

( , ) ≤ { ( ), ( )},
( , ) ≥ { ( ), ( )},
( , ) ≥ { ( ), ( )} for all ∈ and , ∈ .

Note that ( , ) is called a neutrosophic soft vertex and ( , ) is called a neutrosophic soft edge. Thus,
(( , ), ( , )) is called a neutrosophic soft graph.
Throughout this paper, we denote ∗ = ( , ) a simple graph, ℎ( ) = ( ( ), ( )) a neutrosophic graph and

= ( ∗, , , ) = (( , ), ( , )) a neutrosophic soft graph.

Example 3.2 Let ∗ = ( , ) be a simple graph with = { , , } and = { , , }. Let =
{ , , } be a set of parameters. Let consider neutrosophic soft sets and over and , respectively, as given in
Table 1. Clearly = ( ∗, , , ) is a neutrosophic soft graph over ∗.

Table  1: Neutrosophic soft graph

(0.2,0.4,0.5) (0.4,0.5,0.6) (0,1,1)
(0.2,0.7,0.8) (0.3,0.5,0.6) (0.5,0.6,0.7)
(0.3,0.3,0.5) (0.2,0.2,0.3) (0.3,0.4,0.9)

( ) ( ) ( )
(0.1,0.6,0.7) (0,1,1) (0,1,1)
(0.1,0.5,0.9) (0,1,1) (0.2,0.8,0.9)
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(0.2,0.4,0.6) (0.1,0.5,0.9) (0.3,0.5,0.9)

Figure  1: Neutrosophic graph ℎ( ) = ( ( ), ( ))

Figure  2: Neutrosophic graph ℎ( ) = ( ( ), ( ))

Figure  3: Neutrosophic graph ℎ( ) = ( ( ), ( ))

Definition 3.3 A neutrosophic soft graph = ( ∗, , , ) is called a neutrosophic soft subgraph of =
( ∗, , , ) if
i. ′ ⊆
ii. ′ ⊆ , that is ′ ( ) ≤ ( ), ′ ( ) ≥ ( ), ′ ( ) ≥ ( )
iii. ′ ⊆ , that is, ′ ( ) ≤ ( ), ′ ( ) ≥ ( ), ′ ( ) ≥ ( )
for all ∈ ′, ∈ .
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Example 3.4 Let ∗ = ( , ) be a simple graph with = { , , } and = { , , }, and let ′ =
{ , } be a set of parameters. Let consider a neutrosophic soft graph = ( ∗, , , ) as taken in Example 3.2.
Now let consider another neutrosophic soft graph ′ = ( ∗, ′, ′, ′) as taken in Table 2.

Table  2: Neutrosophic soft graph ′

′
(0.2,0.5,0.6) (0.3,0.6,0.8) (0,1,1)
(0.1,0.7,0.9) (0.1,0.5,0.7) (0.2,0.8,0.9)

′ ( , ) ( , ) ( , )
(0.1,0.7,0.8) (0,1,1) (0,1,1)
(0.1,0.9,0.9) (0,1,1) (0.1,0.8,0.9)

Figure  4: Neutrosophic graph ′( )

Figure  5: Neutrosophic graph ′( )

It is clearly seen that ′ = ( ∗, ′, ′, ′) is a neutrosophic soft graph. Hence ′ = ( ∗, ′, ′, ′) is a neutrosophic
soft subgraph of = ( ∗, , , ).

Definition 3.5 Let = ( ∗, , , ) and = ( ∗, , , ) be two neutrosophic soft graphs over ∗ =
( , ). The union of and is denoted by ∪ = ( ∗, , , ) = ( ∗, ∪ , ∪ , ∪ ). ,
and membership values of vertices and edges of ∪ are defined by as follow.

i. For all ∈ = ∪ and ∈
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( ) =
     ( ) ∈ \
     ( ) ∈ \

{ ( ), ( )} ∈ ∩

( ) =
     ( ) ∈ \
     ( ) ∈ \

{ ( ), ( )} ∈ ∩

( ) =
     ( ) ∈ \
     ( ) ∈ \

{ ( ), ( )} ∈ ∩

ii. For all ∈ and ∈

( ) =
     ( ) ∈ \
     ( ) ∈ \

{ ( ), ( )} ∈ ∩

( ) =
     ( ) ∈ \
     ( ) ∈ \

{ ( ), ( )} ∈ ∩

( ) =
     ( ) ∈ \
     ( ) ∈ \

{ ( ), ( )} ∈ ∩

Example 3.6 Let ∗ = ( , ) be a simple graph with = { , , , , } and
= { , , , , , , , , , }, and let = { , , } be a set of parameters. Let

consider a neutrosophic soft graph = ( ∗, , , ) over ∗ = ( , ) as taken in Table 3.

Table  3: Neutrosophic soft graph

(0.1,0.2,0.3) (0,1,1) (0.2,0.3,0.4) (0.2,0.5,0.7) (0,1,1)
(0.1,0.3,0.7) (0,1,1) (0.4,0.6,0.7) (0.1,0.2,0.3) (0,1,1)
(0.5,0.6,0.7) (0,1,1) (0.6,0.8,0.9) (0.3,0.4,0.6) (0,1,1)

( ) ( ) ( ) ( ) ( )
(0,1,1) (0.1,0.4,0.5) (0.1,0.6,0.7) (0,1,1) (0,1,1)
(0,1,1) (0.1,0.7,0.8) (0.1,0.4,0.8) (0,1,1) (0,1,1)
(0,1,1) (0,1,1) (0.2,0.7,0.9) (0,1,1) (0,1,1)
( ) ( ) ( ) ( ) ( )
(0,1,1) (0,1,1) (0.1,0.6,0.8) (0,1,1) (0,1,1)
(0,1,1) (0,1,1) (0.1,0.8,0.9) (0,1,1) (0,1,1)
(0,1,1) (0,1,1) (0.3,0.8,0.9) (0,1,1) (0,1,1)
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Figure  6: Neutrosophic graph ( )

Figure  7: Neutrosophic graph ( )

Figure  8: Neutrosophic graph ( )

Now let consider another neutrosophic soft graph = ( ∗, , , ) with the parameter set = { , } as
taken in Table 4.
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Table  4: Neutrosophic soft graph

(0,1,1) (0.1,0.2,0.4) (0.2,0.3,0.4) (0,1,1) (0.4,0.6,0.7)
(0,1,1) (0.3,0.6,0.8) (0.5,0.7,0.9) (0,1,1) (0.3,0.4,0.5)

( ) ( ) ( ) ( ) ( )
(0,1,1) (0,1,1) (0,1,1) (0,1,1) (0.1,0.4,0.5)
(0,1,1) (0,1,1) (0,1,1) (0,1,1) (0.2,0.7,0.9)
( ) ( ) ( ) ( ) ( )
(0,1,1) (0,1,1) (0,1,1) (0.2,0.8,0.9) (0,1,1)
(0,1,1) (0.2,0.6,0.8) (0,1,1) (0.3,0.9,0.9) (0,1,1)

Figure  9: Neutrosophic graph ( )

Figure  10: Neutrosophic graph ( )

Clearly the parameter set of ∪ = ( ∗, , , ) is = ∪ = { , , , }.

Hence the neutrosophic soft graph ∪ = ( ∗, , , ) is obtained as in the Table 5.
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Table  5: Neutrosophic soft graph ∪

(0.1,0.2,0.3) (0,1,1) (0.2,0.3,0.4) (0.2,0.5,0.7) (0,1,1)
(0.1,0.3,0.7) (0.1,0.2,0.4) (0.4,0.3,0.4) (0.1,0.2,0.3) (0.4,0.6,0.7)
(0.5,0.6,0.7) (0,1,1) (0.6,0.8,0.9) (0.3,0.4,0.6) (0,1,1)

(0,1,1) (0.3,0.6,0.8) (0.5,0.7,0.9) (0,1,1) (0.3,0.4,0.5)

( ) ( ) ( ) ( ) ( )
(0,1,1) (0.1,0.4,0.5) (0.1,0.6,0.7) (0,1,1) (0,1,1)
(0,1,1) (0.1,0.7,0.8) (0.1,0.4,0.8) (0,1,1) (0.1,0.4,0.8)
(0,1,1) (0,1,1) (0.2,0.7,0.9) (0,1,1) (0,1,1)
(0,1,1) (0,1,1) (0,1,1) (0,1,1) (0.2,0.7,0.9)
( ) ( ) ( ) ( ) ( )
(0,1,1) (0,1,1) (0.1,0.6,0.8) (0,1,1) (0,1,1)
(0,1,1) (0,1,1) (0.1,0.8,0.9) (0.2,0.8,0.9) (0,1,1)
(0,1,1) (0,1,1) (0.3,0.9,0.9) (0,1,1) (0,1,1)
(0,1,1) (0.2,0.6,0.8) (0,1,1) (0.3,0.4,0.6) (0,1,1)

Figure  11: Neutrosophic graph ( )

Figure  12: Neutrosophic graph ( )
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Figure  13: Neutrosophic graph ( )

Figure  14: Neutrosophic graph ( )

Theorem 3.7 Let = ( ∗, , , ) and = ( ∗, , , ) be two neutrosophic soft graph over ∗ = ( , ).
Then ∪ is a neutrosophic soft graph over ∗ = ( , ).

Definition 3.8 Let = ( ∗, , , ) and = ( ∗, , , ) be two neutrosophic soft graph over ∗ =
( , ). The intersection of and is denoted by ∩ = ( ∗, , , ) = ( ∗, ∩ , ∩ , ∩ ).

, and membership values of vertices and edges of ∩ are defined by as follow.

i. For all ∈ = ∩ and ∈
( ) = { ( ), ( )}
( ) = { ( ), ( )}
( ) = { ( ), ( )}

ii. For all ∈ = ∩ and ∈
( ) = { ( ), ( )}
( ) = { ( ), ( )}
( ) = { ( ), ( )}
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Example 3.9 Let ∗ = ( , ) be a simple graph with = { , , , } and
= { , , , , , }, and let = { , } be a set of parameters. Let consider a neutrosophic

soft graph = ( ∗, , , ) over ∗ = ( , ) as taken in Table 6.

Table 6: Neutrosophic soft graph

(0.1,0.2,0.3) (0.2,0.4,0.5) (0,1,1) (0.1,0.5,0.7)
(0.2,0.3,0.7) (0.4,0.6,0.7) (0,1,1) (0.3,0.4,0.6)

( ) ( ) ( ) ( ) ( ) ( )
(0.1,0.5,0.6) (0,1,1) (0.1,0.5,0.7) (0,1,1) (0,1,1) (0,1,1)
(0.2,0.7,0.8) (0,1,1) (0.1,0.6,0,7) (0,1,1) (0.2,0.7,0.9) (0,1,1)

Figure  15: Neutrosophic graph ( )

Figure  16: Neutrosophic graph ( )

Now let consider another neutrosophic soft graph = ( ∗, , , ) with the parameter set = { , } as
taken in Table 7.
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Table 7: Neutrosophic soft graph

(0,1,1) (0.3,0.5,0.6) (0.2,0.4,0.5) (0.4,0.5,0.9)
(0,1,1) (0.2,0.4,0.5) (0.1,0.2,0.6) (0.1,0.5,0.7)

( ) ( ) ( ) ( ) ( ) ( )
(0,1,1) (0,1,1) (0,1,1) (0.1,0.6,0.7) (0.2,0.6,0.9) (0.2,0.7,0.9)
(0,1,1) (0,1,1) (0,1,1) (0.1,0.5,0.8) (0.1,0.7,0.8) (0.1,0.8,0.9)

Figure  17: Neutrosophic graph ( )

Figure  18: Neutrosophic graph ( )

Clearly parameter set of and is = ∩ = { }. Also the intersection of and is obtained as follow.

Table  10: Neutrosophic soft graph

(0,1,1) (0.3,0.6,0.7) (0,1,1) (0.3,0.5,0.9)

( ) ( ) ( ) ( ) ( ) ( )
(0,1,1) (0,1,1) (0,1,1) (0,1,1) (0.2,0.7,0.9) (0,1,1)



3rd INTERNATIONAL CONFERENCE
ON MATHEMATICAL AND RELATED SCIENCES:

CURRENT TRENDS AND DEVELOPMENTS
ICMRS 2020

20-22 NOVEMBER, 2020

205

Figure 19: Neutrosophic graph ( )

Theorem 3.10 Let = ( ∗, , , ) and ( ∗, , , ) be two neutrosophic soft graph over ∗ = ( , ).
Then ∩ is a neutrosophic soft graph over ∗ = ( , ).
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Abstract. In the present investigation our main aim is to give lower bounds for the ratio of generalized Dini functions and their
sequences of partial sums.

1. INTRODUCTION

Let us consider the following second-order linear homogenaus differential equation(see for details [7,13]):

( ) ( ) ( ) ( ) ( )2 2 2 1 0  , , .z z bz z cz b z b cw w n n w n¢¢ ¢ é ù+ + - + - = Îë û (1.1)

The function ( ), ,b c znw which is called the generalized Bessel function of the first kind of order n , is defined as a
particular solution of  (1.1). We have the following familiar series representation for the function ( ), ,b c znw

( ) ( )
( )( ) ( )

2

, ,
0 2! 1 / 2

nn

b c
n

c zz z
n n b

n

nw n

+
¥

=

- æ ö= Îç ÷G + + + è ø
å C (1.2)

where G stands for the Euler gamma function. The series (1.2) permits the study of Bessel, modified Bessel and
spherical Bessel functions in a unified manner. Each of these particular cases of the function ( ), ,b c znw is worthy of
mention here.
For 1b c= = in (1.2) , we obtain the familiar Bessel function of the first kind of order n defined by
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For 1b = and 1c = - in (1.2), we obtain the modified Bessel function of the first kind of order n defined by

( ) ( ) ( )
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1      .
! 1 2

n

n

zI z z
n n
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n n

+¥

=

æ ö= Îç ÷G + + è ø
å C

For 2b = and 1c = - in (1.2), the function ( ), ,b c znw reduces to ( )2 / ,j zn p where jn is the spherical Bessel
function of the first kind of order n defined by
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Deniz et al. [4] considered the function ( ), ,b c zny defined, in terms of the generalized and normalized Bessel

function ( ), ,b c znw , by the transformation

( ) ( )1 /2
, , , ,

12 .
2v b c b c

bz z zn n
ny n w-+æ ö= G +ç ÷

è ø
(1.3)

By using the well-known Pochhammer symbol (or the shifted factorial) ( )ml defined, for ,l mÎ and in terms of
the Euler’s function, by

( ) ( )
( )

{ }( )
( ) ( ) ( )

1 0;  0
.

1 ... 1 ;n nm

m ll m
l

l l l l m l

ì ü= Î -G + ï ï= = í ý
G + + - = Î Îï ïî þ

It is being understood conventionally that ( )00 : 1= , and we obtain the following series representation for the
function ( ), ,v b c zy given by (1.3)

( ) ( )
( )

1

, ,
1 !4

n n
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c zz z
n
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+¥
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-
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where { }: 1,2,3,... ,= { }0 : 0, 1, 2,... ,- = - - and 0
1:

2
b

k n -+
= + Ï . In [5,6] authors defined and studied the

generalized Dini functions , , , :a b cDn ® by

( ) ( ) ( ) ( ) ( ), , , , , , ,    and , ,a b c b c b cD z a z z z a b cn n nn w w n+¢= - + Î Î

and its normalized form
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where , ,b cnw is the generalized Bessel function of first kind. From the definition of ( ), , ,a b c znj we obtain series
representation as

( ) ( ) ( )
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1
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Note that, the functions ,1,1,1Dn and ,2,1,1vD are classical dini functions and the functions ,1,1, 1Dn - and ,2,1, 1Dn - are
classical modified Dini functions.
Motivated by the papers of Silverman [11] and Silvia [12] in this paper we investigate the ratio of a function of the

form (1.4) to its sequence of partial sums ( ) ( )
( )
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{ }: 1z z= <U when the coefficients of , , ,a b cnj satisfy some conditions. We will obtain some lower bounds for
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.

For interesting developments on the partial sums of some special functions and some classes of analytic functions,
the readers can refer to the works of Sheil-Small [10], Brickman et al.[2], Silvia [12], Silverman [11], Owa et al. [9],
Orhan and Yağmur [8], Çağlar and Deniz [3], Aktaş and Orhan [1].

The next result is a preliminary one, which will be used in the proof of the main results.

Lemma 1.1. If the parameter 0, ,  anda b c n+ -Î Î Î Î - are so constrained that
8
c

k > then the function

, , , :a b cnj ®U
given by (1.4) satisfies the following inequalities:
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Proof. i. By using the inequalities:
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Thus, the proof is completed.
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2. MAIN RESULTS

Theorem 2.1. If the parameters 0, ,  anda b c n+ -Î Î Î Î - and 0
1:

2
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k n -+
= + Ï are so constrained that
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Proof. We observe from part i. of Lemma 1.1 that
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Set ( )( ) ( )( ) ( )( ) ( )( )1 / 1 1 / 1A z B z w z w z+ + = + - , so that ( ) ( ) ( )( ) ( ) ( )( )/ 2w z A z B z A z B z= - + + . Then
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It suffices to show that the left hand side of (2.3) is bounded above by
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To prove the result (2.2), we write
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The last inequality is equivalent to
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Since the left hand side of (2.4) is bounded above by
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Proof. From part ii. of Lemma 1.1 we observe that
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The last inequality is equivalent to

( ) ( )
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8
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n n m
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n b n b
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-
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It suffices to show that the left hand side of (2.7) is bounded above by
( )

( )( ) ( )
3
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8
1
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k k
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-
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which is equivalent to
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To prove the result (2.6), we write
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The last inequality is equivalent to
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Since the left hand side of (2.8) is bounded above by
( )

( )( ) ( )
3

122

8
1

2 128 2 24
nn

a c
n b

c a a c a c

k

k k

¥

=

-
+

+ - +
å , the proof

is completed.

Remark 2.1. Taking 1b c= = in Lemma 1.1,  Theorem 2.1 and Theorem 2.2, we obtain the results of [1].
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Abstract. In this paper, our aim is to determine the radii of a - convexity for three different kind of normalization of the
function ( ) ( ) ( ) ( )2N z az J z bzJ z cJ zn n n n¢¢ ¢= + + , where ( )J zn is the Bessel function of the first kind of order n . The key tools in

the proof of our main results are the Mittag-Leffler expansion for function ( )N zn , properties of zeros of the function ( )N zn and
some inequalities for complex and real numbers.

1. INTRODUCTION

For ( ) { }:r z z r= Î <U denotes the disc of radius r centered at the origin. Let ( ): ff r ®U be the function
defined by

( )
2

,n
n

n
f z z a z

¥

=

= +å (2.9)

where fr is the radius of convergence of the power series.

Let r be a real number with ( )0, .fr rÎ We say that the function f defined by (1.1) is starlike in the disk ( )rU if

f univalent and ( )( )f rU is a starlike domain in with respect to the origin. Analytically, the function f is

starlike in ( )rU if and only if ( )
( ) ( )Re 0,  .

zf z
z r

f z
¢æ ö

> Îç ÷ç ÷
è ø

U For [ )0,1b Î we say that the function f is starlike of

order b in ( )rU if and only if ( )
( ) ( )Re ,  .

zf z
z r

f z
b

¢æ ö
> Îç ÷ç ÷

è ø
U We define by the real number

( ) ( ) ( )
( ) ( )* sup 0, : Re  for allf

zf z
r f r r z r

f zb b
ì ü¢æ öï ï= Î > Îç ÷í ýç ÷ï ïè øî þ

U

the radius of starlikeness of order b of the function .f Note that ( ) ( )* *
0r f r f= is the largest radius such that the

imagine region ( )( )( )*f r fU is a starlike domain with respect to the origin.

The function f defined by (1.1) is convex in the disk ( )rU if f is univalent in ( )rU , and ( )( )f rU is a convex

domain in . Analytically, the function f is convex in ( )rU if and only if ( )
( ) ( )Re 1 0, .

zf z
z r

f z
¢¢æ ö

+ > Îç ÷ç ÷¢è ø
U For
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[ )0,1b Î we say that the function f is convex of order b in ( )rU if and only if ( )
( ) ( )Re 1 , .

zf z
z r

f z
b

¢¢æ ö
+ > Îç ÷ç ÷¢è ø

U

The radius of convexity of order b of the function f is defined by the real number

( ) ( ) ( )
( ) ( )sup 0, : Re 1  for allc

f

zf z
r f r r z r

f zb b
ì ü¢¢æ öï ï= Î + > Îç ÷í ýç ÷¢ï ïè øî þ

U .

Note that ( ) ( )0
c cr f r f= is the largest radius such that the image region ( )( )( )cf r fU is a convex domain.

Let a and b be two real numbers with aÎ and [ )0,1 .b Î We say that the function f is a - convex of order

b in ( )rU if and only if

( ) ( )
( )

( )
( ) ( )Re 1 1 ,    .

zf z zf z
z r

f z f z
a a b

æ ö¢ ¢¢æ ö
- + + > Îç ÷ç ÷ç ÷ç ÷¢è øè ø

U

The radius of a - convex of order b of the function f is defined by the real number

( ) ( ) ( ) ( )
( )

( )
( ) ( ), sup 0, : Re 1 1  for all z .f

zf z zf z
r f r r r

f z f za b a a b
ì üæ ö¢ ¢¢æ öï ï= Î - + + > Îç ÷ç ÷í ýç ÷ç ÷¢ï ïè øè øî þ

U

The radius of a - convex of order b is the generalization of the radius of starlikeness of order b and of the radius
of convexity of order b . We have ( ) ( )*

0,r f r fb b= and ( ) ( )1, .cr f r fb b= For more details on starlike, convex and
a -convex functions, we refer to [7, 11, 12] and to the references therein.

The Bessel function of the first kind of order v is defined by [12, p. 217]

( ) ( )
( ) ( )

2

0

1
! 1 2

n vn

v
n

zJ z z
n n v

+
¥

=

- æ ö= Îç ÷G + + è ø
å C (2.10)

We know that it has all its zeros real for 1.v > - In [10], Mercer introduced and studied the general function

( ) ( ) ( ) ( )2 .v v v vN z az J z bzJ z cJ z¢¢ ¢= + +

Here, as in [10], q b a= - and

( ) ( )0 and 0  or 0 and 0 .c q c q= ¹ > >

From (1.2), we have the power series representation

( ) ( )( )
( ) ( )

2

0

2 1
! 1 2

n vn

v
n

Q n v zN z z
n n v

+
¥

=

+ - æ ö= Îç ÷G + + è ø
å C (2.11)
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where ( ) ( )1  ( , , ).Q v av v bv c a b c= - + + Î There are three important works on the function vN . First Mercer's
paper [10] which it has been proved that the kth positive zero of vN increases with v in 0.v > Second, Ismail and
Muldoon [8] showed that

(i). For 0,v > the zeros of ( )vN z are either real or purely imaginary.

(ii). For { }0max 0, ,v v³ where 0v is the largest real root of the quadratic ( ) ( )1 ,Q v av v bv c= - + + the zeros

of ( )vN z are real.

(iii). If 0,v > ( )( ) ( )2 / 0av b a v c b a+ - + - > and ( )/ 0,a b a- < the zeros of ( )vN z are all real except for a
single pair which are conjugate purely imaginary

under the conditions , ,a b cÎ such that 0c = and b a¹ or 0c > and .b a> Last, in [4], Baricz, Çağlar and
Deniz obtained sufficient and necessary conditions for the starlikeness of a normalized form of ( ).vN z
Note that vN is not belongs to A . To prove the main results, we need normalization of the function vN . In this
paper we focus on the following normalized form

( ) ( ) ( )
1

2 ( 1)v v

v v
vf z N z

Q v
é ùG +

= ê ú
ê úë û

,

( ) ( )
( ) ( )

12 1 z
g z N z

Q

n n

n n

n
n

-G +
= ,

( ) ( )
( ) ( )

1
22 1 z

h z N z
Q

n
n

n n

n
n

-
G +

= .

We also mention that the univalence, starlikeness, convexity and a -convex functions of Bessel functions of the
first kind were studied extensively in several papers. We refer to [1-6, 9, 11] and to the references therein.
In this rest of this paper, the quadratic ( ) ( )1Q v av v bv c= - + + will always provide on , ,a b cÎ and ( 0c = and

a b¹ ) or ( 0c > and a b< ). Moreover, 0v is largest real root of the quadratic ( )Q v defined according to the above
conditions and we shall use the following notation

( )( ) ( ) ( )
( )

( )
( )

, 1 1 .
zu z zu z

u z
u z u z

a a a
¢ ¢¢æ ö

= - + +ç ÷ç ÷¢è ø
N

Theorem 1. Let 0a ³ and [ )0,1 .b Î The following statements hold:

a) If { }0max 0, ,  0v v v³ ¹ then the radius of a - convexity of order b of the function vf is the smallest
positive root of the equation

( )
( )

( )
( )

11 .v v

v v

rN r rN r
N r v N r

a a b
¢¢ ¢æ ö æ ö+ + - =ç ÷ ç ÷ç ÷¢ è øè ø

The radius of a - convexity satisfies ( ), ,1 ,1,v v vr fa b l l¢£ < where ,1vl and ,1vl¢ denote the first positive zeros of vN
and vN ¢ , respectively.

b) If { }0max 0, ,v v³ then the radius of a - convexity of order b of the function vg is the smallest positive
root of the equation
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( ) ( )
( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2 22 1
1 1 .

1
vv

v

r N r rN r N rrN r
N r rN r N r

n n

n n

n n n
a n a b

n

¢¢ ¢+ - + -¢æ ö
+ - - + =ç ÷ç ÷ ¢ + -è ø

c) If { }0max 0,v v³ then the radius of a - convexity of order b of the function vh is the smallest positive
root of the equation

( )
( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

23 211 .
2 2 2

v v

v

rN r rN r rN r N r

N r rN r N r
n n

n n

n n na a
n b

n

æ ö¢ ¢¢ ¢+ - + --æ öç ÷+ - + =ç ÷ç ÷è ø ¢ + -è ø

Proof. a) We assume that 0,a > the case 0a = was proved already in [9]. Using the definition of the function vf ,
we have

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

1 1,    1 1 1v v v v v

v v v v v

zf z zN z zf z zN z zN z
f z v N z f z N z v N z
¢ ¢ ¢¢ ¢¢ ¢æ ö= + = + + -ç ÷¢ ¢ è ø

where { }0max 0, ,  0.v v v³ ¹
In view of the following infinite product representations [9]

( ) ( )
( ) ( ) ( )

( )

12 2

2 2
1 1, ,

1 ,   1 ,
2 1 2 1

v v

v vv v
n nv n v n

Q v z Q v vzz zN z N z
v vl l

-

³ ³

æ ö æ ö
¢= - = -ç ÷ ç ÷ç ÷ ç ÷¢G + G +è ø è ø

Õ Õ

where ,v nl and ,v nl¢ are the nth positive roots of vN and vN ¢ , respectively, logarithmic differentiation yields

( )
( )

( )
( )

2 2

2 2 2 2
1 1, ,

2 2,   1+
n nn n

zN z zN zz z
N z N zz z

n n

n nn n

n n
l l³ ³

¢ ¢¢
= - = -

¢ ¢- -å å ,

which implies that

( )( ) ( ) ( )
( )

( )
( )

( )
( )

( )
( )

2 2

2 2 2 2
1 1, ,

, 1 1

1

1 2 21 .
n nn n

zf z zf z
f z

f z f z

zN z zN z
N z N z

z z
z z

n n
n

n n

n n

n n

n n

a a a

a a a
n

a a
n l l³ ³

¢ ¢¢æ ö
= - + +ç ÷ç ÷¢è ø

¢ ¢¢æ ö= + - +ç ÷ ¢è ø

æ ö= - - -ç ÷ ¢- -è ø
å å

N

On the other hand, we know (see [2, Lem. 2.1]) that if 0,a b z> > Î and 1,l £ then for all z b< we have

Re Re .
z zz z

a z b z a z b z
l læ ö æ ö- ³ -ç ÷ ç ÷- - - -è ø è ø

(2.12)

Using the inequality (1.4) for all ( ),10,z nl¢ÎU , we obtain the inequality
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( )( ) ( )( )
2 2

2 2 2 2
1 1, ,

1 1 1 2 2 1Re , 1 , ,
n nn n

r rf z f r
r rn n

n n

a a
a a an al l³ ³

æ ö³ + - - =ç ÷ ¢- -è ø
å åN N

where .z r= Here, we used the fact that the zeros ,v nl and ,v nl¢ interlace according to the inequalities [9]

,1 ,1 ,2 ,2 ...n n n nl l l l¢ ¢< < < < . (2.13)

Now, the above deduced inequality implies that for ( ),10,r nl¢Î we have ( ) ( )( ) ( )( )0,inf , ,z r f z f rn na aÎ =U N N . On

other hand, the function ( )( ),r f rnaN is strictly decreasing on ( ),10, nl¢ since

( )( )
( ) ( )

( ) ( )

2 2
, ,

2 22 2 2 21 1, ,

2 2
, ,

2 22 2 2 21 1, ,

4 41,

4 4
0

n n

n nn n

n n

n nn n

r r
f r

r r r

r r

r r

n n
n

n n

n n

n n

l l
a a a

n l l

l l
a a

l l

³ ³

³ ³

¢¶ æ ö= - - -ç ÷¶ è ø ¢- -

¢
< - <

¢- -

å å

å å

for { }0max 0, ,  0v v v³ ¹ and ( ),10, .r nl¢Î Here, we used again the fact that the zeros ,v nl and ,v nl¢ interlace and

for all { } ,1 ,11,2,3,... ,n r n nl l¢Î < we have that

( ) ( )2 22 2 2 2 2 2
, , , , .n n n nr rn n n nl l l l¢ ¢- < -

We also have that ( )( )0lim , 1r f rna b= > and ( )( )
,1

lim , ,r f r
n nl a¢ = -¥ which means that for ( )10,z rÎU

we have ( )( )Re , f zna b>N if and only if
1r is the unique root of ( )( ), ,f zna b=N situated in ( ),10, .nl¢ Finally,

once again, using the interlacing inequalities (1.5), we obtain the inequality

( )( )
2 2

2 2 2 2
1 1, ,

2 2, 0
n nn n

r rf r
r rn

n n

a
a l l³ ³

¶
= - <

¢¶ - -å å

where { }0max 0, ,  0,  0v v v a³ ¹ ³ and ( ),10, .r nl¢Î This implies that the function ( )( ), f rna a is strictly

decreasing on [ )0,¥ for all { }0max 0, ,  0v v v³ ¹ and ( ),10,r nl¢Î fixed. Consequently, as a function of a the

unique root of the equation ( )( ), f zna b=N is strictly decreasing, where [ )0,1 ,b Î { }0max 0, ,  0v v v³ ¹ and

( ),10,r nl¢Î are fixed. Thus, in the case when ( )0,1a Î the radius of a - convexity of the function fn will be
between the radius of convexity and the radius of starlikeness of the function fn .

b) Similarly, as in the proof of Theorem 1-a, we assume that 0,a > the case 0a = was proved in [9].
We know that following equalities (see [9])

( )
( ) ( ) ( )

( )
( )
( )

2

2 2
1 ,

21 ,    1 1v v v

nv v v n

zg z zN z zg z z
g z N z g z zn

n
d³

¢ ¢ ¢¢
= - + + = -

¢ -å

where ,nnd is the n th positive zero of the function ( ).g z¢ Thus, we have that
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( )( ) ( ) ( )
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1 1, ,

, 1 1

1 1 1

2 21 1 .
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v
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g z g z

zN z zg z
N z g z

z z
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n

n
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a a a
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= - + +ç ÷ç ÷¢è ø

¢ ¢¢æ ö æ ö
= - - + + +ç ÷ ç ÷ç ÷ ç ÷¢è ø è ø

= + - -
- -å å

N

Applying the inequality (1.4), we have that

( )( ) ( )( )
2 2

2 2 2 2
1 1, ,

1 1 1 2 2 1Re , 1 , ,
n nn n

r rg z g r
r rn n

n n

a a
a a a al l³ ³

æ ö³ + - - =ç ÷ ¢- -è ø
å åN N

where .z r= Here, we tacitly used the fact that for all { }1,2,3,...nÎ we have ( ), , 1 ,, ,n n nn n nd l l-Î where ,nnl is the

n th positive zero of .Nn Thus, for ( ),10,r ndÎ we get ( ) ( )( ) ( )( )0,inf Re , , ,z r g r g rn na aÎ =U N N since according to
the minimum principle of harmonic functions, the infimum is taken on boundary. On the other hand, the function

( )( ),r g rnaN is strictly decreasing on ( ),10, nd since

( )( ) ( )
( ) ( )

( ) ( )
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, ,

2 22 2 2 21 1, ,

2 2
, ,
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4 4
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= - -
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< - <
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for { }0max 0,v v³ and ( ),10, .r ndÎ Here, we again used the fact that the zeros ,v nl and ,nnd interlace and for all

{ } ,1 ,11,2,3,... ,n r n nl dÎ < we have that
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n nd a = -¥ which means that for ( )20,z rÎU

we have ( )( )Re , g zna b>N if and only if 2r is the unique root of ( )( ), ,g zna b=N situated in ( ),10, .nd Using

the interlacing inequalities , 1 , , ,n n nn n nl d l- < < we obtain

( )( )
2 2

2 2 2 2
1 1, ,

2 2, 0,
n nn n

r rg r
r rn

n n

a
a l d³ ³

¶
= - <

¶ - -å å

where { }0max 0, ,  0v v a³ ³ and ( ),10, .r ndÎ This implies that the function ( )( ), g rna a is strictly decreasing

on [ )0,¥ for all { }0max 0,v v³ and ( ),10,r ndÎ fixed. Consequently, as a function of a the unique root of the

equation ( )( ), g zna b=N is strictly decreasing, where [ )0,1 ,b Î { }0max 0,v v³ and ( ),10,r ndÎ are fixed. Thus,

for ( )0,1a Î the radius of a - convexity of the function gn is between the radius of convexity and the radius of
starlikeness of the function gn .
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c) We assume that 0,a > the case 0a = was proved already in [9]. In [9], using the definition of the function vh ,
we have
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zN zzh z zh zv z
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where { }0max 0, ,v v³ it follows that
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Similarly, we can prove part c as in the proof of Theorems 1-a and 1-b. Thus, we omitted details.

Remark 1. Taking 0a = and 1a = in Theorem 1, we obtain the results in [9].
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Abstract. Machine learning technology is needed in the medical field. Therefore, this research is useful for solving
problems in the medical field by using machine learning. Many cases of lung cancer are diagnosed late. Early detection
of lung cancer is the most promising way to enhance a patient's chance of survival. Machine learning is an approach that
is part of artificial intelligence and can detect lung cancer early. Twin support vector machines aim to find two
hyperplanes such that each plane has a distance close to one data class and as far as possible from another data class. This
study discusses lung cancer classification using the twin support vector machines method based on the kernel function.
Twin support vector machines is fast in building a model and has good generalizations. However, twin support vector
machines require kernel functions to operate in the feature space. The kernel functions commonly used are the linear
kernel, polynomial kernel, and radial basis function (RBF) kernel. This paper uses the twin support vector machines
method with these kernels and compares the best kernel for use by twin support vector machines to classify lung cancer
dataset. Our work will be performed on the lung cancer CT Scan dataset obtained by the Cipto Mangunkusumo Hospital,
Indonesia. It consists of benign cases 69 and malignant cases 69. However, the best kernel obtained is the RBF kernel,
which produces an accuracy of 100%, a precision of 100%, a recall of 100%, f1-score of 100%, and a running time of
around 0.41 s.

1. INTRODUCTION

I. Lung Cancer

Lung cancer is known to be one of the most dangerous illnesses [1]. The right lung has 3 parts, which are called
lobes, while the left lung has 2 lobes. Lung cancer is the leading cause of cancer-related deaths worldwide with
30%-40% occurring in developing countries. The prediction of the early stages will save many lives when there is an
early-stage cancerous tumor. In addition to patient evaluation, a cancer diagnosis is followed by blood testing, X-
ray, biopsy, and CT scan. For a radiologist, distinguishing the lung nodule from the chest radiograph picture is the
most difficult component. In CT scans and X-ray imaging, the lung nodules can be understood as tiny tissue masses
that are visible as white shadows [2]. Machine learning is an artificial intelligence technology that gives systems the
ability to learn and develop from experience automatically without being specifically programmed [3]. The twin
support vector machines is one method that is common because the learning output is very good [4]. The kernel
method is a method that uses functions while the algorithm operates in a higher-dimensional feature space. Product
operations between images, all feature pairs, are used in this method. This approach is used by a support vector
machine and a twin support vector machines directly or indirectly to classify knowledge [5]. The kernel functions
normally used to help classify data with twin support vector machines are the linear kernel, polynomial kernel, and
RBF kernel. This paper proposes the dual help twin support vector machines as a unique method for the early
detection of lung cancer. The kernel capabilities used are the linear kernel, polynomial kernel, and RBF kernel. This
paper compares the overall performance of the dual help twin vector machines with every kernel to get the quality
kernel for the detection of lung cancer.
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II. Methodology

This research uses twin support vector machines to classify lung cancer dataset. This method is evaluated using 5-
fold cross-validation, 45-random state, and later compared.

a. Twin support vector machines

Support Vector Machine is the method used to find a single hyperplane to identify samples. Jayadeva and
Chandra projected a unique twin hyperplane-based variant twin SVM. The principles of the generalized proximal
support vector machine (GEPSVM) are applied here, requiring for every category 2 non-parallel optimum
hyperplanes. As in an exceedingly commonplace SVM, there are two quadratic programming (QP) issues optimized
as TSVM pairs. Mathematically, by addressing the following two quadratic programming issues, the TSVM primary
issue can be optimized. Equations of the two hyperplanes are as follows [6]:

+ = 0 (1)+ = 0

i-th parameters of the hyperlines shown by and . Each hyperline is nearest to the sample of its class, of non-
parallel type, and farthest from the sample of the opposite class.

Assume a binary classification task with classes +1 and −1, and A ∈ ℝ and B ∈ ℝ indicate that
with each class +1 and -1, each matrix has a sample. For each matrix row, one sample is shown based on the
appropriate class. The two twin support vector machines hyperplanes obtained from equations (2) and (3) are [7]:

min
1
2

( + ) ( + ) + (2)
. − ( + ) + ≥ , ≥ 0

min
1
2

( + ) ( + ) + (3)
. − ( + ) + ≥ , ≥ 0

ξ is a non-negative part of the vector, so ξ ≥ 0. A vector represented by e for the scale slack variable n. The
traditional method is to let the margin of choice produce a few errors. A standard approach is taken if no linear
separation of the sampling service is feasible. (Some points are at or at the wrong margin, for instance). Every zero-
zero element of the slack variable vector calculates the cost of the wrong-classified sample, which is proportional to
the distance between the sample and the decision margin. Based on these equations, the penalty parameters are

and . In different fields, Twin SVM is in great demand with different versions of the proposed algorithm [8].

b. Kernel function

Kernel method is a way that uses kernel functions to work algorithms in feature areas that have higher dimensions.
This method uses product operations between pictures of all image pairs within the feature area [9]. Accuracy for
classifying objects in the right cluster is difficult to obtain in high dimensional data sets, measuring euclidean
distances on k-means, c-means, or fuzzy c-medoids. Distribution data can be represented to validate the truly central
cluster. This difficulty can be overcome by using the kernel method [10]. Let Xn be an input space; F is a feature
space and ϕ : Xn →F

Linear Kernel
Deriving the feature vector inexplicit by a kernel is normally quite difficult, and solely doable if the kernel is
Mercer. However, account a kernel from a feature vector is easy: we just use [11]:

( , ′) = ( ) ( ′) = 〈 ( ), ( ′)〉 (4)
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If ( ) = , we get the linear kernel, defined by [11]:

( , ′) = ′ (5)

This is helpful if the first knowledge is already high dimensional, and if the original options are severally
informative, e.g., a bag of words illustration wherever the vocabulary size is large, or the expression level of the
many genes. In such a case, the choice boundary is probably going to be expressible as a linear combination of the
original features, therefore it's not necessary to figure in another feature space. Of course, not all high dimensional
issues are linearly separable. For example, pictures are high dimensional, however individual pixels aren't terribly
informative, so image classification usually needs non-linear kernels.

Polynomial Kernel
The Polynomial kernel is defined as [12]:

( , ) = ( + ) (6)

where n is that the “order” of the kernel and c may be a constant that enables to trade off the influence of the upper
order and lower order terms. Second-order or quadratic kernels are a well-liked type of Polynomial kernel, widely
utilized in Speech Recognition. Higher-order kernels tend to “overfit” the coaching knowledge and so don't
generalize well.

RBF Kernel
The squared exponential kernel (SE kernel) or Gaussian kernel is defined by [13]:

( , ) = exp(− ( − ′) Σ ( − ) − ∑ − (7)

If Σ is diagonal, this can be written as [14]:

( , ) = exp( −
1
2

1
σ

− )
(8)

We can interpret the σ as defining the characteristic length scale of dimension j. If σ = ∞, the corresponding
dimension is ignored; hence this is known as the ARD kernel. If Σ is spherical, we get the isotropic kernel [15]:

( , ) = exp(−
‖ − ‖

2σ
)

(9)

Here σ2 is known as the bandwidth. Equation 14.3 is an example of a radial basis function or RBF kernel since it is
only a function of ‖ − ‖.
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c. Confusion Matrix

A misunderstanding matrix was used in this paper to assist in measuring the classification model's assessment
parameters. The uncertainty matrix is used to test the Twin support vector machines classification model based on
the kernel for lung cancer diagnosis. Table 1 shown confusion matrix [16]:

Table 1. Confusion Matrix
Predict

Cancer (Y) Non-Cancer (N)
Actual Cancer (Y) TP FN

Non-Cancer (N) FP TN

TP (True Positive) : Many cases of lung cancer are predicted to be correct
TN (True Negative) : Many cases of non-lung cancer are predicted to be correct
FP (False Positive) : Many cases of non-lung cancer are predicted to be wrong (predicted as lung cancer)
FN (False Negative) : Many lung cancer cases are predicted to be wrong (predicted as not lung cancer)

Evaluation Parameters
Accuracy, precision, recall, f1-score, and required running time were the parameters for assessing the

performance of the Twin support vector machines classification model. The formula for accuracy, precision, recall,
f1-score shown in equation 10, 11, 12, 13 [17-19]:

=
( + )

( + + + )
100%

(10)

=
+

100%
(11)

=
+

100%
(12)

1 = 2
( )
( + )

100%
(13)

2. MAIN RESULTS

V. Data
In this study, the data consisted of 138 samples and seven features. These seven features consist of area,
min, max, average, SD, sum, and length. Diagnosis features become a target feature in detecting lung
cancer. The data are lung cancer data obtained from Cipto Mangunkusumo Hospital, Jakarta, Indonesia
with 69 samples of cancer diagnoses (1), and 69 samples of non-cancer (0). Table 2 and Table 3
represented part of the data :
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Table 2. Lung cancer dataset variable
Attributes Description
Area The size of the lung cancer area

Min
The minimum score for lung cancer is a number of the lowest intensity

present within the circled area

Max
The maximum value of lung cancer ie the highest intensity figure in the

area which is circled

Average
The average score for lung cancer is a number of the average intensity

that exists within that area circled

SD Standard error value in lung cancer

Sum Number of dots in lung cancer

Lenght Length of lung cancer

Tabel 3. Sample of lung cancer data
Area Min Max Average SD Sum Length Target

106.53 -926 -773 -863 29.5 -156324 36.6 0
76.07 -924 -755 -850 29.02 -121557 31.01 0
109.76 -42 88 28.45 24.68 5576 37.17 1
135.93 -917 -683 -875 41.11 -284527 41.34 0
97.55 -12 65 32.59 14.05 7562 35.01 1
103.04 -14 66 36.39 15.22 9025 35.98 1
106.07 -869 604 -762 40.48 -162501 36.51 0
129.01 -858 -418 -746 75.5 -194800 40.27 0
85.15 -7 129 54.85 26.35 8667 32.79 1
176.69 -879 -644 -814 49.22 -177463 47.16 0

Results
The performance evaluation of the Twin Support Vector Machines classification model with linear kernel,
polynomial kernel, and RBF kernel is discussed in this section. The kernel-based Twin Support Vector Machines
classification model detects lung cancer using the linear kernel, polynomial kernel, and RBF kernel. The highest
accuracy, precision, recall, and f1-score in this analysis is from the RBF kernel when using = 1. This means that,
when using twin support vector machines, the RBF kernel is a sufficient kernel for lung detection. In this paper, we
developed the model of twin support vector machines classification for lung cancer detection with linear kernels,
polynomial kernels, and radial basis function kernels. Table 4 provides a comparison of the linear kernel,
polynomial kernel, and RBF kernel results of twin support vector machines. Accuracy, precision, recall, f1-score,
and running time are the performance assessment metrics compared. Table 4 demonstrates the outcome of the
kernel-based twin support vector machines classification model.
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TABLE 4. The Result of Lung Cancer Classification
using Twin support vector machines

No. Kernel
Function Accuracy(%) Precision(%) Recall

(%)
F1-

Score(%)
Running

time

1. Linear
Kernel 97,8% 97% 98% 98% 0.16 s

2. Polynomial
Kernel 97,8% 97% 98% 98% 0.144 s

3. RBF
Kernel 100% 100% 100% 100% 0.41 s

Based on Tabel 4, that can be seen that twin support vector machine models the highest accuracy,
precision, recall, and f1-score of 100% was recorded when using the RBF kernel at 0.41 seconds. While the lowest
accuracy at 97,8% was recorded when linear and polynomial kernel with a running time of 0.16 seconds for linear
kernel and 0.144 seconds for the polynomial kernel. The lowest precision at 97% was recorded when linear and
polynomial kernel. The lowest recall at 98% was recorded when linear and polynomial kernel. The lowest f1-score
at 98% was recorded when linear and polynomial kernel (using = 4). For consideration of running time, the twin
support vector machines model with polynomial kernel has the fastest running time compared to linear and RBF
kernel which is around 0.16 seconds. The twin support vector machines model with the RBF kernel actually
produces the longest-running time which is around 0.41 seconds. Based on the results obtained, the RBF kernel gets
the best results in terms of accuracy, precision, recall, and f1-score. Thus, the RBF kernel is the best kernel for the
twin support vector machines in detecting lung cancer dataset.

CONCLUSION

Lung cancer detection quickly is very important. it is useful for handling cancer quickly before being
infected to all organs of the body. However, this is difficult because lung cancer has no specific symptoms. The
Twin SVM method can help detect lung cancer based on CT scan data. The most appropriate kernel for the twin
support vector machines method in detecting lung cancer is the RBF kernel which produces an accuracy, precision,
recall, and f1-score of 100% and the required running time is 0.41 seconds.
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Abstract. Stroke is a disease that causes long-term disability and death, so it is important to be able to detect a stroke as
early as possible. Stroke is divided into 2 types, namely ischemic stroke and hemorrhagic stroke, but 87% of stroke sufferers
are ischemic strokes. CT scan is effective for accurate diagnosis of ischemic stroke. Technological developments in the health
sector have played an important role in helping the management of ischemic stroke sufferers. In recent years, deep learning
and machine learning have provided new directions for CT scan detection for ischemic stroke sufferers, due to their ability to
provide highly accurate predictive results. So, the problem of long-term diagnosis that adds to doctor's fatigue and can lead to
the wrong situation is no longer a worrying factor. In this paper, we build an ensemble method that helps improve the
accuracy of ischemic stroke detection, we combine deep learning and machine learning. Convolutional Neural Network
(CNN) is one of the methods commonly used for image classification, but in this study, we only used CNN to extract the CT
scan image data into numeric, then the results of the convolution were classified with Support Vector Machines (SVM)
classifier. A total of 92 CT scans were considered for this model, data obtained from the Radiology Department of the
National General Hospital (RSCM) Cipto Mangunkusumo, Indonesia. The proposed method efficiently detects ischemic
stroke with 100% accuracy, 100% precision, 100% specificity, 100% f-score and 8.19759 seconds running time by using
CNN as feature extraction and SVM as a classifier, wherein the proposed method can be used to assist a doctor or radiologist
in the decision-making process in the treatment of ischemic stroke.

Keywords: convolutional neural network; image classification; stroke ischemic; support vector machines

1. INTRODUCTION

Stroke is the main neurological disease in adulthood, based on the high incidence, emergencies, the main cause of
disability, and death is from the stroke. According to the Global Burden of Disease Study, stroke is one of the
diseases with the most deaths in the world. A stroke can be defined as an injury to the brain caused by a blockage of
blood vessels and making inadequate blood supply that causes bleeding in the brain parenchyma [1]. This disease
requires lifelong health services because stroke itself is a cardio-cerebrovascular disease that is classified as a
catastrophic disease and requires therapy with special expertise using sophisticated medical devices [2]. Early
detection of stroke needs to be given extra attention, so we able to reduce the number of cases from year to year.
When a person experiences a symptom of paralysis in one part of his body, it is necessary to do a further
examination so we could determine whether the cause of the symptoms is from stroke, infection, tumor, or
something else.

The first step examination that medical use nowadays is Computerized Tomography Scan (CT scan). It is necessary
before a patient gets treatment. But there is an alternative to CT scanning which is Magnetic Resonance Imaging
(MRI), but MRI costs are more expensive, and the examination time is longer than CT scan therefore doctors will
recommend the patient to CT scan [3]. CT scan is also useful to distinguish the type of stroke suffered by the patient.
The stroke itself can be divided into two types, hemorrhagic and ischemic stroke. Hemorrhagic stroke is when there
is a rupture of the intracerebral blood vessels in the brain, while if there is a blockage of blood vessels in the brain
by thrombus or embolism will cause an ischemic stroke [1]. The majority of stroke is stroke ischemic, that is 87%
and the rest are patients who experience intracerebral and subarachnoid hemorrhages which are pathologically
hemorrhagic strokes [4]. In this paper, we will be focusing on ischemic stroke since this is the most common type of
stroke in society. Ischemic stroke can be seen by the symptoms felt by the patient which are paralysis, trouble of
speaking or understanding speech, dizziness, trouble walking, loss of balance or coordination and unexplained fails,
loss of consciousness, sudden and severe headache. Early detection can help ischemic stroke new sufferers avoiding
death and permanent injuries because there is a golden period in stroke management that is as long as 4.5 hours [5].
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Ischemic stroke generally causes changes in density in the brain and we can see the changes on CT scan with result
darker namely the hypodense area. Hypodense is intended for softer tissue, such as air or liquid. Be that as it may,
the area of ischemic stroke on the CT examination isn't clear, so, the conclusion relies upon the doctors in evaluating
the results. High mortality and disability bring issues to light on the significance of the early detection of ischemic
stroke; therefore, research has been completed, particularly in the field of innovation.

In recent years, machine learning and deep learning had taken part in developing the CT scan accuracy for ischemic
stroke sufferers because of their ability to provide predictive results. Machine learning is the design of algorithms
that computers use to perform certain tasks without explicit command by using patterns and intervention instead [6].
On the other hand, deep learning is a branch of machine learning which consists of a high-level abstraction modeling
algorithm in data using a set of non-linear transformation functions arranged in layers and depth [7]. One of the most
widely used deep learning methods for image recognition and classification is Convolutional Neural Networks
(CNN). Gautam and Raman [8] classify brain CT scan images into hemorrhagic, ischemic stroke and normal by
using CNN, they used 2 datasets to check the robustness of their method, the accuracy of dataset 1 for the first
experiment is 98.33% and the second experiment 98.77, while the dataset 2 for the first experiment is 92.22% and
the second experiment 93.33%. The elapsed time to train the classification model is different based on the
architecture used, the faster one is Alexnet with 1 min 38 second and the slowest is ResNet50 with 21 min 49 second
for experiments with dataset 1. For dataset 2, the elapsed time required longer than the dataset 1, elapsed time of
AlexNet and ResnNet50 are 2 min 15 second and 25 min 52 second, respectively [8]. The highest accuracy makes
CNN the most widely used, but the computation time required is quite long and can even reach 25 minutes, making
the authors change the approach in classification strokes.

There is another approach to classifying image data by combining two methods, namely the feature extraction
method for converting images to numeric and machine learning for classification. Rajini and Bhavani [9] used Gray
Level Co-Occurrence Matrix (GLCM) as a feature extraction and several machine learning methods as a classifier,
these are K-means with 96% accuracy, KNN with 97% accuracy, and Support Vector Machines (SVM) with 98%
accuracy. Kanchana and Menaka [10] used gray level run length matrix features, GLCM, and Hu’s moment features
are extracted. Then, the classification used logistic regression, SVM, random forest and neural network with
classification accuracy 88.77%, 97.86%. 99.79%. and 99.79%, respectively. Sabut, et. al [11] used GLCM as a
feature extraction and SVM as a classifier, the lesion area was classified effectively with accuracy 90.23%.

Based on two approaches before, deep learning and combining between extraction feature model and machine
learning for classification, make the author create a new approach by combining deep learning and machine
learning, which means that the extraction features that are already widely used such as GLCM will be replaced with
deep learning method, that is CNN. It could also mean that the classification part on CNN, which is Neural Network
will be replaced by other machine learning methods. Several studies [9][10][11] have used  several classification
methods and SVM is a method that is often used and also provides high accuracy, which is above 90%. SVM has
been very widely used for several studies on different datasets and also sectors, such as the intrusion detection
system classification [12][13][14], insolvency prediction in insurance company [15], policyholders’ satisfactorily
classification in automobile insurance [16], schizophrenia classification [17], and acute sinusitis classification [18].
Therefore, the machine learning method that will be used as a classifier is SVM. Thus, the proposed method in this
research is to combine feature extraction, namely CNN and classification using SVM.

Convolutional Neural Networks

CNN is a widely used deep learning method. The CNN method has two stages, first feature extraction with
convolutional layer and pooling layer, second is a trainable classifier or fully connected neural network [19]. Some
of the important layers that have been used in the CNN architecture given below:
1. Input: the input layer where we insert the CT scan images data.
2. Convolution: the convolutional layer extracts features from the image layer where each image element is

enclosed in a filter that has the same depth as the image [20]. In this research, five convolutional layers are
used with the same size 3 x 3. The number of filters used in the first, second, third, fourth, and five are 32, 64,
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32, 64, and 32, respectively. For considering the output size of flatten layer, the number of filters is chosen
wisely.

3. ReLU: after the convolutional layer, this layer is placed, its point is to threshold all input values [21]. ReLU is
an activation function that used for familiarizing non-linearities and made faster computation compared to tanh
and sigmoid [22].

4. Max Pooling: the pooling layer is used to reduce the size of the feature maps, the widely used pooling layer is
max pooling, where the use 2x2.

5. Batch Normalization: the normalization layer is used thereafter because aim of preventing model divergence
[23], to normalize activation the previous layer in each batch is used this normalization layer.

6. Dropout: the dropout is used to generalize better the network and the influence of individual neurons on the
resulting output reduced [24]. In this research, we used rate = 0.2.

The figure below is a detail of the CNN architecture used [25][26]:

Fig. 1. CNN architecture

Support Vector Machines

After the data is extracted by CNN, the process will be classified with SVM. SVM is supervise learning model,
meaning that the dataset must be labeled [27], making it suitable for the task of distinguishing between density is
changeable and unchanging density for CT scan images of the brain of ischemic stroke patients. The training data
will be labeling into “1” for change in density and “0” for no change in density. The training data used to build a
model are assumed to be separated by line. If we have data sample = {( , )} , ,…, , ∈ ℜ , ∈ {0,1}, where
N is the amount of data, w is a hyperplane, and b is a constant which showed the range of hyperplane to the center
point, with the following equation [28]:

+ = 0 (1)
Find the minimum point in equation (1) then bring it into equation (2) to create the formula, namely is called the
Quadratic Programming (QP) problem [29].

min
1
2

‖ ‖ (2)

(1) INPUT: 152 x 152 x 1
(2) Conv2D: 3x3 size, 32 filters, 1 stride
(3) ReLU: max(0, hθ(x))
(4) MaxPooling: 2x2 size, 1 stride
(5) BatchNormalization
(6) Conv2D: 3x3 size, 64 filters, 1 stride
(7) ReLU: max(0, hθ(x))
(8) MaxPooling: 2x2 size, 1 stride
(9) BatchNormalization
(10) Conv2D: 3x3 size, 96 filters, 1 stride
(11) ReLU: max(0, hθ(x))
(12) MaxPooling: 2x2 size, 1 stride
(13) BatchNormalization
(14) Conv2D: 3x3 size, 64 filters, 1 stride
(15) ReLU: max(0, hθ(x))
(16) MaxPooling: 2x2 size, 1 stride
(17) BatchNormalization
(18) Conv2D: 3x3 size, 32 filters, 1 stride
(19) ReLU: max(0, hθ(x))
(20) MaxPooling: 2x2 size, 1 stride
(21) Dropout: rate=0.2
(22) Flatten output: 1 x 6273
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( ⋅ + ) ≥ 1, ∀ = 1, … , (3)
Lagrange Multiplier is one of the various computational techniques that can solve this problem, for the search for
maximum margin is equal to minimize ‖ ‖ which is stated in equation (4) [29]:

( , , ) =
1
2

‖ ‖ − [ ( + ) − 1] (4)

with the constraints in the following equation (5), (6), (7), (8).
≥ 0 (5)

1− ( + ) ≥ 0 (6)
[1− ( + )] = 0 (7)

∀ = 1,2, … , (8)
The final function is stated in following equation (9):

( ) = . + (9)

Proposed Method

The flowchart of the proposed method CNN-SVM is given in Fig. 4. The proposed method has 5-step working
structure, with the detail below:

Step 1 Obtaining the CT scan images
There are 92 brain CT Scan images consisting of 48 images with no change in density and 44 images
with change in density in ischemic stroke patients that obtained from the Department of Radiology,
Cipto Mangunkusumo National General Hospital (RSCM), Indonesia. CT scan data of the brain were
observed as high as the third ventricle.

Fig. 2. No change in density Fig. 3. Change in density
Step 2 Cropping image

The CT scan images are cropped, the dimensions of images used in this research is 512x512 pixels
with type of file is jpg.

Step 3 Conversion to grayscale
In order to make the process faster, the CT scan images are converted to grayscale.

Step 4 Extract features by using CNN
In order to extract the feature of 92 brain CT scan images, the related images are given to CNN
architecture.

Step 5 SVM classifier
The CT scan image is extracted using CNN architecture, then the output in the form of matrix data is
forwarded to the SVM classifier.
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Fig. 4. Proposed method

2. MAIN RESULTS

After pre-processing, the CT scan images were converted into numeric data using CNN, the elapsed time of CNN
process is 7.631490 sec. The result of feature extraction is in the form of matrix data to which we add a label for
each of row, the matrix is shows in the table below:

TABLE VI
MATRIX INPUT

Data y1 y2 … y6272 y6273 y
x1 2.34E-04 4.05E-01 … 2.38E-06 0.00E+00 1
x2 5.35E-06 7.42E-07 … 4.77E-07 0.00E+00 1
… … … … … …
x91 1.00E-06 8.71E-07 … 3.34E-06 2.86E-06 0
x92 0.00E+00 7.94E-07 … 2.14E-06 1.91E-06 0

The matrix data is an input that used for classification. In this research, we used SVM as a classifier. The
performance of purposed method is determined with confusion matrix, the Table II shows us the confusion matrix
that used.

TABLE VIII
CONFUSION MATRIX

Predicted Class
Change in

Density
No Change in

Density
Actual
Class

Change in Density TP FN
No Change in Density FP TN

The confusion matrix shows the number of incorrect and correct prediction that made by the model compared to the
actual data. Based on the value of TP, FP, FN, and TN from the confusion matrix, these four categories help us
assess the performance of the SVM classifier:

Accuracy =
TP + TN

TP + TN + FP + FN (10)

Precision =
TP

TP + FP (11)
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Specificity =
TN

FP + TN (12)

F − score =
TP

TP + 1
2 (FP + FN) (13)

The Table III show us the performance of stroke ischemic classification by using Support Vector Machines, which
the kernel function used for the Support Vector Machine in this research is linear kernel.

TABLE VIIIII
THE PERFORMANCE OF STROKE ISCHEMIC CLASSIFICATION USING SUPPORT VECTOR MACHINES AS A CLASSIFIER

AND CONVOLUTIONAL NEURAL NETWORK AS A FEATURE EXTRACTION

%Training Accuracy
(%)

Precision
(%)

Specificity
(%)

F-score
(%)

Running Time
(sec)

10 47.61% 43.00% 48.00% 37.00% 0.5506

20 62.66% 64.00% 62.00% 62.00% 0.5055

30 75.75% 76.00% 76.00% 76.00% 0.5416

40 75.00% 75.00% 75.00% 75.00% 0.6738

50 74.47% 75.00% 75.00% 74.00% 0.6226

60 94.73% 95.00% 95.00% 95.00% 0.6027

70 100.00% 100.00% 100.00% 100.00% 0.5196

80 94.73% 95.00% 95.00% 95.00% 0.5323

90 100.00% 100.00% 100.00% 100.00% 0.5457

AVG 80.55% 80.33% 80.67% 79.33% 0.5661

Table III shows us the proposed method is resulting the best performance, when the composition of training data in
70% and 90%. The performance of classifier for 70% percentage of training dataset are 100% accuracy, 100%
precision, 100% specificity, 100% f-score and 0.5196 sec running time. The performance of classifier for 90%
percentage of training dataset are 100% accuracy, 100% precision, 100% specificity, 100% f-score and 0.5457 sec
running time. The difference is only during running time, but it only differs very slightly, this is because the amount
of data processed in training data is 90%, certainly more than 70%. The average value of performance of classifier
method for all percentage of data training are 80.55% accuracy, 80.33% precision, 80.67% specificity, 79.33% f-
score and 0.5661 sec running time. If we use the highest accuracy as the best performance, it means the proposed
method we use can 100% correctly classify CT scan stroke ischemic images with a running time of only 8.19759
seconds. A very short time compared to the CNN-only method and the highest accuracy that CNN-only and
combining extraction feature and machine learning approach.

CONCLUSION

In this research, which applied Convolutional Neural Network as the feature extraction and Support Vector
Machines as the classification method by using brain CT scan images data of ischemic stroke patients that obtained
from Department of Radiology, Cipto Mangunkusumo National General Hospital (RSCM), Indonesia. The proposed
method gives the values of accuracy for each amount of data training. From the experimental results, it can be
concluded that the performance of Support Vector Machines with CNN reaches a highest rate at 100% accuracy,
100% precision, 100% specificity, 100% f-score and 8.19759 sec running time when the amount of data training is
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equal to 70%, wherein the proposed method can be used to assist a doctor or radiologist in the decision-making
process in the treatment of ischemic stroke.
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Abstract. In the present paper, we have recalled some definitions and well known results for the field of inequality theory. Then,
some new integral inequalities have been established for geometrically convex functions via some well-known inequalities such
that Young and Hölder inequality. Our results involve new upper bounds for product of geometrically convex functions that have
applications in different branches of mathematics with statistics and convex analysis.

1. INTRODUCTION

The concept of convex function, which is widely used in inequality and is known with its applications in many fields
of mathematics, has continued to be interesting even though its history dates back to ancient times. Differentiable or
integrable convex functions have been the focus of many researchers and have been the subject of many articles in
the field of inequality theory. Let’s start with the definition of this aesthetics and useful functions.

Definition 1.1 A function : ℝ → ℝ is said to be convex on I if inequality
( )( ) ( ) ( ) ( )yftxtfyttxf -+£-+ 11 (1.1)

holds for all Iyx Î, and ∈ [0,1]

Some studies have been designed to form different types of convex function classes in order to carry the convex
function classes to a new dimension. Many convex function types, especially the convex function definition, are
closely related to the special means and contain the mean expressions in the definition. We will continue with some
types of convex function types that come into prominence among convex function types and find application in
statistics.
In [9], Niculescu mentioned definitions of geometrically convex functions as:
The arithmetic-geometric convex functions namely -log convex functions or AG-convex functions are defined as

( ) ( )¥®¥Í 0,0,: If and hold the following inequality:

,x y IÎ and [ ]0,1αÎ ⇒ ( + (1 − ) ) ≤ [ ( )] [ ( )] . (1.2)

i.e., for which flog is convex.
The geometric-geometric convex functions namely multiplicatively convex functions or GG-convex functions are
defined as ( ) ( )¥Í®¥Í 0,0,: JIf and satisfy:
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,x y IÎ and [ ]0,1a Î ⇒ ( ) ( ) ( ) 11f x y f x f y
a aa a -- £ é ù é ùë û ë û . (1.3)

The class of all geometric-arithmetic convex functions or namely GA-convex functions are defined as
( ) ( )¥®¥Í 0,0,: If and hold:

,x y IÎ and [ ]0,1a Î ⇒ ( ) ( ) ( ) ( )1 1f x y f x f ya a a a- £ + - .                               (1.4)

Besides, recall that the criterion of -GA convexity is 02 ³+ ''' xffx which implies all twice differentiable non-
decreasing convex functions are also -GA convex.
Examples of functions that contain some important statistical definitions and closely related to many other
mathematical concepts are presented below.

Remark 1.1 [4] Some examples of log-concave and concave functions

1.  The normal probability density function ( ) /22

2
1= xexf -

p
is log-concave on ( )0,1 , which is also concave

on ( )0,1 since ( )
p2

1ln/2=log 2xxf - is a concave function.

2.  The probability density function of the beta distribution, for 10 ££ x , and shape parameters 0>, 21 aa , is a
power function of the variable x and of its reflection ( )x-1 like follows:

( ) ( ) ( ) 1211

21
21 1

,
1=,; -- - aa

aab
aa xxxf

is concave and log -concave function for 2== 21 aa , where b is Euler-Beta function. Namely

( ) ( )
( ) ( ) ( ) ( )26=1

22
4= xxxxxf --
GG

G
is concave and log -concave function on ( )0,1 .

Hermite-Hadamard inequality, which suggests bounds for the mean value of a convex function, is given as follows.

Theorem 1.1. (See [2], [3]) Let : ⊂ ℝ → ℝ be a convex function and Ivu Î, with vu < . The following
double inequality:

( ) ( ) ( )
2

1)
2

( vfufdxxf
uv

vuf
v

u

+
£

-
£

+
ò (1.5)

is known in the literature as Hadamard’s inequality (or Hermite-Hadamard inequality) for convex functions. If f is
a positive concave function, then the inequality is reversed.

It is worth remembering some special means to be used in this study.The extended logarithmic mean pL of

0>,ba is given for ba = by ( ) aaaLp =, and for a b¹ by
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It is obivous that ),(1 baL- is called the logarithmic mean ),( baL . Two important averages subject to arithmetic
geometric inequality are defined as follows.

,=),( abbaG

2
=),( babaA +

are the geometric mean and arithmetic mean, respectively.
For more detailed information, inequalities, generalizations, and interesting new results for special means and
geometric convex function classes, please refer to the papers [1],[5], [6],[8]-[17].
Many articles listed in the bibliography section have obtained results based on geometric convex function classes
and special averages. Here we just want to remind you a few of these results. In [7] Yang et al. established the
following results;

Theorem 1.2. Let ( )¥® 0,:, Igf be log-convex functions on I and Iba Î, with ba < and 0>,ba
with 1=ba + . Then the following inequality holds:

( ) ( ) ( ) ( ) ( ) ( )),(),(1
1

11 bfafLbfafLxxgxf
ab

b

a

a
a

a

a

-

-
ú
û

ù
ê
ë

é
£

- ò

( ) ( ) ( ) ( )).,(),(

1

11 bgagLbgagL
b
b

b

b

-

- ú
ú
û

ù

ê
ê
ë

é
+

Theorem 1.3. Let ( )¥® 0,:, Igf be log-concave functions on I and Iba Î, with ba < . Further, let

1>a with 1=ba + ( or 1>b with 1=ba + ). Then the following inequality holds:

( ) ( ) ( ) ( )( ) ( ) ( )),(,1
1

11 bfafLbfafLxxgxf
ab

b

a

a
a

a

a

-
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The goal of this paper is to establish some new integral inequalities for geometrically convex functions by using
above-mentioned classical integral inequalities.
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2. MAIN RESULTS

Theorem 2.1. Let ( ) ( )¥®¥Í 0,0,:, Igf are -GA convex functions and fggf ,, are integrable functions

on [ ]ba, such that ,, Iba Î 1¹
a
b

. Then, we point out the following new result:

( ) ( ))()()()()()()()(
lnln

1
321 bgbfagafTbgafTagbfTdx

x
abgxf

ab
b

a
+++£÷

ø
ö

ç
è
æ

- ò (2.1)

where

,
ln

22ln2ln
=

3

2

1

a
b

ab
a
bb

a
bb

T
-+-

,
ln

2ln2ln2ln
=

3

2

2

a
b

a
b

a
ba

a
ba

T
-+-

.
ln

22lnln3ln2
=

3

2

3

a
b

ab
a
ba

a
bb

a
bb

T
-++-

Proof. By using the functions f and g and conditions of Theorem, we can write

( ) ( ) ( ) .=
lnln

1 1111

0
dtbagabfabdx

x
abgxf

ab
ttttttb

a

---òò ÷
ø
ö

ç
è
æ

-

Here we have used the change of the variables as ttabx -1= and .ln= 1 dt
a
babdx tt - By taking into account

-GA convexity of f and ,g we get

( ) dx
x

abgxf
ab

b

a
÷
ø
ö

ç
è
æ

- òlnln
1

[ ][ ]dtbgtatgaftbtfab tt )()(1)()()(1)(11

0
-+-+£ -ò

( )[ ] .)()()(1)()()()()(1)()(= 2211

0
dtbgaftbgbfagafttagbftab tt -++-+-ò

By computing the above integrals, we obtain

( ) dx
x

abgxf
ab

b

a
÷
ø
ö

ç
è
æ

- òlnln
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)()(
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22ln2ln
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ú
ú
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ê
ê
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£
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Thus, this complete the proof of the inequality (2.1).

Similar to this result can be easily obtained for -GG convex functions.

Theorem 2.2. Let ( ) ( )¥®¥Í 0,0,:, Igf are -GG convex functions and fggf ,, are integrable functions

on [ ]ba, such that ,, Iba Î 1¹
a
b

. Then, we have:

( ) ( ))()(),()(
lnln

1 agbbfbgaafLdx
x

abgxf
ab

b

a
£÷

ø
ö

ç
è
æ

- ò
where ( )vuL , is the logarithmic mean of u and .v

Proof. Procedures similar to the proof of the previous theorem should be considered, but we only need to select the
functions -GG convex. So, we can write

( ) dx
x

abgxf
ab

b

a
÷
ø
ö

ç
è
æ

- òlnln
1

( ) ( )dtbagabfab tttttt ---ò 1111

0
=

[ ] [ ] .)()()()( 11

0
dtbgaafagbbf tt -ò£

By a simple calculation, we deduce

( ) .
)()(ln)()(ln

)()()()(
lnln

1
bgaafagbbf

bgaafagbbfdx
x

abgxf
ab

b

a -
-

£÷
ø
ö

ç
è
æ

- ò
The proof is completed.

Theorem 2.3. Let ( ) ( )¥®¥Í 0,0,: If is -GG convex function and f is integrable function on [ ]ba,

such that ,, Iba Î 1¹
a
b

. Then, one has the following inequality:

( ) ( ) ( )baLbfafGdx
x

abfxf
ab

b

a
,)(),(

lnln
1 2£÷

ø
ö

ç
è
æ

- ò
where ( )vuL , is the logarithmic mean of u and v and ( )vuG , is the geometric mean of u and .v

Proof. By using the definition of -GG convexity, we have
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( ) dx
x

abfxf
ab

b

a
÷
ø
ö

ç
è
æ

- òlnln
1

( ) ( )dtbafabfab tttttt ---ò 1111

0
=

≤ ( ) ( ) = ( ) ( )
−
−

which completes the proof.

Theorem 2.4. Suppose that ( ) ( )¥®¥Í 0,0,: If be -GA convex function, ( ) ( )¥®¥Í 0,0,: Ig be

-GG convex function and fggf ,, are integrable functions on [ ]ba, such that ,, Iba Î 1¹
a
b

. Then, one has

the following inequality:

( ) ( ) ( ) ( )( ),)(,)()(),(
lnln

1
q

abgbagL
p

bfafL
dx

x
abgxf

ab

qqp
pb

a
+£÷

ø
ö

ç
è
æ

- ò

for 1=11
qp

+ where ( )vuL , is the logarithmic mean of u and v and ( )vuG , is the geometric mean of u and

.v

Proof. The classical Young’s inequality can be represented by (see [2]):

0.>,1,=11for, babaab
qpqp

qp

++£

Since f is -GA convex function and g is -GG convex function on I , we get

( ) dx
x

abgxf
ab

b

a
÷
ø
ö

ç
è
æ

- òlnln
1

( ) ( )dtbagabfab tttttt ---ò 1111

0
=

[ ][ ] [ ] .)()()()(1)( 111

0
dtbgagaftbtfab tttt -- -+£ ò

By using the Young inequality, we can write

( ) dx
x
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b

a
÷
ø
ö

ç
è
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1
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By computing the above integrals, we obtain

( ) dx
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÷
ø
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[ ] [ ]
( )

( ) ( )
( ) ( )( ),)(ln)(ln
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qqpp

bagabgq
bagabg

ppafbf
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-
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ö
çç
è

æ
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ø

ö
çç
è

æ

-
-

£
++

which completes the proof.

Theorem 2.5. Suppose that ( ) ( )¥®¥Í 0,0,:, Igf be two functions and fggf ,, are integrable

functions on [ ]ba, such that ,, Iba Î ba < . If f is -GA convex and g is -GG convex function, then,
one has the following inequality:

( ) dx
x

abgxf
ab

b

a
÷
ø
ö

ç
è
æ

- òlnln
1

≤ [| ( )|] [ ( )]
| ( )| ( ) ( )

( | ( )|) ( | ( )|)
( | ( )|) ( | ( )|)

for 1>1,=11 p
qp

+ .

Proof. By using the definition of f and g and changing of the variables , we have

( ) dx
x

abgxf
ab

b

a
÷
ø
ö

ç
è
æ

- òlnln
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By applying the well-known Hölder integral inequality, we get:
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By making use of necessary computations, we obtain;
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Which completes the proof.

Theorem 2.6 Suppose that ( ) ( )¥®¥Í 0,0,:, Igf be two functions and fggf ,, are integrable functions

on [ ]ba, such that ,, Iba Î ba < . If f and g are -GG convex function, then, one has the following
inequality:

( ) dx
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≤ ((| ( )|) , (| ( )|) ) (( | ( )|) , ( | ( )|) )

for 1,>1,=11 p
qp

+ where ( )vuL , is the logarithmic mean of u and v .

Proof. By using the definition of f and g and changing of the variables , we have

( ) dx
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- òlnln
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By applying the well-known Hölder integral inequality, we get:

( ) dx
x

abgxf
ab

b
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- òlnln
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By making use of necessary computations, we obtain;

( ) dx
x

abgxf
ab

b

a
÷
ø
ö

ç
è
æ

- òlnln
1

≤
(| ( )|) − ( )

(| ( )|) − ( )

( | ( )|) − ( | ( )|)
( | ( )|) − ( | ( )|)

which completes the proof.

3. CONCLUSION

In this study, we have proved some new integral inequalities for product of -GA and -GG convex functions by
using some integration techniques and elemantery analysis. The results have been established via some classical
inequalities such as Hölder integral inequality and Young inequality. We presented the results for special means of
real numbers. The results can be extended to fractional calculus by using some new fractional integral operators.
Also, similar results can be found for more general convex function classes.
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Abstract. In this paper some new inequalities of Hadamard-type are established for the classes of functions whose derivatives of
absolute values are geometrically m-geometrically convex functions via Riemann-Liouville integrals.

1. INTRODUCTION

Let : ⊂ ℝ → ℝ be a convex function defined on the interval I of real numbers and Iba Î, with ba < . The
following inequality is well known in the literature as the Hermite–Hadamard inequality:

.
2

)()()(1
2

bfafdxxf
ab

baf
b

a

+
£

-
£÷
ø
ö

ç
è
æ +

ò

Let us recall some known definitions and results which will be used in this paper. The function : [ , ] → ℝ is said
to be convex, if we have

( )( ) ( ) ( ) ( )yftxtfyttxf -+£-+ 11
for all , ∈ [ , ] and ∈ [0,1].
The concept of -m convexity has been introduced by Toader in [5] as following:

Definition 1. The function : [0, ] → ℝ, > 0, is said to be -m convex, where [ ],0,1Îm if we have

( )( ) ( ) ( ) ( )yftmxtfytmtxf -+£-+ 11
for all [ ]byx 0,, Î and [ ].0,1Ît We say that f is -m concave if f- is -m convex.

In [4], Miheşan gave definition of -),( ma convexity as following:

Definition 2. The function : [ , ] → ℝ, 0>b is said to be -),( ma convex, where ,0,1]),( 2Îma if  we have

)()(1)())(1( yftmxftytmtxf aa -+£-+
for all , ∈ [ , ] and ∈ [0,1].
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Denote by )(bKm
a the class of all -),( ma convex functions on ][0,b for which 0.(0)£f If we choose

)(1,=),( mma , it can be easily seen that -),( ma convexity reduces to -m convexity and for
(1,1),=),( ma we have ordinary convex functions on ].[0,b For the recent results based on the above definitions

see the papers [1]-[13].
In [12], authors introduce two new concepts called -m and -),( ma geometrically convex functions as
followings:

Definition 3. Let ( )xf be a positive function on [ ]b0, and ( ].0,1Îm If
( )( ) ( )[ ] ( )[ ] ( )tmttmt yfxfyxf -- £ 11

holds for all [ ]byx 0,, Î and [ ],0,1Ît then we say that the function ( )xf is -m geometrically convex on

[ ].0,b

Definition 4. Let ( )xf be a positive function on [ ]b0, and ( ] ( ].0,10,1),( ´Îma If

( )( ) ( )[ ] ( )[ ] ÷
ø
öç

è
æ -- £

aa tmttmt yfxfyxf 11

holds for all [ ]byx 0,, Î and [ ],0,1Ît then we say that the function ( )xf is -),( ma geometrically convex on

[ ].0,b

In [12], Xi et al. proved following inequalities of Hadamard type for -m and -),( ma geometrically convex
functions:

Theorem 1. Let ⊃ [0, ∞) be an open interval and ( )¥® 0,: If is differentiable. If [ ]( )baLf ' ,Î and 'f is

decreasing and -),( ma geometrically convex on { }[ ]ba ,1,min for ∈ [0, ∞) 1,³b and

( ] ( ],0,10,1),( ´Îma then

( ) ( ) − ∫ ( ) ≤ | ( )| [ ( , , )]

is valid for 1,³q where

( )
( )
( )

.21=,,
1

0
1 dt

bf

af
tqmG

qt

m'

'
a

a
÷÷
÷

ø

ö

çç
ç

è

æ
-ò

(1.1)

Corollary 1. Let ⊃ [0, ∞) be an open interval and ( )¥® 0,: If is differentiable. If [ ]( )baLf ' ,Î and 'f
is decreasing and -m geometrically convex on { }[ ]ba ,1,min for , ∈ [0, ∞) with ba < and 1³b and

( ],0,1Îm then

( ) ( ) − ∫ ( ) ≤ | ( )| [ (1, , )]

is valid for 1,³q where 1G is defined by (1.1).



3rd INTERNATIONAL CONFERENCE
ON MATHEMATICAL AND RELATED SCIENCES:

CURRENT TRENDS AND DEVELOPMENTS
ICMRS 2020

20-22 NOVEMBER, 2020

249

Theorem 2. Let ⊃ [0, ∞) be an open interval and ( )¥® 0,: If is differentiable. If [ ]( )baLf ' ,Î and 'f is

decreasing and -),( ma geometrically convex on { }[ ]ba ,1,min for ∈ [0, ∞), 1,³b and

( ] ( ],0,10,1),( ´Îma then

− ∫ ( ) ≤ | ( )| [ ( , , )]

is valid for 1,³q where

( )
( )
( )
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.)(1=,,

1

1
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1

1
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(1.2)

Corollary 2. Let ⊃ [0, ∞) be an open interval and ( )¥® 0,: If is differentiable. If [ ]( )baLf ' ,Î and 'f
is decreasing and -m geometrically convex on { }[ ]ba ,1,min for ∈ [0, ∞), 1,³b and ( ],0,1Îm then

− ∫ ( ) ≤ | ( )| [ (1, , )]

is valid for 1,³q where is defined by (1.2).

Definition 5. Let ].,[1 baLf Î The Riemann-Liouville integrals fJ
a
a
+ and fJ

b
a
- of order 0>a with 0³a

are defined by

axdttftxxfJ
x

aa
>,)()(

)(
1=)( 1-

+ -
G ò aa

a
and

bxdttfxtxfJ
b

xb
<,)()(

)(
1=)( 1-

- -
G ò aa

a

where 1

0
( ) n xn x e dx

¥ - -G = ò here is ( )0 0
a bJ J f x+ -= =

In the case of 1,=a the fractional integral reduces to the classical integral. Properties of this operator can be found
in the references [14]-[16].
The main purpose of this paper is to establish some new Hadamard type inequalities for m-geometrically convex
functions by using Riemann-Liouville integrals.

2. MAIN RESULTS

We use the following lemma in order to prove our main results (See [13]).

Lemma 1. Let R®],[: baf be a differentiable mapping on ),( ba with .< ba If ],,[ baLf ' Î then the
following equality for fractional integrals holds:

[ ])()(
)2(
1)(

2
)()( afJbfJ

ab
bfaf

ba
mm

a

m
-+ +

-
+G

-
+
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( )[ ] .))(1(1
2

=
1

0
dtbttafttab ' -+--

-
ò mm

A very helpful Lemma which is given as following by Xi et al. (see [12]):

Lemma 2. For [ )¥Î 0,, yx and ( ],0,1, Îtm if yx < and 1,³y then
( ) ( ) .11 yttxyx tmt -+£-

Theorem 3. Let ( )¥® 0,: If , be a differentiable mapping. If ],[ baLf ' Î and 'f is decreasing and -m

geometrically convex on { }[ ]ba ,1,min for [ ),0,¥Îa 1,³b and ( ],0,1Îm then the following inequality holds

for fractional integrals with 0>m ;

[ ])()(
)2(
1)(

2
)()( afJbfJ

ab
bfaf

ba
mm

m

m
-+ +

-
+G

-
+

≤
−
2

| ( )| ((1 − ) − )
| ( )|

| ( )| + ( − (1 − ) )
| ( )|

| ( )|

where G is Euler Gamma function.

Proof. From Lemma 1-Lemma 2 and by using the properties of modulus, we have

[ ])()(
)2(
1)(

2
)()( afJbfJ

ab
bfaf
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m

m
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+G
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+
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Since 'f is -m geometrically convex, we can write

[ ])()(
)2(
1)(

2
)()( afJbfJ

ab
bfaf

ba
mm

m

m
-+ +

-
+G

-
+

≤
−
2

| ( )| ((1 − ) − )
| ( )|

| ( )| + ( − (1 − ) )
| ( )|

| ( )|

This completes the proof.

Corollary 3. Under the assumptions of Theorem 3, the following inequality holds:
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Proof. The proof is immediate follows from the fact that Mf ' £ in Theorem 3.
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Theorem 4. Let ( )¥® 0,: If be a differentiable mapping. If ],[ baLf ' Î and
q'f is decreasing and

( )-m,1a geometrically convex on { }[ ]ba ,1,min for [ ),0,¥Îa ≥ 1 and ( ) ( ] ( ],0,10,1,1 ´Îma then the
following inequality holds for fractional integrals with 0>a :
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Where G is Euler Gamma function for 1>q and 1.=11 -- + qp

Proof. From Lemma 1- Lemma 2 and by using the Hölder integral inequality, we have
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By computing the above integrals the proof is completed.

Corollary 4. Under the assumptions of Theorem 4, the following inequality holds:
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Proof. By taking Mf ' £ in (2.1), the proof is completed.

Corollary 5. Under the assumptions of Theorem 4, the following inequality holds:
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Proof. If we set 1=aa with ( ]0,1, 1Îaa in (2.1), the proof is completed.

Corollary 6. Let ( )¥® 0,: If , be a differentiable mapping. If ],[ baLf ' Î and 'f is decreasing and -m

geometrically convex on { }[ ]ba ,1,min for [ ),0,¥Îa ≥ 1 and ( ],0,1Îm then the following inequality holds:
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Corollary 7. If we choose 1=a in our results, we obtain several integral inequalities for -m geometrically and
-),( ma geometrically convex functions.
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Abstract. Three-way c-means based on the kernel function of classifying Hepatocellular Carcinoma (HCC) data was
proposed in this paper. As the improvement version of the rough k-means, it will be integrated with the polynomial
kernel function. One of the important benefits of the proposed method is its ability to handle the data that cannot be
separated linearly. The method was evaluated using k-fold cross-validation with k = 3, 5, 7, 10. Its sensitivity, precision,
and F1-Score were compared to the three-way c-means in classifying the HCC dataset from Al Islam Bandung Hospital
Indonesia, which consists of 130 HCC and 73 non-HCC samples. The result confirms that the proposed method makes
the increment up to 10 percent to the three-way c-means in sensitivity, precision, and F1-Score. Therefore, the method
proposed in this paper can be used to provide a proper diagnosis because it has high sensitivity in the classification.

1. INTRODUCTION

Hepatocellular carcinoma (HCC) is the third most tumor diseases that causes death worldwide [1]. However, the
diagnosis of this disease is still difficult and therefore make many patients are diagnosed when they are already in
severe condition and are too late to be treated. Even for those patients who can obtain surgery or liver
transplantation when their life could be saved by these treatment, their overall survival rates are still low [2].
Therefore, the early diagnosis of this disease is important to obtain higher survival rate for each patient.

The diagnosis of HCC can be obtained by histology for lesions lacking on the radiological features or contrast
enhanced ultrasonography [3]. Serum markers as alpha-fetoprotein (AFP) assessment and hepatic imaging also have
applied to early diagnosis and treatment for the patients with HCC [4]. Beside serum AFP, there are also cancer
antigens (CA19-9) and carcinoembryonic antigen (CEA) that can be used to detect HCC in the early stage [5].  In
this research, we used Serum CA19-9 blood tests to obtain an early diagnosis of HCC. According to Zhang et al [6],
serum CA19-9 can be used as a good predictors of HCC and with CA19-9 levels > 37 ng/ml we can predict the
overall survival in patients with HCC after resection.

There are several methods that have been done to provide HCC diagnosis. Machine learning is one of the
powerful methods that can be used to obtain high accuracy in diagnosing HCC. Ciocchetta, Demichelis, and Sboner
[7] achieved 97.2 accuracy used rule induction algorithm and decision tree with histopathological features from the
patients who received liver transplantation. Meanwhile, Lin et al [8] used Convolutional Neural Network (CNN)
based on VGG-16 in the combination of the excitation fluorescence and image data for achieving over 90%
accuracy in diagnosing HCC. Liao et al [9] also used deep CNN in histopathological images to detect HCC and
provided promising results. Moreover, Khairi, Rustam, and Utama [10] used Possibilistic C-Means (PCM) algorithm
on Serum AFP blood test data and achieved about 92% accuracy. Therefore, machine learning algorithm is truly
promising to develop in order to obtain higher accuracy in providing early diagnosing HCC patients.

In this paper, we proposed an extended version of three-way c-means algorithm that likely the existing three-
way c-means algorithm but is in the frame work of k-means. The extended version is different in terms of distance
measurement. Instead of using Euclidean distance, we used kernel trick and used polynomial kernel function to
make the algorithm perform even better in nonlinearly separable data.
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2. METHODOLOGY

A. Dataset

Serum CA 19-9 could be one of the determiners of HCC existence. Therefore, a dataset of serum CA 19-9 blood
tests is used in this research. Hepatocellular Carcinoma (HCC) dataset used in this study was obtained from the Al
Islam Bandung Hospital Indonesia. The dataset consists of 130 HCC and 73 non-HCC samples. Each sample was
described by age, hemoglobin, hematocrit, leukocyte, platelet counts. Some of the samples are shown in Table 1
where HCC samples are labelled as class 1 and non-HCC samples are labelled as class 2.

Table 1. HCC Dataset Samples

Age Hemoglobin Hematocrit Leukocyte Platelet
Counts Class

48 11.3 7,600 38.6 298,000 1
37 13.1 7,100 40.1 382,000 1
40 10.5 21,600 32.4 361,000 1
27 11.4 97,500 34.7 265,000 2
45 13.4 18,600 41.6 361,000 2

B. Proposed Method

In this research, we proposed kernel three-way c-means algorithm that is an extended version of the former
algorithm. Three-way c-means was proposed by Zhang K [11] in order to fix the problem in rough k-means
clustering. In this method, there are three regions of clusters, namely positive region, boundary region, and negative
region. The positive region ℂ of a clusters consists of the data points that belong to the cluster, the boundary region
ℂ of a clusters consists of the data points that probably belong to the cluster, and the data points that do not belong to
the cluster are taken as a part of the negative region ℂ of a cluster. Then, a cluster ℂ is represented as (ℂ, ℂ)

Three-way c-means applied the three-way weight and three-way assignment. In order to calculate the three-way
weight w of data point x in cluster ℂ , the values of B , μ , and M have to found first. B is the clusters where
positive or boundary regions contain x . Then fuzzy membership μ is defined by Bezdek [12] in Eq. (1).
Meanwhile M is a multiset which its elements are the fuzzy membership of x in the clusters of B .

μ =
d(x , x )
d(x , x )

, 1 ≤ i ≤ c, 1 ≤ j ≤ n (1)

As the extended version of three-way c-means, the distance formula inside Eq. (1) is replaced by the distance
measurement in the feature space [13] according to the concept of kernel function used. As the result, the Eq. (1)
becomes Eq. (2) and therefore the difference between both methods is only in fuzzy membership calculation.

μ =
K( , ) − 2K , + K ,
K( , ) − 2K , + K ,

, 1 ≤ i ≤ c, 1 ≤ j ≤ n (2)

The kernel function used in Eq. (2) is polynomial kernel function where we will use the first tenth degree to evaluate
the performance of the extended version. The formula of polynomial kernel function [14] is given in Eq. (3) where h
denotes the polynomial degree.

K , = 1 + ⋅ (3)
The proposed method also consists of update step and assignment step. Update step was used to calculate the

means of the cluster; meanwhile, the assignment step was followed the three-way assignment rules to determine
whether the data point belong to the positive region, boundary region, or negative region of the cluster. The
algorithm of three-way c-means was given in Figure 1.
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Figure 1. Algorithm of three-way c-means [11]

C. Performance Measurement

The performance of both three-way c-means and the proposed method was examined using the confusion matrix
to calculate the sensitivity, precision, and F1-Score, which the formulas are given in Eqs. (4)-(6).

Sensitivity= TP
TP+ FN

(4)

Precision = TP
TP + FP

(5)

F1-Score = 2 * sensitivity * precision
sensitivity + precision (6)

In those formula, TP (True Positive) is the number of HCC samples correctly diagnosed, FN (False Negative) is the
number of HCC samples incorrecly diagnossed as non-HCC, and FP (False Positive) is the number of non-HCC
samples incorrectly diagnosed as HCC.

3. RESULTS AND DISCUSSION

The performance of three-way c-means first evaluated using k-fold cross validation where k = 3, 5, 7, and 10.
The result is shown in Table 2. From this table, based on the average of F1-Score, the performance of this method in
classifying HCC is still below in 70 percent.

Table 2. Three-Ways C-Means Clustering Performance in Diagnosing HCC

k The Average of
Sensitivity

The Average of
Precision

The Average of
F1-Score

3 60.47 71.60 60.67
5 77.69 70.49 69.77
7 71.93 72.51 68.29
10 72.31 75.07 69.29

The performance of kernel three way c-means was also eevaluated used several k in k-fold cross validation. In Table
3, we can see the performance of kernel three-way c-means in different value of polynomial degree based on
evaluation of 3-fold cross validation. There are some polynomial degrees that cause its performance still similar with
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the method without kernel, but we can see that the ninth polynomial degree gives us the highest F1-Score among the
other polynomial degrees.

Table 3. Kernel Three-Ways C-Means Clustering Performance
in Diagnosing HCC using 3-fold cross validation

Polynomial
Degree

The Average
of Sensitivity

The Average
of Precision

The Average
of F1-Score

1 60.47 71.60 60.67
2 59.30 72.93 60.24
3 59.59 73.52 60.66
4 58.50 73.14 59.59
5 75.67 68.77 67.85
6 72.55 67.12 66.56
7 76.28 68.45 67.30
8 69.07 42.96 52.25
9 63.29 63.45 75.01

10 56.65 62.91 70.97

As the next discussion, the performance of kernel three-way c-means using 5-fold cross validation is given in
Table 4. The highest F1-Score is delivered when used sixth polynomial degree with the lower value, but we can
observe that the sensitivity and precision of this method is better than both tables that we have been discussed so far.

Table 4. Kernel Three-Ways C-Means Clustering Performance
in Diagnosing HCC using 5-fold cross validation

Polynomial
Degree

The Average
of Sensitivity

The Average
of Precision

The Average
of F1-Score

1 77.69 71.81 70.08
2 76.41 72.09 69.03
3 76.84 72.46 69.51
4 76.27 72.20 68.93
5 76.17 72.15 68.84
6 82.57 69.86 72.04
7 57.99 58.57 49.77
8 67.36 51.33 58.36
9 81.74 69.51 71.88
10 64.26 55.30 53.07

In the next tables, we will discussed the performance of kernel three-way c-means using 7-fold cross validation
(see Table 5) and 10-fold cross validation (see Table 6). Based on F1-Score, the performance of proposed method is
still better when utilize 10-fold cross validation, but when use 7-fold cross validation, there is an improvement
especially in many values of polynomial degree. However, we can choose the fifth polynomial degree in 7-fold cross
validation as the highest F1-Score within the table and also the first polynomial degree in 10-fold cross validation.

Furthermore, not only the 7-fold cross validation gives the better F1-Score among the other k values in k-fold
cross validation, but also provided better sensitivity. However, the proposed method that evaluated with 10-fold
cross-validation still gives better precision than the other. It is very interesting how the k value in k-fold cross
validation provides various performance and also affect the value of sensitivity, precision, and F1-Score of the
proposed method.
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Table 5. Kernel Three-Ways C-Means Performance in
Diagnosing HCC using 7-fold cross validation

Polynomial
Degree

The Average
of Sensitivity

The Average
of Precision

The Average
of F1-Score

1 71.93 72.51 68.29
2 86.40 71.65 75.08
3 87.52 71.36 75.44
4 87.66 71.33 75.48
5 87.68 71.32 75.49
6 72.95 56.78 62.12
7 84.48 71.09 74.21
8 76.46 74.27 69.77
9 76.59 69.17 69.73

10 70.68 59.04 62.08

Table 6. Kernel Three-Ways C-Means Performance in
Diagnosing HCC using 10-fold cross validation

Polynomial
Degree

The Average
of Sensitivity

The Average
of Precision

The Average
of F1-Score

1 76.15 76.16 70.79
2 74.76 77.08 70.30
3 73.93 76.96 69.71
4 73.85 76.95 69.66
5 73.85 76.94 69.66
6 75.94 75.27 69.93
7 77.53 75.50 70.51
8 70.68 64.81 63.19
9 70.06 63.50 62.50

10 64.41 55.35 57.39

After discussed each of kernel three-way c-means performance in different k value in k-fold cross validation,
now we will compared the performance of three way c-means and the proposed method for each k-fold cross
validation. From Table 7, we can see that the proposed method provides better performance in terms of sensitivity
and F1-Score for all k-fold cross validation. Meanwhile, three-way c-means c-means is still better in precision
except when 10-fold cross valdiation. In this table, we can also see the proposed method performs best when
evaluated in 7-fold cross validation. Furthermore, if we compared the precision in the other evaluations, the
precision of our proposed method in 7-fold cross validation is still the second highest precision. Therefore, as the
result of comparison between three-way c-means and our proposed method, the latter is better than the former in
order to diagnose HCC patients.

Table 7. The Comparison of Three Way C-Means and Proposed Method Performance in Diagnosing HCC
k Method The Average

of Sensitivity
The Average
of Precision

The Average
of F1-Score

3 Three-way c-means 60.47 71.60 60.67
Kernel three-way c-means (9th polynomial kernel) 63.29 63.45 75.01

5 Three-way c-means 77.69 70.49 69.77
Kernel three-way c-means (6th polynomial kernel) 82.57 69.86 72.04

7 Three-way c-means 71.93 72.51 68.29
Kernel three-way c-means (5th polynomial kernel) 87.68 71.32 75.49

10 Three-way c-means 72.31 75.07 69.29
Kernel three-way c-means (1st polynomial kernel) 76.15 76.16 70.79

4. CONCLUSION

Hepatocellular carcinoma is the most common type of primary liver cancer in adults and also cause the death
worldwide. The diagnosis system is still poor and therefore the development for early diagnosis of HCC patients is
still an essensial issue. Serum CA 19-9 could be one of the determiners of HCC existence. Therefore, a dataset of
serum CA 19-9 blood tests from the laboratory of Al Islam Bandung Hospital in Indonesia was used in this study.
We proposed an extended version of three-way c-means based on polinomial kernel that called as kernel three-way
c-means. The experiments using this dataset is conducted based on k-fold cross valdiation where k = 3, 5, 7, and 10.
Based on the experiments, the sensitivity and F1-Score of our proposed method in HCC classification were obtained
better for all k-fold cross-validation conducted than the method without kernel function. However, three-way c-
means clustering is better when it comes to precision measurement. Moreover, the 10-fold cross-validation yields
better performance in HCC classification than three-way c-means in sensitivity, precision, and F1-Score
measurement. Overall, our proposed method performs best when evaluated in 7-fold cross validation with 87.68
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sensitivity, 71.32 precision, and 75.49 F1-score. Therefore it can be an option to diagnose HCC patients. As the
future works, there are a lot of space for improvement especially in order to improve the accuracy in diagnosing
HCC patients using Serum CA 19-9 blood tests data.
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Abstract. In this article, we have considered a simple motion differential game of m pursuers and one evader in nR .
Here controls of the pursuers are subjected to linear constraints which is the generalization of both integral and
geometrical constraints, and control of the evader is subjected to a geometrical constraint. To solve a pursuit problem, the
attainability domain of each pursuer has been constructed and therefore, necessary and sufficient conditions have been
obtained by intersection of them.

1. INTRODUCTION

Differential games were initiated by Isaacs [23]. Fundamental results were obtained by Bercovitz [6]–[7], Basar [4]-
[5], Chikrii [9], Elliot and Kalton [10], Fleming [11]–[12], Friedman [13], Hajek [15]–[16], Ho, Bryson and Baron
[17], Pontryagin [27], Krasovskii [24], Petrosjan [26], Pshenichnyi [28]–[29], Subbotin [36]–[37] and others. The
book of Isaacs [23] contains many specific game problems that were discussed in details and proposed for further
study. One of them is the “Life-line” problem, which rather was comprehensively studied by Petrosjan [26] by
approximating measurable controls with most efficient piecewise constant controls that presents the strategy of
parallel approach. Later this strategy was called Π-strategy. The strategies proposed in [1], [26], [28] for a simple
motion pursuit game with geometrical constraints became the starting point for the development of the pursuit
methods in games with multiple pursuers (see e.g. [2], [14], [30]–[34]). A relay pursuit-evasion problem with two
pursuers and one evader was studied [36]. The problem is reduced to one pursuer and one evader problem subject to
a state constraint. To prolong the capture time, a suboptimal control strategy for the evader was proposed. A relay-
pursuit strategy was applied in [3], according to which only one pursuer is assigned to go after the evader at every
instant of time. The paper of [35] is devoted to capturing the evader in the shortest time. The Apollonius circles
formed by the evader and each pursuer are used to analyze how the evader can find a better strategy to escape or
prolong the capture time. The constructing of optimal strategies of players and finding the value of the game are
difficult and important problems of differential games. Pashkov and Terekhov [25] studied a simple motion
differential game of optimal approach of two pursuers and one evader. In the case where maximal speeds of pursuers
are equal, optimal strategies of players were constructed. The works [19–23] are devoted to a simple motion
differential game of k pursuers and one evader.

At the present time there are more than a hundred monographs on the theory. Nevertheless, completely solved
samples of Differential Games are quite few. This work is devoted to the Pursuit problem when linear constraints
which are the generalization of integral as well as geometrical constraints are imposed on the pursuers’ control class
and only a geometrical constraint is imposed on the evader’s control class and here it is studied in the term of
winning of the pursuer.

2. STATEMENT OF THE PROBLEM

Consider the differential game when Pursuer , 1,2,...,i i m=X and Evader .Y having radius vectors ix and y
correspondingly move in nR . If their velocity vectors are iu and v then the game will be described by the
equations:
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( ) 0, 0 ,i i i ix u x x= = (2.1)

( ) 0, 0 ,y v y y= = (2.2)

where , , , , 1n
i ix y u v R nÎ ³ and 0 0,ix y are the initial positions of the objects iX and .Y Here the temporal

variation of iu must be a measurable function ( ) :[0, ) ,n
iu R× ¥ ® we impose a constraint of the form

2

0
| ( ) | ( ), 0,

t

i iu s ds L t t£ ³ò (2.3)

admitting a linear change 0( ) =i i iL t k t r+ in the time ,t where ik is arbitrary and 0ir is a nonnegative numbers.
From the physical point of view, the right-hand of inequality (2.3) corresponds to the linear change of the given
resource depending on the time 0t ³ . Therefore, the linear function ( )iL t can be called a current change of the
given resource of the Pursuers iX . Clearly, this resource increases if 0ik > , decreases if 0ik < and remains
unchanged if 0ik = . In the last case, constraint (2.3) is called an Integral constraint. If 0 0ir = and 0,ik > then
constraint (2.3) can be called a Geometrical constraint.

We call inequality (2.3) as L - constraint (Linear constraint) and denote by L
iU the class of admissible

controls, i.e., of all measurable functions satisfying the L - constraint.
Similarly, the temporal variation of v must be a measurable function ( ) : [0, ) ,nv R× ¥ ® and on this vector-

function, we impose a geometrical constraint (briefly, G- constraint)
| ( ) |v t b£ for almost every 0t ³ , (2.4)

where b is a nonnegative parametric number which means the maximal velocity
of the evader. We denote by GV the class of the evader’s admissible controls satisfying constraint (2.4).

In the LG-game (2.1)–(2.4),  the objective of the Pursuer iX is to catch the Evader Y , i.e., reach the
equality ( ) = ( )ix t y t , where ( )ix t and ( )y t are trajectories generated during the game. The notion of a “trajectories
generated during the game” requires clarification. the Evader Y tries to avoid an encounter, and if it is impossible,
postpone the moment of the encounter as far as possible. Naturally, this is a preliminary problem setting.

Here we are going to study mainly the game with phase constraints for the Evader being given by a subset
A of nR which is called the “Life-line” [23]  (for the Evader naturally). Notice that in the case A=Æ we have a

simple LG-game .
Definition 1. By the equations and initial conditions in (2.1)–(2.2), any pairs 0( , ( ))i ix u × , ( ) i

i Lu U× Î and 0( , ( ))y v × ,

( )
G

v V× Î generate the trajectories

0 0
0 0

( ) = ( ) , ( ) = ( )
t t

i i ix t x u s ds y t y v s ds+ +ò ò (2.5)

respectively. In this case ( )ix t is called the pursuer’s motion trajectory and ( )y t is called the evader’s motion
trajectory.
Definition 2. For each triple 0( , , ( ))i i ik ur × , ( ) i

i Lu U× Î the scalar quantity
2

0
0

( ) = ( ) | ( ) | , (0) = , 0
t

i i i i it L t u s ds tr r r- ³ò (2.6)

is called the residual pursuer resource at a time moment t .
Definition 3. The map ( ) :i G

i
Lu V U× ® is called the strategy for iX if the following properties hold:

1 .o (Admissibility.) For every ( ) Gv V× Î , the inclusion ( ) [ ( )]i i
i
Lu u v U× = × Î is valid.

.2o (Volterranianity.) For every 1 2( ), ( ) Gv v V× × Î and 0t ³ , the equality 1 2( ) = ( )v s v s a.e. on [0, ]t implies

1 2
( ) = ( )i iu s u s a.e. on [0, ]t with ( ) [ ( )] , = 1,2,..., .i i

i
Lu u v U i m× = × Î
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Definition 4. A strategy ( )iu v is called winning for iX on the interval [0, ]T in the LG-game, if for every ( ) Gv V× Î

there exists a moment [0, ]t T* Î that holds the equality **( ) = ( ).ix t y t
Definition 5. Assume that 0

ny A RÏ Ì and  a  strategy ( )iu v is winning for some iX on the interval [0, ]T , while

Y stays in the zone \nR A i.e., ( ) { ( ) : 0 }ty y s s t A×= £ £ Ï and [0, ]t TÎ . Then the “Life-line” LG -game is
called winning for the players , 1,2,...,i i m=X on the interval [0, ]T .
Notice that A doesn’t restrict any motion of iX . Here A is the closure of  the set nA RÌ .

Let 0 0ix y¹ and the current value of control ( ) ,v t 0t ³ is given, where ( ) Gv V× Î . Suppose that the triple

0( , , )i ikm b is a parametric state of the LG-game and denoted it by
i

p . We find the following nonempty simply
connected set of such states ip

1 2 3
i i i i
LG = È ÈP P P P

where
2

1 0= { : 0, > , 0},i
i i ip km b b³ ³P

2
2 0= { : > 2 , = , 0},i

i i ip km b b b ³P

( )2 2
3 0= { : 2 , < , 0}i

i i i ip k km b b b b³ + - ³P

and 1 2,i iP P , 3
iP are mutually disjoint sets.

Definition 6. The function

( ) ( ) 0i i iu v v vl x= - (2.7)

is called the strategy of parallel pursuit (briefly, i
LGP -strategy) for iX in the LG-game, where

( ) 2
0 0 0 0 0 0 0 0 0 0 0 0 0

2
( ) = / 2 , / 2 , | | , = / | |, = , = / | |.i i i i i i i i i i i i i iv v v k v z z z x y zl m x m x x m r+ + + + - -

Property 1. The scalar function ( )i vl is positively determined and continious in | |v b£ for every i
i LGp ÎP .

Property 2. If i
i LGp ÎP , then for i

LGP -strategy, the equality
2

0| ( ) | ( ).i i i iu v k vm l= + (2.8)
holds.

In [32], B.T.Samatov proved the following statements for the LG -game of one pursuer and one evader.

Theorem 1. If in the LG -game, LGpÎP and pursuer X apply LGP -strategy then the equalities

0( ) = ( , ( ))   ,  [0, ]LGt t v t tr r *L × Î , (2.9)

0( ) = ( ) ( ) ( , ( ))LGz t x t y t t v z- = L × (2.10)

hold, where
00

1( , ( )) 1 ( ( ))
| |

t

LG t v v s ds
z

lL × = - ò is a scalar continuous monotone decreasing function with ,t 0t ³ ,

= { : ( ) = 0}t min t z t* .
Theorem 2. Let LGpÎP in the LG –game. Then LGP -strategy is winning on the time interval [0, ]LGT , where

0=| | /LG LGT z l and 2 2
0 0= / 2 ( / 2 )LG kl m b m b b- + - + - .
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3. MAIN RESULTS

Let the conditions of Theorem 1 and Theorem 2 hold. We suppose that in the moment t , 0t ³ the evader
Y moves from a position y holding a constant vector ,v | | .v b£ The pursuers iX use i

LGП - strategy from a
position ix basing on the resource , 0i ir r > . Then w is a point where the pursuers iX should meet the evader Y .
The set of all such points w will be given by relations:

2| | ( ) , | | | |, | ( ) | , 0i i i i iw x T u v w y T v T u v k T Tr- = - = = + >
and from these relations we find

{ }2 2 2( , , ) = : | | ( / ) | | ( / ) | | .i
LG i i i i iW x y w w x k w y w yr b r b- ³ - + - (3.1)

Theorem 3. If i
i LGp ÎP in the LG -game (2.1)-(2.4), then

0
*( ) = ( ) ( , ( ))[ (0) ], [0, ],i i

LG i i LG i iW t x t t v W x t t+L × - Î (3.2)

where ( ) ( ( ), ( ), ( )) ,i i
LG LG i iW t W x t y t tr= * = min{ : ( ) = 0}, 1,2,...,iit t z t i m= and

{ }2 2 2
0 0 0 0(0) = : | | ( / ) | | ( / ) | | .i

LG i i iW w w x k w y w yb r b- ³ - + -

Proof. Consider the situation when iX holds the i
LGП - strategy  while Y on *[0, ]it applies any control ( ) Gv V× Î .

Assume that ( ), ( )ix t y t are the current positions of players and ( )i tr is the current resource of the pursuer. Then
from (2.9)  and (3.1) we have

{ }2 22( ) ( ) : ( / ) | ( ) | ( ( ) / ) | ( ) |i
LG i i i i iW t x t w w k w z t t w z tb r b- = ³ + + + =

{ }2 2
0 0 0

2: ( / ) | ( , ( )) | ( ( , ( )) / ) | ( , ( )) |i i i i i i iw w k w t v z t v w t v zb r b= ³ +L × + L × +L × =

{ 2 2 2
0: | / ( , ( )) | ( / ) | / ( , ( )) |i i i iw w t v k w t v zb= L × ³ L × + +

}0 0 0( / ) | / ( , ( )) | ( , ( ))[ (0) ].i
i i i i LG iw t v z t v W xr b+ L × + = L × -

Property 3. If ,i
i LGp ÎP then for ( )i

LGW t is a convex set on [0, ]it
* .

Theorem 4. Let i
i LGp ÎP in the LG -game (2.1)-(2.4). Then the relation

2 1( ) ( )i i
LG LGW t W tÌ (3.3)

is true for 1 2 1 2, [0, ], 0 .t t t t t*" Î £ £
P r o o f. From (2.8) we have

2 2
0 0 0 0 0( ) ( )i i i i i i i iv z v z k z v zl l r- = + .

Then from | ( ) |v t b£ and Property 1 we obtain
2 22

0 0 0 0 0 0( / ( ) ) ( / ) ( / ( ) )i i i i i iv z v y x k v z v y yl b l+ - ³ + - +

0 0 0 0( / ) ( / ( ) )i i iv z v y yr b l+ + -

or

(3.4)

Using properties of the supporting function ( , ) , iF sup p
w W

pW w=
Î

in [8] and from (3.4) we have

0 0/ ( ) , ( (0), )i
i i LGv z v y F Wl y yá + ñ £ Þ

0
0

1, ( ) ( (0) , ) 0
| |

i
i LG

i

v v F W y
z

y l yÞ á ñ - - £ (3.5)

0 0/ ( ) (0)i
i i LGv z v y Wl + Î
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for all , 1nRy yÎ = . From (1.1), (1.7), (3.2) and (3.4) we have

0( ( ), ) ( ), ( , ( )) ( (0) , )i i
LG i i LG iF W t x t t v F W xy y y= á ñ + L × - Þ

0
0

1( ( ), ) ( ), ( ) ( (0) , )
| |

i i
LG i i LG i

i

d F W t x t v F W x
dt z

y y l yÞ = á ñ - - =

0 0
0

1( ) , ( ) ( (0) , )
| |

i
i i i LG i

i

v v v F W x
z

l x y l y= á - ñ - - =

0
0

1, ( ) ( (0) , ) 0
| |

i
i LG

i

v v F W y
z

y l y= á ñ - - £ .

Property 4. If ,i
i LGp ÎP then inclusion ( ) (0)i

LGy t WÎ is valid on the time interval [0, ]it t*Î .
Theorem 5. If in the LG -game i

i LGp ÎP hold  for some 1,2,...,i m= , then ( ) LGy t WÎ on the time interval [0, ]LGT ,

where
1

(0),
m

LG LG
i

iW W
=

= /LGT d b= , 1 2 1 2max{ : , }LGd w w w w W= - Î .

P r o o f . This follows from Theorems 2-4 and Property 4.
Theorem 6. If LGW AÇ =Æ , then in the “Life-line” LG –game, the players , 1,2,...,i i m=X win  on the interval
[0, ]LGT .
P r o o f . This follows from Theorem 5.

4. GEOMETRICAL REPRESENTATIONS

We will show geometrical representation of the set boundary of attainability points of the LG -game for some
1,2,...,i m= in some particular cases in 2R .

1. Let 1 ,i
ip ÎP 0 (0,0),ix = 0 (1,0),y = 2,ik = 01, 1,ib r= = then we have the below equation for some iX

from (3.1) at 0t =
2 2 2 2 2 22(( 1) ) ( 1)i i ix y x y x y+ = - + + - +

and its smooth line consists of Cartesian’s oval (Picture-1).

Picture-1

2. If 2
i

ip ÎP , 0 (0,0),ix = 0 (1,0),y = 1,b = 0 3,ir = then its equation

2 2(25 / 9) ( 7 / 5) 5 1ix y× - + =
and its smooth line consists of Ellipse (Picture-2).
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Picture-2

3. If 3
i

ip ÎP , 0 (0,0),ix = 0 (1,0),y =
3 ,
4ik = 1,b = 0 3,ir = then its equation

2 2 2 2 2 23 (( 1) ) 3 ( 1)
4i i ix y x y x y+ = - + + - +

and its smooth line consists of the inner loop of Pascal’s snail (Picture-3).

Picture-3
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Abstract. Let ( ) 1

1
( )

n
m

mn
m

z z b zn
+

=

= +åB be the sequence of partial sums of normalized Bessel-Struve kernel function

1

1
( ) .m

m
m

z z b zn

¥
+

=

= +åB The purpose of  the  present  paper  is  to  determine  lower  bounds  for ( )
( ) ( )n

z
z

n

n

ì üï ïÂí ý
ï ïî þ

B
B

,

( ) ( )
( )
n

z
z

n

n

ì üï ïÂí ý
ï ïî þ

B
B ,

( )
( ) ( )n

z

z
n

n

ì ü¢ï ïÂí ý
¢ï ïî þ

B
B

and
( ) ( )

( )
n

z
z

n

n

ì ü¢ï ïÂí ý¢ï ïî þ

B
B .

1. INTRODUCTION

Let A denote the class of functions of the form:

2
( ) ,n

n
n

f z z a z
¥

=

= +å

which are analytic in the open unit disk

{ }:  1z z= <U .

We denote by S the class of all functions in A which are univalent in .U.
The function Jn , known as the Bessel function of the first kind of order n , is a particular solution of the second
order Bessel differential equation

( ) ( ) ( ) ( )2 2 2 0.z y z zy z z y zn¢¢ ¢+ + - =

This function has the power series representation

( ) ( )
( )

2

0

1
.

! 1 2

n vn

v
n

zJ z
n n v

+
¥

=

- æ ö= ç ÷G + + è ø
å (1.1)

On the other hand the modified Bessel function ( )I zn is the particular solution of the differential equation

( ) ( ) ( ) ( )2 2 2 0,z y z zy z z y zn¢¢ ¢+ - - =

and have the series representation
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æ ö= ç ÷G + + è ø
å (1.2)

The Struve function of order n given by

( ) ( )
2 1

0

1
:

3 3 2
2 2

n vk

v
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zH z
n n v

+ +
¥

=

- æ ö= ç ÷æ ö æ ö è øG + G + +ç ÷ ç ÷
è ø è ø

å (1.3)

is a particular solution of the non-homogeneous Bessel differential equation

( ) ( ) ( ) ( )

1

2 2 2
4

2 .
1
2

z

z y z zy z z y z

n

n
p n

+
æ ö
ç ÷
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æ öG +ç ÷
è ø

(1.4)

A solution of the non-homogeneous modified Bessel equation

( ) ( ) ( ) ( )

1

2 2 2
4

2 ,
1
2

z

z y z zy z z y z

n

n
p n

+
æ ö
ç ÷
è ø¢¢ ¢+ - + =
æ öG +ç ÷
è ø

(1.5)

yields the modified Struve function

( ) ( )2

2 1

0

1 .
3 3 2
2 2

i

n

n

L z ie H iz

z

n n

np

n n

n

n

+ +¥

=

= -

æ ö= ç ÷æ ö æ ö è øG + + G +ç ÷ ç ÷
è ø è ø

å (1.6)

The Struve functions occur in areas of physics and applied mathematics, for example, in water-wave and surface-
wave problems [1], as well as in problems on unsteady aerodynamics [12]. The Struve functions are also important
in particle quantum dynamical studies of spin decoherence [11] and nanotubes [10].
Consider the Bessel-Struve kernel function nB defined on the unit disk { }:  1z z= <U as

( ) ( ) ( ) 1: ,    ,
2

z j iz ih izn n n n= - > -B (1.7)

where, ( ) ( ) ( ): 2 1j z z J zn n
n nn-= G + and ( ) ( ) ( ): 2 1h z z H zn n

n nn-= G + are respectively known as the normalized
Bessel functions and the normalized Struve functions of first kind of order n . The Bessel-Struve transformation and
Bessel-Struve kernel functions are appeared in many article. In [6], Hamem et. al. studies an analogue of the
Cowling’s Price theorem for the Bessel-Struve transform defined on real domain and also provide Hardy type
theorem associated with this transform. The Bessel-Struve intertwining operator on is considered in [4, 7]. The
fock space of the Bessel-Struve kernel functions is discussed in [4, 8].
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The kernel ( ),z zn g g ÎB is the unique solution of the initial value problem

( ) ( ) ( ) ( ) ( )2 1
,    0 1,  0 .

3
2

u z u z u un

l n
l

p n

G +
¢= = =

æ öG +ç ÷
è ø

L (1.8)

Here nL , 1/ 2n > - is the Bessel-Struve operator given by

( )( ) ( ) ( ) ( )
2

2

2 1: 0 .d u du duu z z z
dz z dz dzn

n + æ ö= + -ç ÷
è ø

L (1.9)

Now from (1.1) and (1.6), it is evident that nB (taking 1g = ) possesses the power series

( )

0

11
2: .

! 1
2

n

n

n

z
nn

n

n

p n

¥

=

+æ öG + Gç ÷
è ø=

æ öG + +ç ÷
è ø

åB (1.10)

The identity (1.8) and (1.9) together imply that nB satisfy the differential equation

2 ( ) (2 1) ( ) ( )z g z g z zg z zMn n nn¢¢ ¢+ + - = (1.11)

where ( )
( )

2 1
.

1/ 2
M

n
p n
G +

=
G +

Another significance is that nB can be express as the sum of the modified Bessel and the modified Struve function
of first kind of order n . For the sake of completeness, in the following result we established this relation.

Proposition 1.1. For 0n > , the following identity holds:

( )( )( ) 2 1 ( ) ( ) .z z I z L zn n
n n nn= G + +B

The function nB have the following recurrence relation which is useful in sequel.

Proposition 1.2. For 0n > , the following recurrence relation holds for nB :

1( ) 2 ( ) 2 ( ).z z z zn nn n-¢ = -B B B (1.12)

Due to the function defined by (1.10) does not belong to the class A , we consider following normalized form of the
Bessel-Struve kernel functions.
For 0n > , zÎU , in [2], authors studied some geometric properties of following normalized Bessel-Struve kernel
function
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where ( )ml is Pochhammer symbol (or the shifted factorial) defined, for ,l mÎ and in terms of the Euler-Gamma
function, by

( ) ( )
( )

{ }( )
( ) ( ) ( )

1 0;  0
.

1 ... 1 ;n nm

m ll m
l

l l l l m l

ì ü= Î -G + ï ï= = í ý
G + + - = Î Îï ïî þ

For various interesting developments concerning partial sums of analytic univalent functions, the reader may be (for
examples) refered to the works of Çağlar and Deniz [3], Orhan and Yağmur [9], Yağmur and Orhan [13].

In this note, we will determine lower bounds of
( )

( ) ( )
v

v n

z
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ì üï ïÂí ý
ï ïî þ
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Lemma 1.1. If the parameter ,vÎ then the function :v ®UB given by (1.13) satisfies the following
inequalities:

iii. ( )
2

2

192 480 289 7    .
8128 288 154v

v vz v
v v
+ + æ ö£ > -ç ÷+ + è ø

B

iv. ( )
2

2
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416 32 15v

v vz v
v v
+ + æ ö¢ £ < -ç ÷+ + è ø

B

Proof. i. By using the well-known triangle inequality:

1 2 1 2z z z z+ £ +

and the inequalities

( ) ( )1! 1 2 1 mm
mm v v-+ ³ + and ( ) ( ) ( )13 / 2 3/ 2 2 3/ 2 mm

m mv v-+ ³ + { }( )1,2,...mÎ

we have
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ii. Similarly, suppose that
7
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v < - , by using well-known triangle inequality and the following inequalities:
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2. MAIN RESULTS

Theorem 2.1. If the parameter vÎ and 1, 2,...v ¹ - - are so constrained that
6 17

8
v - +
> , then
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Proof. We observe from part i of Lemma 1.1 that
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It suffices to show that the left hand side of (2.3) is bounded above by
2

2 1

128 288 154
64 192 135 mm

bn n
n n

¥

=

+ +
+ + å , which is

equivalent to



3rd INTERNATIONAL CONFERENCE
ON MATHEMATICAL AND RELATED SCIENCES:

CURRENT TRENDS AND DEVELOPMENTS
ICMRS 2020

20-22 NOVEMBER, 2020

273

2

2
1

64 96 19 0.
64 192 135

n

m
m

bn n
n n =

+ +
³

+ + å

To prove the result (2.2), we write
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Since the left hand side of (2.4) is bounded above by
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+ + å , the proof is completed.
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Abstract. This paper introduces the combined widely-used Convolutional Neural Network (CNN) and Kernel K-Means
clustering method for ischemic stroke detection from CT image. We propose an efficient and robust alternating
classification scheme for overcoming the large time computation and noisy ischemic stroke image obtained from Cipto
Mangunkusumo (RSCM) Hospital, Indonesia. This method used a bunch of convolutional layers resulted from CNN
architecture and then vectorize the matrix output as the new input in Kernel K-Means clustering. According to several
experiments that we conducted, our proposed method achieved 99% accuracy, 100% sensitivity, 98% precision, 98.04%
specificity, and 98.99% F1-Score using 11-fold cross-validation with RBF kernel function (sigma=5×10-2). Therefore,
our experiments show that the performance of the combination of CNN and Kernel K-Means clustering decisively
competed with several other state-of-the-art methods in the deep learning field.

1. INTRODUCTION

Ischemic stroke is one of kind of stroke beside the hemorrhagic stroke. It is the most common type because it
dominates 85 percent of stroke cases [1]. It is also ranked as the second leading cause of death worldwide, with an
annual mortality rate of about 5.5 million [2]. This disease is usually caused by a blood clot that blocks or plugs a
blood vessel in the brain that keeps blood from flowing to the brain. Therefore, the duration of cerebral ischemia is a
critical factor in determining the severity of brain damage. Thus, accurate and timely observation of the ischemic
process is highly critical to course the action [3].

Ischemic stroke can be detected from the analysis of its Computerized Tomographic (CT) scan and Magnetic
Resonance Imaging (MRI) results. Several methods have been used in previous researches to detect an ischemic
stroke. Some of them applied support vector machines [4–6], clustering [7–9], but most of them used the various
architecture of neural networks. As the frequently used method, deep learning outperforms other techniques when it
comes to complex problems such as image classification if the data size is large.

According to the Ischemic Stroke Lesion Segmentation 2017 (ISLES 2017) Challenge that provided dataset of
MRI images to detect ischemic stroke, many researchers almost always employed deep learning tools, which were
predominately convolutional neural networks (CNNs) to reach the optimal results [10]. However, even though deep
learning, such as CNN, delivers impressive accuracy in detecting ischemic stroke, it takes much computational time
to train the model. It depends on the number of epoch and batch size used so that the expected out-of-sample error
can be reached without causing the model to become overfitting [11]. Meanwhile, machine learning methods such as
Support Vector Machines (SVM) usually may become inefficient once it is given large number of feature vectors to
process [12].

Therefore, in this research, we would like to explore a combination of the deep learning architecture and
machine learning method to overcome those limitations. Specifically, we proposed an effective and robust method
that is a combination of CNN and K-Means clustering based on kernel. The extensive input of images on CNN is
reduced while passing the model layers. After that, using the flatten layer output of the last convolutional step in
CNN, the data matrix of the different classes will be constructed as the input for Kernel K-Means clustering, which
has a smaller size than the original input images. As a result, the centroid of each class was built to detect the class
of the out-of-sample dataset.
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2. METHODOLOGY

A. The Dataset

The dataset used in this research was collected from Cipto Mangunkusumo (RSCM) Hospital, Indonesia. It has 334
images that consist of 185 non-ischemic stroke and 149 ischemic stroke images. The phone camera with the
specification 48-megapixel camera with an f/2.0 aperture took those images resulted from an CT scan. The average
height of images is 3047 pixels with the maximum and minimum height are 4023 and 2225 pixels, respectively.
Meanwhile, the average width of images is 2598 pixels with the maximum and minimum width are 3545 and 1902
pixels, respectively. However, the input of images that we used is 512 x 512 pixels so that the size of input images is
not huge. However, all of the regions of the brain are still included.

The sample of the ischemic stroke CT image is shown in Figure 1(a). From the image, we can identify that the
middle region of the brain is fueled by a dark area, which indicates the existence of the disease. Compared with
Figure 1(b), the non-ischemic stroke MRI image shown in this figure has a clearer region. However, the non-
ischemic stroke dataset has not only a healthy brain image. Indeed, it also consists the other brain diseases image
that is not categorized as the ischemic stroke.

(a) (b)

Fig. 1. The sample of the (a) ischemic and (b) non-ischemic stroke CT image

B. The Proposed Method

In this research, we proposed an effective and robust method that is a combination of CNN and K-Means clustering
based on kernel. Convolutional Neural Network (CNN) is one of deep learning algorithms. It has many
architecturess which mostly consists of convolutional layers, pooling layers, and fully connected layers. In this
research, Keras, as the python deep learning library, is used to build the model architecture where the details were
given in Figure 2. Consider an input grayscale image with a size of 152 x 152 x 1 pixels. This input image will be
processed through a convolutional layer with the Rectified Linear Unit (ReLU) activation function, maximum
pooling layer, and normalization layer, respectively, before finally be applied dropout and make the output flat.

Two-dimension convolutional layer (denoted by Conv2D) consists of the number of filters with size 3 × 3 × 1 in
this research. This layer constructs a convolution kernel that is convoluted with the layer input to produce a tensor of
outputs through the dot product computation. Convolution operation extracts useful features from locally correlated
data points. The output of the convolutional kernels is assigned to the non-linear processing unit (activation
function), which not only helps in learning abstractions but also embeds non-linearity in the feature space [13].
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(1) INPUT: 152 x 152 x 1
(2) Conv2D: 3x3 size, 32 filters, 1 stride
(3) ReLU: max(0, hθ(x))
(4) MaxPooling: 2x2 size, 1 stride
(5) BatchNormalization
(6) Conv2D: 3x3 size, 64 filters, 1 stride
(7) ReLU: max(0, hθ(x))
(8) MaxPooling: 2x2 size, 1 stride
(9) BatchNormalization
(10) Conv2D: 3x3 size, 96 filters, 1 stride
(11) ReLU: max(0, hθ(x))
(12) MaxPooling: 2x2 size, 1 stride
(13) BatchNormalization
(14) Conv2D: 3x3 size, 64 filters, 1 stride
(15) ReLU: max(0, hθ(x))
(16) MaxPooling: 2x2 size, 1 stride
(17) BatchNormalization
(18) Conv2D: 3x3 size, 32 filters, 1 stride
(19) ReLU: max(0, hθ(x))
(20) MaxPooling: 2x2 size, 1 stride
(21) Dropout: rate=0.2
(22) Flatten output: 1 x 6272

Fig. 2. The CNN architecture used in this paper

Consequently, Rectified Linear Unit (ReLU) activation function is used. Then, the maximum pooling layer
(denoted by MaxPooling) used to reduces the size of input images from the convolutional layer using max-pooling
operation. Lastly, the normalization layer used to normalize the activations of the previous layer at each batch. For
example, it applied a transformation that maintains the mean activation close to 0 and the activation standard
deviation close to 1. After the input image passed the bunch of convolutional layers, the information in every hidden
neuron output will only keep 80 percent information because the dropout rate is 0.2. As the last step, the output
obtained from this CNN is the vector with length 6272 for every input image.

Input:
X = {x1, x2, …, xN}, C (the number of cluster), ε (epsilon), T (the maximum number of iterations).
Output:
V = {v1, v2, …, vC},
U = [ rnc ] where n = 1, 2, …, N and c = 1, 2, … C.

(1) Initialization: V0 = {v1, v2, …, vC},
(2) Update membership of the data point xi in jth-cluster.

If c = argminj (K(xn, xn) - 2 K(xn, μc) + K(μc, μc)), then rnc = 1. Otherwise, rnc = 0.
(3) Update cluster center Vt using:

μc = (Σn rnc xn ) / Σn rnc
(4) Check the stop criteria. If || V(t-1) – V(t) || <ε or T = t, then the iteration stops. Otherwise, t = t+1

and go back to step 2;
(5) End.

Fig. 3. The algorithm of Kernel K-Means Clustering
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As the replacement of fully connected layer, we used Kernel K-Means clustering to classify the data. It was a
modification method of K-Means (KM) clustering that formerly introduced by Lloyd [14]. The modification is
based on the kernel function that proposed by Vapnik [15]. The algorithm of Kernel K-Means clustering is given in
Figure 4. In this research, we used RBF kernel function that formula given in Eq. (1):

K(x, y) = exp(-||x -y||2/(2σ2)) (1)

C. Performance Measurement

As the input of CNN, we used all of 334 labeled images: 1 for ischemic stroke images and 0 for non-ischemic
images. The images are resized to the same size 152 x 152 pixels. This input is then passed to the bunch of CNN
layers, as described in Figure 2. As a result, every image 152 x 152 x 1 pixel became a vector with length 6272.
Therefore, we now have matrix 334 x 6272, where the row index is indicated the image that we observed and the
column index is indicated the feature map resulted by CNN.

The next step is then dividing the matrix data according to its label, whether it is included in class 1 (ischemic
stroke) or class 0 (non-ischemic stroke). In this case, we have two matrices data with size 185 x 6272 for the non-
ischemic stroke and 149 x 6272 for the ischemic stroke class. Those matrices were then used in k-fold cross-
validation for evaluating KM clustering based on kernel algorithm. For example, when we used 5-fold cross-
validation, the data is divided into five folds for each class. Therefore, we get the number of points in every fold as
shown in Table I.

Table 1. The number of Data in Every 5 Folds of Ischemicand Non-Ischemic Stroke Data

Fold The number of ischemic
stroke data points

The number of non-ischemic
stroke data points

1 30 37
2 30 37
3 30 37
4 30 37
5 29 37

Total 149 185

In this research, a fold was used to obtain the centroids of the clusters according to the algorithm in Figure 3,
while the rest k−1 folds were used to evaluate the method by determining the class of every data point according to
its nearest centroid. If the data point was nearer to the centroid of class 1, then the predicted class for this data point
is 1. Meanwhile, if the data point was nearer to the centroid of class 0, then the predicted class is 0.

For measuring the performance of combined CNN and KM clustering based on kernel method, the confusion
matrix (see Table II) is used to calculate the percentage of accuracy, sensitivity, precision, specificity, and F1-Score.
There are four possible outcomes in the confusion matrix that we might obtain: True Positive (TP), False Positive
(FP), True Negative (TN), and False Negative (FN).

Table II. Confusion Matrix for Ischemic Stroke Dataset

CONFUSION MATRIX
Predicted Class

Ischemic
Stroke

Non-Ischemic
Stroke
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Actual
Class

Ischemic
Stroke TP FN

Non-Ischemic
Stroke FP TN

The condition where ischemic stroke data is correctly predicted as ischemic stroke counts as True Positive,
while the condition where non-ischemic stroke data is correctly predicted as non-ischemic stroke counts as True
Negative. Meanwhile, when ischemic stroke data is incorrectly diagnosed as non-ischemic stroke, it counts as False
Negative. Lastly, when non-ischemic stroke data is incorrectly diagnosed as ischemic stroke, it counts as False
Positive. Using the rule of the confusion matrix, we can examine the performance of combined CNN+KM clustering
based on kernel using the formulas that were listed in Table III.

Table III. Performance Measure

Performance Measure Formula
Accuracy (TP + TN) / (TP + FP + TN + FN)
Sensitivity TP / (TP + FN)
Precision TP / (TP + FP)

Specificity TN / (TN + FP)
F1-Score (2 × Sensitivity × Precision) / (Sensitivity + Precision)

3. RESULTS AND DISCUSSION

As we have described in the previous section, the results of the last 2D-convolutional layer in CNN architecture
were used as the new input for KM clustering based on kernel in the vector form. However, the convolutional result
of Figure 1(a) in image form that can be seen in Figure 4(a). As a comparison, we also provided the convolutional
result of Figure 1(b) in image form that can be seen in Figure 4(b). It might look similar in a glance, but they are
different because they came from different kinds of images.

(a) (b)
Fig. 4. The result of the last convolutional layer for image: (a) in Figure 1a, and (b) in Figure 1b.

Because every image 152 x 152 x 1 pixel became vector with length 6272, we then obtained two matrices, each
from class ischemic stroke and non-ischemic stroke.

Table IV. Matrix Input for Ischemic Stroke (Class 1)

Data f1 f2 … f6271 f6272
x1 0.139936 0 … 0.045084 0.051006
x2 0.153615 0 … 0.258974 0.633877
… … … … … …
x148 0.211017 0 … 0.143986 0.172800
x149 0.439847 0 … 0.980306 5.199656
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Table IV above provided the matrix input from class ischemic stroke, while Table V below provided the matrix
input from a class non-ischemic stroke. Each column represents the feature map in the image after passing the bunch
of convolutional operations.

Table V. Matrix Input for Non-Ischemic Stroke (Class 0)

Data f1 f2 … f6271 f6272
x1 0.176003 0 … 0.107532 0.073519
x2 0.158362 0 … 0.089604 0.091670
… … … … … …
x184 0.187925 0.013181 … 0.272290 0.502731
x185 0.478123 0 … 1.752787 9.493455

Using both of those matrices in KM clustering based on RBF kernel on 5-fold cross-validation, the performance
of this combined method is evaluated, which shown in Tabel VI. Given several RBF kernel parameter σ, it was
obtained that σ = 5×10-2 delivered the highest performance measure among the others.

Table VI. The Performance of 5-fold Cross-Validation of CNN + K-Means Clustering
Based on RBF Kernel Function for Ischemic Stroke Detection

σ Accuracy Sensitivity Precision Specificity F1-Score
10-8 97.00 97.96 96.00 96.08 96.97
10-4 96.50 97.94 95.00 95.15 96.45
10-3 96.50 96.97 96.00 96.04 96.48

5×10-2 97.50 97.98 97.00 97.03 97.49
10-1 95.50 95.96 95.00 95.05 95.48

1 95.50 95.05 96.00 95.96 95.52
10 95.50 94.17 97.00 96.91 95.57
102 96.50 96.97 96.00 96.04 96.48
103 95.00 95.00 95.00 95.00 95.00
104 95.50 95.05 96.00 95.96 95.52

Therefore, we then evaluated several values of k in k-fold cross-validation such as k = 3, 5, 7, 9, and 11 to see its
behavior. As the results, we can see in Table VII that the performance of our proposed method was increasing in line
with the increase in the value of k.

Table VII. The Performance of k-Fold Cross-Validation of CNN + K-Means Clustering
Based on RBF Kernel Function with σ = 5×10-2 for Ischemic Stroke Detection

k Accuracy Sensitivity Precision Specificity F1-Score
3 96.00 96.00 96.00 96.00 96.00
5 97.50 97.98 97.00 97.03 97.49
7 97.00 97.00 97.00 97.00 97.00
9 98.50 98.99 98.00 98.02 98.49

11 99.00 100.00 98.00 98.04 98.99
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As the best results, we obtained when 11-fold cross-validation and RBF kernel parameter σ = 5×10-2 is used.
For the time computational time that our proposed method needs, it takes less than 10 seconds for passing the
dataset to the CNN model and 71 ± 0.098 seconds on average for running the k-fold cross-validation on KM
clustering based on RBF kernel. Compared to the only used deep learning CNN model to test the model after
training it with the number of epochs and batch sizes, our proposed method is more efficient in time. The
performance measures, especially accuracy, are also competing with several state-of-art deep learning methods.

4. CONCLUSION

Detecting the ischemic stroke from the CT image is not an easy task. Considering the deep learning method,
especially CNN, as the reliable method in image classification, we proposed an efficient and robust method that
combined CNN with KM clustering based on kernel. From our experiments using the ischemic dataset from Cipto
Mangunkusumo (RSCM) Hospital, Indonesia, it was concluded that our proposed method has more efficient in time
computation and also delivers competing accuracy with the other deep learning methods.
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Abstract. The aim of this paper is to construct exact solutions for the time fractional equation system by using Improved
Bernoulli Sub-Equation Function Method (IBSEFM). In this work, we consider nonlinear conformable time fractional
coupled approximate long water wave equation. Applying the IBSEFM, we obtain new exact solutions with the help of
computer software. This method is powerful, effective and straihghtforward for solving nonlinear partial differential
equations to obtain more and new solitions with the integer and fractional order in mathematical physics.

Keywords: Time fractional approximate long water wave equation, Improved Bernoulli Sub-Equation Function Method,
Fractional derivative.

1. INTRODUCTION

In recent years, fractional order differential equation is a topic that has played an important role in defining the
complex dynamics of real world problems from various fields of science and engineering. The fractional differential
equation is also widely used in various physical models such as physics, fluid mechanics, plasma physics, optical
fibers, solid state physics, etc. [1–3] . With the rapid development of computer algebraic systems, many numerical
methods have been developed to obtain solutions of fractional order differential equations. Some of these effective
methods are fractional Riccati expansion [4], generalized projective Riccati equation [5], extended direct algebraic
[6], modified expansion function [7] and improved Bernoulli sub-equation function method [8,9]. In 2014, Khalil et
al. [10] introduced a new simple, significant definition of the fractional derivative called conformable fractional
derivative. The conformable fractional derivative is theoretically easier than fractional derivative to handle. In
addition, the conformable fractional derivative satisfies many known features that can't be satisfied by the existing
fractional derivatives, for instance; the chain rule [11]. The conformable fractional derivative has the weakness that
the fractional derivative of differentiable function at the point zero is equal to zero. So that in [12] it is proposed a
suitable fractional derivative that allows us to escape the lack of the conformable fractional derivative.

The conformable derivative of order a according to the independent variable t is defined as [10]
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Conformable fractional differential operator satisfies certain basic features like Laplace transform, the chain rule
and Taylor series expansion.

Theorem2. Let ( ), : 0,g h ¥ ® be differentiable and also a conformable differentiable functions, then the
following rule holds:

( ) ( ) ( )( )1 .tD f g t g t f g ta a- ¢ ¢=

The proofs of these theorems are given in [12] and in [11] respectively.

Let us consider the coupled Whitham-Broer-Kaup (WBK) equation system which have been introduced by Whitham
[13], Broer [14] and Kaup [15]. This equation system describes the propagation of shallow water waves with
different dispersion relations. Consider the following conformable time fractional coupled Whitham-Broer-Kaup
(WKB) equation system:

0,
( ) 0,

t x x xx

t x xxx xx

D u uu v bu
D v uv au bv

a

a

ü+ + + = ï
ý

+ - - = ïþ

where 0,t > a is a parameter describing the order of the fractional time derivative and 0 1,a< £

In this equation system the field of horizontal field of horizontal velocity is represented by ( , );u u x t= ( , )v v x t=
which is the height that deviates from equilibrium position of liquid, and the constants ,a b are represented in

different diffusion power. If 10, ,
2

a b= = the fractional coupled WKB equation system reduces to the nonlinear

time fractional approximate long wave (ALW) equation systems which are a special case of WKB equations.

In this study, we focus on the exact solutions of the following nonlinear conformable time fractional approximate
long wave (ALW):

1 0,
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1( ) 0,
2
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(1)

where 0,t > a is a parameter describing the order of the fractional time derivative and 0 1.a< £ Before beginning
to the solution procedure, we should give the description of the proposed method.

2. DESCRIPTION OF THE IMPROVED BERNOULLI SUB-EQUATION
FUNCTION METHOD (IBSEFM)

In this part, let us give the fundamental properties of the IBSEFM [8,9]. We present the six basic steps of the
IBSEFM below the following:

Step 1:   Let us take account of the following conformable time-fractional partial differential (PDE) of the style

( ) ( ) (2 ) (3 ), , , , ,... 0.( )P v D v D v D v D vxt xt xxt
m m m m= = (2)

where ( )
tD m is the Conformable derivate operator, ( , )v x t is an unknown function, P is a polynomial in v and its

partial derivatives contain fractional derivatives. The aim is to convert CFPDEs with a suitable fractional
transformation into the ordinary differential equation (ODE). The wave transformation as:

1 ),( , ) ( ), =( -v x t V x ktax x a -= (3)
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where k is an arbitrary constant and not zero. Using the properties of Conformable derivate, it enables us to convert
(3) into an ODE in the form:

( , , ,...) 0.N V V V¢ ¢¢ =
(4)

Step 2: If we integrate (4) term to term once or more, we acquire integration constant(s) which may be
determined then.

Step 3: We hypothesize that the solution of (4) may be presented below:

10

0 1

( )
( ) ... ( )0( ) ,
( ) ... ( )( )

0

n ia Fi na a F a FniV m mb b F b Fi mb Fi
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x xx
x xx

å + + +== =
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(5)

where 0 1, ,..., na a a and 0 1, ,..., mb b b are coefficients which will be determined later. 0, 0m n¹ ¹ are chosen arbitrary
constants to balance principle and considering the form of Bernoulli differential equation below the following:

( ) ( ) ( ),  0, 0,  /{0,1,2},MF F dF d M Rx s x x s¢ = + ¹ ¹ Î (6)
where )(F x is polynomial.

Step 4: The positive integer , ,m n M (are not equal to zero) which is found by balance principle that is both
nonlinear term and the highest order derivative term of (4).
Substituting (5) and (6) in (3) it gives us an equation of polynomial ( )FQ of F as following;

1 0( ( )) ( ) ... ( ) 0,s
sF F Fx r x r x rQ = + + + =

where , ( 0, )i jir = are coefficients and will be determined later.

Step 5: The coefficients of ( ( ))F xQ which will give us a system of algebraic equations, whole be zero.

0, 0, .i jir = =
Step 6: Once we solve (4), we get the following two cases with respect to s and :d
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(8)

Using a complete discrimination system for polynomial of ( )F x , we obtain the analytical solutions of (4) via
software programme and categorize the exact solutions of (4). To achieve better results, we can plot two - three
dimensional figures and contourplot of analytical solutions by considering proper values of parameters.
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3. IMPLEMENTATION OF THE IBSFM

By taking the traveling wave transformation as:
1( , ) ( ), ,( )u x t U x p tax x a-= = - (9)

where p is arbitrary constant (is not zero) to be determined later. Using the (9) into (1) the following equation
is obtained [34]:

22 2 0,
2 2 0,

pu u v u
pv uv v

¢- + + + =
¢- + - =

(10)

From first equation, we reach
22 .v pu u u¢= - - (11)

Substituting (11) into the second equation of (10), we obtain
2 32 24 6 2 0.u uu p p u¢¢- + - + = (12)

When we apply the balance for the terms 3u and u¢¢, we obtain the relationship for ,m n and M as below:
1.M m n+ = +

This relationship of ,m n and M give us different types of the solutions of (12). Using homogeneous balance
principle, for 3M n= = and 1m = in (1), then we get as follows:

0 1 2 3

0 1

3

2 3

1

( )
( ) ( ) ( )0( ) ,( )

( )
0

i

i

a Fi a a F a F a Fiu b b F
b Fi

i

x
x x x

x
x

yx
j

å + + +== = =+
å
=

(13)

( ) ( ) ( ) ( )( ) 2( )
,u y x j x y x j xx

j x

¢ ¢-¢ =

2 2

4 2

[ ( ) ( )] ( ) 2 ( )[ ( )] ( ) ( ) ( ) ( ) ( )( ) .
( ) ( )

u y x j x j x y x j x j x y x j x y x j xx
j x j x

¢ ¢ ¢ ¢- -¢¢ = - +
(14)

Substituting (13) and (14) in (12), we get a system of algebraic system. When we equal to zero all the same power of
F and solving the algebraic system of equations from coefficients of polynomial of F , it yields the following
coefficients:

3 2 2 2
0 0 0 0 02 6: ,4 0a pa bo s pn aC bt = - +

2 2 2 2 2 2 2 2
0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1: ,6 12 4 6 8 0a a pa a b p a b a b pa b p a b b a b bF s s+ - - + + == -

2 2 2 2 2 2 2 2
0 1 0 2 1 0 0 2 0 2 0 2 0 0 1 1 1 0 1
2 2 2 2 2

1 0 1 0 1 0 1

9 2 2 2 2 2 2 2
2 3 1 3 3 0 3 1 2 0 1 3 1

10 2 2 2 2
2 3 3 0 1 2 1

2

11 3
3

6 6 6 12 4 4 12 8
4 0,

: 6 6 15 6 9 12 0,
: 6 21 3 0,
: 2

: a a a a ma b ma a b m a b a b ma a b m a b b
a b b m a b a b

F a a a a d a b pa b d a b b d a b
F a a d a b b d a

F

b
F a

s

s s

s

+ - - + - - +

+ + -

+ - -

=

- -

- -

=

=

2 2
3 18 0.d a b =-
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Then, we solve the above system of equations and substitute in each case the obtained result of the coefficients to get
the new solution(s) ( , )u x t and ( ), .v x t By solving the above system with the aid of software, the coefficients are
obtained as:

Case1: For ,ds ¹ can be also considered the following coefficients obtained by software;

0 0 1 1 2 0 3 12 ; 2 ; 2 ; 2 ; ;a pb a pb a db a db ps= = = = = (15)
where ,d p are different from zero.
Putting  (15) along with (7) in (13)-(14), we acquire the exponential function solution as follow:

( )
2

2

2, .

e
ptp x

pu x t

d pE

E
a

a
æ ö
-ç ÷ç ÷

è ø

=

- +

(16)

Figure 1: The 2D-3D surfaces and contourplot of the exact solution of ( , )u x t by considering the values:

0.2; 0.35; 0.7; 0.61;E p d a == = = 10 10,x- < < 15 15t- < < for 3D surface,

12 12;x- < < 0.1t = for 2D surface,

5 10, 1 10x t- < < - < < for contourplot.

Substituting the solution (16) in Eq (11), we obtain

( )
2

3

2
2

4 e
.

e

,

pt
p x

mt
m x

d

d p

p
v

E

E
x t

a

a

a

a

-

-

æ ö
ç ÷ç ÷
è ø

æ ö
ç ÷ç ÷
è ø

-

-

=
æ ö
ç ÷
ç ÷
è ø
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Figure 2: The 2D-3D surfaces and contourplot of the exact solution of ( , )v x t by considering the values:

0.2; 0.35; 0.7; 0.61;E p d a == = = 10 10,x- < < 15 15t- < < for 3D surface, 12 12;x- < < 0.1t = for 2D surface,

5 10, 1 10x t- < < - < < for contourplot.

4. CONCLUSION

The exact solutions of the fractional equation obtained using the IBSEFM method are presented in ( ),u x t and
( ), .v x t Hence we obtain new solutions to the time fractional approximate long water wave equation. The IBSEFM

is applied accurately to obtain the exact solutions for generalized form of the nonlinear conformable time fractional
equation. The method is simple, reliable and very efficient in finding exact solutions for these nonlinear fractional
evolution equations. Hence, the proposed technique may be taken as a new approach to find exact solutions to the
models.
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Abstract. In this paper, some historical backgrounds and some earlier results have been given related to quasi-convexity,
Riemann-Liouville fractional integral operators and general forms of proportional fractional integral operators. In the second part,
some new integral inequalities have been established via the general forms of proportional fractional integral operators for
integrable quasi-convex mappings.

1. INTRODUCTION

Let’s first define the spaces we will use throughout this paper.

Definition 1.1 [22, 34] )(kf be in )[0,, ¥rqL space if

0}.,<1,<|)(|=||:||{=)[0,
1

)[0,,, ³¥£¥÷
ø
öç

è
æ¥ ò¥ rqdfffL qrqb

arqLrq kkk

For 0=r ,

}.<1,<|)(|=||:||{=)[0,
1

)[0,,
¥£¥÷

ø
öç

è
æ¥ ò¥ qdfffL qqb

arqLq kk

Definition 1.2 [21] Let )[0,1 ¥ÎLf and h be an increasing and positive monotone function on )[0,¥ and also

derivative 'h is continuous on )[0,¥ and 0=(0)h . The space )<(1)(0, ¥£¥ qX q
h of those real-valued

Lebesgue measurable functions f on )[0,¥ for which

¥£¥÷
ø
öç

è
æ ò

¥
<1,<|)(|=||||

1

0
qdhff q'q

q
hX

kk

and for the case ¥=q
)].()([sup=||||

<0
kk

k
fhessf '

hX ¥£
¥

Specially, when )<(1=)( ¥£ qh ee the space )[0,¥q
hX coincides with the )[0,¥qL -space and also if we

choose )<(1=)( ¥£ qlnh ee the space )[0,¥q
hX coincides with )[1,, ¥rqL -space.
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The fractional calculus, which is engaged in integral and differential operators of arbitrary orders, is as old as the
conceptional calculus that deals with integrals and derivatives of non-negative integer orders. The fractional
operators are excellent tools to use in modeling long-memory processes and many phenomena that appear in
physics, chemistry, electricity, mechanics and many other disciplines. We will continue by remembering a few of
the operators that fractional analysis brings to the world of mathematics, and with their unique applications for real
world problems, allowing many researchers to conduct motivated studies. Now let’s give some important fractional
integral operator definitions.

Definition 1.3 Let ],[1 baLf Î . The Riemann-Liouville integrals fJ a
a
+ and fJb

a
- of order 0>a with 0³a

are defined by

adffJ
aa >,)()(

)(
1=)( 1 ekkke
a

e aea -
+ -

G ò
and

bdffJ
b

b <,)()(
)(

1=)( 1 ekkek
a

e a

e

a -
- -

G ò
respectively. Here )(eG is the Gamma function and its definition is .=)( 1

0
kee ke de --¥

òG

It is to be noted that )(=)(=)( 00 eee ffJfJ ba -+ in the case of 1=a , the fractional integral reduces to the
classical integral.

Definition 1.4 [24] Let ),( ba with ¥££¥- ba < be a finite or infinite interval of the real line R and a a

complex number with 0>)(aRe . Also let h be a strictly increasing function on ),( ba , having a continuous

derivative 'h on ),( ba . The generalized left and right sided Riemann-Liouville fractional integrals of a function
f with respect to another function h on ],[ ba defined as

adhfhhfI '

a

h
a >,)()())()((

)(
1=)( 1 ekkkke
a

e aea -
+ -

G ò
and

.<,)()())()((
)(

1=)( 1 bdhfhhfI 'bh
b ekkkek

a
e a

e

a -
- -

G ò

In [16], Jarad et al. identified the generalized proportional fractional integrals that satisfy many important features as
follows:

Definition 1.5 The left and right generalized proportional fractional integral operators are respectively defined by

adfef
aa >,)()(

)(
1=)( 1

)(1
, ekkke

az
e a

ke
z
z

e

a
za -ú

û

ù
ê
ë

é
-

-

+ -
G òJ

and

bdfef
b

b <,)()(
)(

1=)( 1
)(1

, ekkek
az

e a
ek

z
z

ea
za -ú

û

ù
ê
ë

é
-

-

- -
G òJ

where (0,1]Îz and ∈ ℂ and 0>)(aR .
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Definition 1.6 [23] Let ba, be two nonnegative real numbers with ba < , ra , two positive real numbers, and
: [ , ] → ℝ be an integrable function. The left and right Katugampola fractional integrals defined as

adff
aa >,)(

)(
1=)( 1

1

e
k

kk
r
ke

a
e r

arrea
-

-

+ ÷÷
ø

ö
çç
è

æ -
G òI

and

.<,)(
)(

1=)( 1

1

bdff
b

b e
k

kk
r
ek

a
e r

arr

e

a
-

-

- ÷÷
ø

ö
çç
è

æ -
G òI

Definition 1.7 [30, 24] Let ba, be two reals with ba <<0 and : [ , ] → ℝ be an integrable function. The left
and right Hadamard fractional integrals of order 0>a are defined as

ad
ln

ff
aa >,)(

)(
1=)( 1 ek

k
ek

k
a

e a

ea
-+

÷
ø
ö

ç
è
æG òF

and

.<,)(
)(

1=)( 1 bd
ln

ff
b

b ek

e
kk

k
a

e ae

a
--

÷
ø
ö

ç
è
æG òF

Definition 1.8 [27] The left and right generalized proportional Hadamard fractional integrals of order 0>a and
proportionality index (0,1]Îz is defined by

adf

ln

ef
ln

aa >,)(
)(

1=)( 1

)(1

, ek
k
k

k
eaz

e a

k
e

z
z

e

a
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-

ú
û

ù
ê
ë

é -

+

÷
ø
ö

ç
è
æG òF
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1=)( 1

)(1
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ef
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ab ek
k
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e
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e a

e
k

z
z

e

a
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-

ú
û

ù
ê
ë

é -

-

÷
ø
ö

ç
è
æG òF

Now, let’s give a fractional operator which is known as the generalized proportional fractional (GPF) integral
operator function in the sense of another function h .

Definition 1.9 [20, 29] Let )(0,¥Î q
hXf , there is an increasing, positive monotone function h defined on

)[0,¥ having continuous derivative 'h on with 0=(0)h . Then the left-sided and right-sided GPF-integral
operator of a function f in the sense of another function h of order 0>a are stated as:

adhfhhef '
hh

a

h
a >,)()())()((

)(
1=)( 1

))()((1
, ekkkke

az
e a

ke
z
z

e

a
za -ú

û

ù
ê
ë

é
-

-

+ -
G òJ

and
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bdhfhhef '
hhbh

b <,)()())()((
)(

1=)( 1
))()((1

, ekkkek
az

e a
ek

z
z

ea
za -ú

û

ù
ê
ë

é
-

-

- -
G òJ

where (0,1]Îz and ∈ ℂ and 0>)(aR .

For different choices of parameters in Definition 1.9 we get Riemann-Liouville integrals, generalized Riemann-
Liouville fractional integrals, generalized proportional fractional integrals, Katugampola fractional integrals,
Hadamard fractional integrals and generalized proportional Hadamard fractional integrals. Recently, several new
studies have been performed by mathematicians via various fractional integral operators and with the help of
fractional integral operators numerous new inequalities have been proved in the literature, see [29, 20, 15, 25, 7, 17,
18, 19, 10, 11, 12, 13].
In [35], Pecaric et al. defined quasi-convex functions as following:

Definition 1.10 A function [ ] R®baf ,: is said quasi-convex on [ ]ba, if

( ) { } ( )QCyfxfyxf ,)(),(max)(1 £-+ ll
holds for all [ ]bayx ,, Î and 0,1].Îl

Clearly, any convex function is quasi-convex function. Furthermore, there exist quasi-convex functions which are
not convex. For more details related to this class of convexity see the papers [1]-[6].
The main aim of this paper is to establish some new integral inequalities for products of two -AG convex
functions via the general forms of proportional fractional integral operators.

2. MAIN RESULTS

Theorem 2.1 Assume that ( ) Rf ®¥0,: be differentiable function and y be a positive monoton increasing

function that is defined on )[0,¥ . Let ( )ty ' be continuous and ( ) 0.=0y Then, if f is Quasi- convex
function, we have the following inequality;

( )( ) ( ){ }
( )

( )

( )
( ) ( ) ÷÷

ø

ö
çç
è

æ
÷÷
ø

ö
çç
è

æ -
G-G

÷÷
ø

ö
çç
è

æ -G
£+

Y ty
x
xhh

ty
x
x

ty
hx

t h

h

h
xh

t

1,
1

),(max,
,0

bfaffT

for ( )0,1Îx , ∈ ℂ, ( ) 0>0,> thRe , where ( ) dtetxs ts

x

--¥

òG 1=, is the incomplete Gamma function.

Proof. By using the definition of Quasi-convex functions, we can write
( ){ }bfafbttaf ),(max))(1( £-+

By changing of the variable such that bttax )(1= -+ , we have

( ){ }bfafxf ),(max)( £
By multiplying both sides of the resulting inequality by

and if we apply the integration to the right hand side, we obtain
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( )( ) ( ){ }
( )

( ) ( )( )
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( )dxx

x
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y
ytyhx

t h

yty
x
x
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h
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t -

-
-

+
Y

-G
£ ò 1

1

0

,
,0

),(maxT ,

Which implies
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1,
1

),(max,
,0

bfaffT .

The proof is completed.

Theorem 2.2 Assume that ( ) Rf ®¥0,: be differentiable function and y be a positive monoton increasing

function that is defined on )[0,¥ . Let ( )ty ' be continuous and ( ) ( ) Mx
qp

veqp ' £+ yy 1,=111>,0.=0

Then, if f is Quasi - convex function, we have the following inequality;
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for ( )0,1Îx , ∈ ℂ, ( ) 0>0,> thRe . Where ( ) dtetxs ts

x

--¥

òG 1=, is the incomplete Gamma function.

Proof. By using the definition of Quasi - convexity function, we can write
( ){ }bfafbttaf ),(max))(1( £-+

By changing of the variable such that bttax )(1= -+ , we have

( ){ }bfafxf ),(max)( £
By multiplying both sides of the resulting inequality by

and if we apply the integration to the right hand side, we obtain
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By applying Hölder inequality to the resulting inequality and by making use of some necessary operation and by

taking into account ( ) Mx' £y we obtain

( )( ) ( ){ }
( )hx

t h
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t G
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This completes the proof.

Theorem 2.3 Assume that ( ) Rf ®¥0,: be differentiable function and y be a positive monoton increasing

function that is defined on )[0,¥ . Let ( )ty ' be continuous and ( ) ( ) Mxq ' £³ yy 1,0.=0 Then, if f is

Quasi - convex function, we have the following inequality;
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for ( )0,1Îx , ∈ ℂ, ( ) 0>0,> thRe , where ( ) dtetxs ts

x

--¥

òG 1=, is the incomplete Gamma function.

Proof. By using the definition of Quasi - convexity function, we can write
( ){ }bfafbttaf ),(max))(1( £-+

By changing of the variable such that bttax )(1= -+ , we have

( ){ }bfafxf ),(max)( £
By multiplying both sides of the resulting inequality by

and if we apply the integration to the right hand side, we obtain
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By applying Hölder inequality to the resulting inequality

( )( ) ( ){ }
( )

( ) ( )( )

( ) ( )( )
( )

q

'

x

dxx
x

ebfaff

11

1

1

0

,
,0

),(max
-

-

-
-

+
Y

÷
÷
÷

ø

ö

ç
ç
ç

è

æ

-G
£ ò y

ytyhx
t h

yty
x
x

t

h
xh

t
T

( ) ( )( )

( ) ( )( )
( )

q

q'

x

dxx
x

e

1

1

1

0
1

÷
÷
÷

ø

ö

ç
ç
ç

è

æ

-
´ -

-
-

ò y
yty h

yty
x
x

t

( )( ) ( ){ }
( )

( )

( )
( ) ( ) ÷÷

ø

ö
çç
è

æ
÷÷
ø

ö
çç
è

æ -
G-G

÷÷
ø

ö
çç
è

æ -G
£+

Y ty
x
xhh

ty
x
x

ty
hx

t h

h

h
xh

t

1,
1

),(max,
,0

bfaffT

Which completes the proof.
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Abstract. Bullen inequality, along with classical inequalities such as Hermite Hadamard, Jensen and Ostrowski’s inequality, has
an important place in theory. It has wide usage in many areas with its application areas such that for averaged midpoint-trapezoid
quadrature rules and applications in numerical integration. In this study, in order to obtain a variant of the Bullen inequality, an
integral identity with double integrals is given. With the help of this identity, many inequalities have been demonstrated for
quasi-convex functions in coordinates and reduced results have been mentioned for the bounded functions.

1. INTRODUCTION

We will start by expressing two important inequalities proved for convex functions. These two inequalities are
presented on the basis of averages and give bounds for the mean value of a convex function.

Assume that RR ®ÍIf : is a convex mapping defined on the interval I of R where .< ba The following
statement;
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holds and known as Hermite-Hadamard inequality. Both inequalities hold in the reversed direction if f is concave.

The Bullen’s integral inequality can be presented as
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where RR ®ÌIf : is a convex mapping on the interval I of R where Iba Î, with ba < . For different
versions and various generalizations of these two inequalities, we recommend that the authors to browse the articles
[17, 18, 19, 20, 21, 22, 23, 24, 25, 26].

In [1], Dragomir mentiones about an expansion of the concept of convex function, which is used in many
inequalities in theory and has applications in different fields of mathematics, especially convex programming.
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Definition 1 Let us consider the bidimensional interval [ ],],[= dcba ´D in 2R with ,< ba .< dc A function

R®D:f will be called convex on the co-ordinates if the partial mappings ,],[: R®baf y

),(=)( yufuf y and ,],[: R®dcfx ),(=)( vxfvfx are convex where defined for all [ ], dcyÎ and

[ ].,baxÎ Recall that the mapping R®D:f is convex on D if the following inequality holds,
),()(1),())(1,)(1( wzfyxfwyzxf llllll -+£-+-+

for all DÎ),(),,( wzyx and [ ].0,1Îl

Expressing convex functions in coordinates brought up the question that it is possible for Hermite-Hadamard
inequality to expand into coordinates. The answer to this motivating question has been found in Dragomir’s paper
(see [1]) and has taken its place in the literature as the expansion of Hermite-Hadamard inequality to a rectangle
from the plane 2R stated below.

Theorem 1 Suppose that [ R®´D ],],[=: dcbaf is convex on the co-ordinates on D . Then one has the
inequalities;
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The above inequalities are sharp.

Numerous variants of this inequality were obtained for convexity and other types of convex functions in coordinates
(See the papers [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 16]).

Definition 2 (See ??) A function R®D:f is said quasi-convex function on the co-ordinates on D if the
following inequality holds,

{ }),(),,(max))(1,)(1( wzfyxfwyzxf £-+-+ llll
for all DÎ),(),,( wzyx and [ ].0,1Îl

In [12], Sarıkaya et al. proved some Hadamard-type inequalities for co-ordinated convex functions as
followings:
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Theorem 2 Let RR ®ÌD 2:f be a partial differentiable mapping on ],[],[:= dcba ´D in 2R with ba <

and .< dc If
st
f
¶¶

¶2

is a convex function on the co-ordinates on ,D then one has the inequalities:
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Theorem 3 Let RR ®ÌD 2:f be a partial differentiable mapping on ],[],[:= dcba ´D in 2R with ba <

and .< dc If ,
2 q

st
f
¶¶

¶ 1,>q is a convex function on the co-ordinates on ,D then one has the inequalities:
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Theorem 4 Let RR ®ÌD 2:f be a partial differentiable mapping on ],[],[:= dcba ´D in 2R with ba <

and .< dc If ,
2 q

st
f
¶¶

¶ 1,³q is a convex function on the co-ordinates on ,D then one has the inequalities:
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where ,A J are as in Theorem 2.

In [15], Özdemir et al. have proved a new integral identity and several new inequalities as followings;

Lemma 1 Let [ ] [ ] R®´D dcbaf ,,=: be a partial differentiable mapping on [ ] [ ].,,= dcba ´D If
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Theorem 5 Let [ ] [ ] R®´D dcbaf ,,=: be a partial differentiable mapping on [ ] [ ].,,= dcba ´D If
st
f
¶¶

¶2

is a convex function on the co-ordinates on ,D then the following inequality holds;
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Theorem 6 Let [ ] [ ] R®´D dcbaf ,,=: be a partial differentiable mapping on [ ] [ ].,,= dcba ´D If
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Theorem 7 Let [ ] [ ] R®´D dcbaf ,,=: be a partial differentiable mapping on [ ] [ ].,,= dcba ´D If
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The main expectation from this study is to provide Bullen type inequalities for convex functions in coordinates in
the field of inequality theory. The integral identity needed to obtain the results has been proved for partially
differentiable functions with the help of double integrals. Some specific cases of main findings for bounded
functions are considered.

2. BULLEN TYPE INEQUALITIES FOR CO-ORDINATED QUASI-CONVEX
FUNCTIONS

For the simplicity, we will denote
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We need to a new integral identity to prove our main results for quasi-convex functions in coordinates. We will start
with the following equality:

Lemma 2 (See ??) Let [ ] [ ] R®´D dcbaf ,,=: be a partial differentiable mapping on [ ] [ ].,,= dcba ´D If
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then the following equality holds:
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Proof. From Lemma 2 and using the property of modulus, we have
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To calculate 1A , we use co-ordinated quasi-convexity of
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as following
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By computing the above integral, we obtain
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We can easily see that
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By combining the results and simplifying, we get the required result.

Corollary 1 Assume that all the conditions of Theorem 8 are valid. If we choose
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Proof. Using the identity is given in Lemma 2, we have
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By computing the above integrals, we obtain
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We can easily see that
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By adding these results, we get the desired result.

Corollary 2 Suppose that all the assumptions of Theorem 9 are satisfied. If we choose
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is bounded, i.e.,
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3. CONCLUSION

There are many studies in the literature on convexity in coordinates, but this is a rare study on Bullen inequality for
coordinated quasi-convex functions. It is clear that the results obtained in this study will have applications for
numerical integration and special averages. In addition, new Bullen-type inequalities can be obtained with the help
of equations similar to the integral identity on which the main findings are based. Moreover, proving similar identity
with the help of fractional integral operators can be considered as a new problem for further results.
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Abstract. In this paper, we have given some well known concepts related to fractional calculus and convexity. Then, we have
proved some new integral inequalities for P-functions via generalized proportional fractional integral operators.

1. INTRODUCTION AND PRELIMINARIES

Although fractional analysis origin dates back to the beginning of classical analysis, it has developed quite rapidly in
recent years. Many mathematicians who researched in this field contributed to this development and made efforts to
strengthen the relationship between fractional analysis and other fields. With the introduction of new fractional
derivative and integral operators, the application opportunity for many real world problems has been revealed. The
fractional operators are excellent tools to use in modeling long-memory processes and many phenomena that appear
in physics, chemistry, electricity, mechanics and many other disciplines. The majority of the new operators came to
the fore with different features such as singularity, location and generalization, and gained functionality thanks to
their effective use in application areas. Due to the intensive work on it, the Riemann-Liouville integral operator is a
prominent operator and is defined as follows.

Definition 1.1 Let ],[1 baLf Î . The Riemann-Liouville integrals fJ a
a
+ and fJb

a
- of order 0>a with 0³a

are defined by

atdxxfxttfJ
t

aa >,)()(
)(

1=)( 1-
+ -

G ò aa

a
and

btdxxftxtfJ
b

tb <,)()(
)(

1=)( 1-
- -

G ò aa

a

respectively. Here )(tG is the Gamma function and its definition is .=)( 1

0
dxtet xt --¥

òG It is to be noted that

)(=)(=)( 00 tftfJtfJ ba -+ . Also, in the case of 1=a , the fractional integral reduces to the classical integral.

We will continue with the generalized proportional fractional integral operator, which has been described recently
and has been the main source of motivation for many studies in the literature with its use in many areas, especially
inequality theory. In [10], Jarad et al. identified the proportional generalized fractional integrals that satisfy many
important features as follows:

Definition 1.2 The left and right generalized proportional fractional integral operators are respectively defined by
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where (0,1]Îl and ∈ ℂ and 0>)(aR .

Definition 1.3 [18] Let ),( ba with ¥££¥- ba < be a finite or infinite interval of the real line ℝ and a a

complex number with 0>)(aRe . Also let h be a strictly increasing function on ),( ba , having a continuous

derivative 'h on ),( ba . The generalized left and right sided Riemann-Liouville fractional integrals of a function
f with respect to another function h on ],[ ba defined as
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Definition 1.4 [17] Let ba, be two nonnegative real numbers with ba < , ra , two positive real numbers, and
: [ , ] → ℝ be an integrable function. The left and right Katugampola fractional integrals defined as
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Definition 1.5 [18,24] Let ba, be two reals with ba <<0 and : [ , ] → ℝ be an integrable function. The left
and right Hadamard fractional integrals of order 0>a are defined as
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Definition 1.6 [21] The left and right generalized proportional Hadamard fractional integrals of order 0>a and
proportionality index (0,1]Îz is defined by
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Now, let’s give a fractional operator which is known as the generalized proportional fractional (GPF) integral
operator function in the sense of another function h .

Definition 1.7 [14, 23] Let )(0,¥Î q
hXf , there is an increasing, positive monotone function h defined on

)[0,¥ having continuous derivative 'h on with 0=(0)h . Then the left-sided and right-sided GPF-integral

operator of a function f in the sense of another function h of order 0>a are stated as:

adhfhhef '
hh

a

h
a >,)()())()((

)(
1=)( 1

))()((1
, ekkkke

az
e a

ke
z
z

e

a
za -ú

û

ù
ê
ë

é
-

-

+ -
G òJ

and

bdhfhhef '
hhbh

b <,)()())()((
)(

1=)( 1
))()((1

, ekkkek
az

e a
ek

z
z

ea
za -ú

û

ù
ê
ë

é
-

-

- -
G òJ

where (0,1]Îz and ∈ ℂ and 0>)(aR .

For different choices of parameters in Definition 1.7, we get Riemann-Liouville integrals, generalized Riemann-
Liouville fractional integrals, generalized proportional fractional integrals, Katugampola fractional integrals,
Hadamard fractional integrals and generalized proportional Hadamard fractional integrals. Recently, several new
studies have been performed by mathematicians via various fractional integral operators and with the help of
fractional integral operators. Numerous new inequalities have been proved in the literature, see [1-9, 11-16, 19, 20,
22, 23, 25-28].
In [29], Pecaric et al. mentioned P-functions as following:
A function : → (0, ∞) is said to -P function, if for all Iyx Î, and [ ]0,1Ît one has the inequality

).()())(1( yfxfyttxf +£-+

The main aim of this paper is to establish some new integral inequalities for P-functions via the general forms of
proportional fractional integral operators.

2. MAIN RESULTS

Theorem 2.1 Assume that : [0, ∞) → ℝ be differentiable function with )(0,¥Î q
hXf and y be a positive

monoton increasing function that defined on )[0,¥ . Let ( )ty ' be continuous and ( ) 0.=0y Then, if f is P-
function, we have the following inequality;
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( )( ) ( ) ( )
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for ( )0,1Îx , ∈ ℂ, ( ) 0>0,> thRe where ( ) dtetxs ts

x

--¥

òG 1=, is incomplete Gamma function.

Proof. By using the definition of P-functions, we can write
( ) ( )bfafbttaf +£-+ ))(1(

By changing of the variable such that bttax )(1= -+ , we have

( ) ( )bfafxf +£)(
By multiplying both sides of the resulting inequality by

and applying integration with respext to from 0 to , we obtain

( )( ) ( ) ( )
( )

( ) ( )( )
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1
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If we calculate the integral in the right hand side, we obtain
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( )

( )

( )
( ) ( ) .1,

1
,
,0 ÷÷
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The proof is completed.

Theorem 2.2 Assume that ( ) Rf ®¥0,: be differentiable function with )(0,¥Î q
hXf and y be a positive

monoton increasing function that defined on )[0,¥ . Let ( )ty ' be continuous and

( ) 1,=111>,0,=0
qp

veqp +y ( ) .M' £ty Then, if f is -P function, we have the following inequality;
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for ( )0,1Îx , CÎh , ( ) ( ) 0>0,>1)(0,> thh -pReRe where ( ) dtetxs ts

x

--¥

òG 1=, is incomplete

Gamma function.

Proof. By using the definition of -P function, we can write
( ) ( )bfafbttaf +£-+ ))(1(

By changing of the variable such that bttax )(1= -+ , we have

( ) ( )bfafxf +£)(
By multiplying both sides of the resulting inequality by

and applying integration with respext to from 0 to , we obtain

( )( ) ( ) ( )
( )

( ) ( )( )

( ) ( )( )
( )dxx

x
ebfaff '

x

y
ytyhx

t h
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£ ò 1

1

0

,
,0

T .

By applying Hölder inequality to the resulting inequality and by making use of some necessary operation and by

taking into account ( ) Mx' £y , we obtain
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By making use of the necessary calculations, we obtain the desired result.
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ABSTRACT

The problem of the stressed state of a composite weakened by a system of doubly periodic cracks is relevant for various branches

of engineering. The formulation of the problem of fissuring substantially extends the original concept of  A. Griffiths. Stress

intensity factors are the main parameters of fracture mechanics that study the resistance of structural materials to brittle fracture

and the predictive performance of machine elements and structures weakened by cracks. The relevance of such studies is caused

by the extensive use in the technology of structures and products made of composite materials.

This article is devoted to modeling and solving problems on the interaction of a doubly periodic system of foreign

elastic inclusions and rectilinear cohesive cracks under transverse shear.

The nonlinear problem of fracture mechanics is solved for the transverse shear of a piecewise homogeneous medium in

the case when the binder and inclusions are weakened by cohesive cracks. It is believed that in the circular holes soldered without

tension elastic washers of another material.

The modeling of the end regions of cracks consists in treating them as part of cracks and in explicit application to the

surfaces of cracks in the end zones of the clutch forces that restrain their shear. The dimensions of the end zones of the cracks are

considered commensurate with the length of the cracks. The physical nature of such bonds and the size of the pre–destruction

zones depend on the type of material. When an external load acts on a piece–wise homogeneous body, the tangential forces arise

in the bonds connecting the shores of the end zones of prefracture, in the plane and in the inclusion, respectively. These stresses

are unknown in advance and are to be determined in the process of solving the boundary value problem of fracture mechanics.

Keywords: Doubly periodic lattice, Fiber–binder, Average stresses, Linear algebraic equations, Singular equations,

Cohesive cracks, Transverse shear.

INTRODUCTION

We consider an elastic medium weakened by a doubly periodic system of circular holes filled with

absolutely rigid inclusions. The medium (binder) is weakened by two bi–periodic systems of rectilinear cracks with

bonds between the banks in the end zones.

A fracture model of composite materials with a bicameral structure is proposed, based on the consideration

of the fracture process zone near the crack tip. The fracture process zone (end zone) is a layer of finite length
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containing material with partially broken bonds between its individual structural elements, considered as part of a

crack. The presence of bonds between the crack faces in the end zone is modeled by the application of adhesion

forces to the crack surfaces caused by the presence of bonds. The analysis of the limiting equilibrium of a cohesive

crack in a transverse shear is carried out on the basis of the criterion of the limiting shear of material bonds.

A numerical implementation of the above method is made at IBM. The stress intensity factors are

calculated depending on the geometric parameters of the medium under consideration.

STATEMENT OF THE PROBLEM

We consider an elastic plane D , weakened by a batch wise periodic system of circular holes with radii l

( )1<l and the centers of these holes are at points [1]

,,2, 12121
awwwww i

mn henmP ×==+=

( )...,2,1,00Im,0 2 ±±=>> mh w
Elastic washers from another material are soldered into circular holes without interference. Elastic

inclusions and the plane are considered weakened by rectilinear cracks with bonds between the banks in the end

zones. It is believed that the lengths of cracks with end zones in the plane and inclusion are not the same. The banks

of shear cracks outside the end zones are free of external forces, and stresses
¥= xyxy tt , 0=xs , 0=ys

act on the perforated body (shear at infinity). The origin of the coordinate system is aligned with the geometric

center of the hole 00L in the elastic plane (Fig. 1).

Modeling of the end regions of the cracks consists in considering them as part of the cracks and in explicit

application to the surfaces of the cracks in the end zones of the adhesion forces holding back their shift. The sizes of

the end zones of the cracks are considered comparable in comparison with the length of the cracks. The interaction

of the banks of the end zones of cracks is modeled by introducing between the banks of the zone of pre –fracture of

bonds with a given deformation diagram. The physical nature of such bonds and the sizes of the prefracture zones

depend on the type of material. Under the action of an external load on a piecewise homogeneous body in the bonds

connecting the shores of the end zones before failure, tangential forces ( )xqx , ( )yqy in the plane and ( )xqx
0

in the inclusion, respectively, arise. These stresses are not known in advance and must be determined in the process

of solving the boundary value problem of fracture mechanics [2].

The boundary conditions in the considered problem have the form [3]

( ) ( )
mnmn trrbrr sii WW -=- qq tsts , ( ) ( )

mnmn sb iuiu WW +=+ uu (1)



3rd INTERNATIONAL CONFERENCE
ON MATHEMATICAL AND RELATED SCIENCES:

CURRENT TRENDS AND DEVELOPMENTS
ICMRS 2020

20-22 NOVEMBER, 2020

320

Fig. 1. The design scheme of the problem of the transverse shear piecewise homogeneous elastic medium with

cracks on the banks of cracks with end zones [4]

( ) ( )xfi xsxyy =- ts collinear abscissa axis, (2)

( ) ( )yfi ysxyx =- ts collinear ordinate axis,

( ) ( )xfi xbxyx
0=- ts at 0=y , l£x

.

Here -Wmn is the inclusion interface – the plane in cell number mn ; values related to the inclusion (washer)

and the plane are hereinafter indicated by the indices b and s ; ( ) 0=xfx on the free banks of cracks;

( ) ( )xiqxf xx -= on the banks of the end zones of the cracks, collinear abscissa axis; ( )yf y on the free banks of

00L
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cracks of the collinear ordinate axis ( ) ( )yiqyf yy -= on the banks of the end zones of cracks of the collinear

ordinate axis; ( ) 00 =xf x on the free banks of the crack in the inclusion; ( ) ( )xiqxf xx
00 -= on the banks of the end

zones of cracks in the inclusion [5].

The main relations of the stated problem must be supplemented by equations connecting the shift of the

banks of the end zones of cracks and the tangential stresses in the bonds.

Without loss of generality, we represent these equations in the form [6,7]

( ) )()(,)0,()0,( xqxqxCxuxu xxss =- -+ , (3)

for end zones of cracks of the collinear abscissa axis

( ) )()(,),0(),0( yqyqyCyy yyss =- -+ uu ,

for end zones of cracks of the collinear ordinate axis

( ) )()(,)0,()0,( 00
0 xqxqxCxuxu xxbb =- -+ , (4)

for end zones of cracks in inclusion

Here the functions ( ))(, xqxC x , ( ))(, yqyC y , and ( ))(, 0
0 xqxC x represent the effective compliance

pliability; ( )-+ - ss uu – shift of the banks of the end zones of the crack collinear abscissa axis; ( )-+ - ss uu – the

shift of the banks of the end zones of the crack collinear ordinate axis; ( )-+ - bb uu – shift of the banks of the end

zones of the crack in the inclusion.

Stresses and displacements in the plane problem of the theory of elasticity can be represented [8,17]

through two analytical functions of a complex variable ( )zF and ( )zY

( ) ( )[ ]zzryx F+F=+=+ 2qssss , ( )iyxz += ,

( ) ( ) ( )[ ]zzziei rr
i

xyxy Y+F¢=+-=+- - 222 2
qq

q tsstss
,

(5)

( ) ( ) ( ) ( )zzzzкiu yjum -F-=+2 , ( ) ( )zz F=¢j , ( ) ( )zz Y=¢y ,

( ) ( )î
í
ì

-+-
--

=
stressflatfor13

ndeformatioflatfor43
vv

v
к

m – shear modulus; v – is the Poisson's ratio; q,r – polar coordinates.

On the basis of general representations (5), the problem under consideration reduces to finding two pairs of

functions )(zF , )(zY and )(0 zF , )(0 zY of the complex variable iyxz += , analytic in the areas

occupied by the medium and the puck, and satisfying the boundary conditions [9]:
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( ) ( ) ( ) ( )[ ] =Y+F¢-F+F qttttt ie2 ( ) ( ) ( ) ( )[ ] qttttt ie2
0000 Y+F¢-F+F , (6)

( ) ( ) ( ) ( )[ ] =Y+F¢-F+F- qttttt i
s eк 2 ( ) ( ) ( ) ( )[ ]{ }qttttt

m
m i

b
b

s eк 2
0000 Y+F¢-F+F-= , (7)

( ) ( ) ( ) ( ) ( )0
0

000000000 tfttttt x=Y+F¢+F+F , ( ) ( ) ( ) ( ) )(tfttttt x=Y+F¢+F+F (8)

( ) ( ) ( ) ( ) ( )111111 tfttttt y=Y+F¢+F+F . (9)

ss к,m and bb к,m – are the shear moduli and Muskhelishvili constant for the plane and inclusion, respectively.

THE SOLUTION OF THE BOUNDARY VALUE PROBLEM

The solution to the boundary value problem (6)–(9) is sought in the form [3]

)()()( 02010 zzz F+F=F , )()()( 02010 zzz Y+Y=Y , (10)

( ) 0
0

00
01

)(
2
1 dt

zt
tg

i
z ò
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l
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, ( ) å
¥
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=F
0

2
202

k

k
k zaiz ,
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0

000

0
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01
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2
1 dt
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ù
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é
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p
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¥

=

=Y
0

2
202

k

k
k zbiz , (11)

)()()()( 321 zzzz F+F+F=F , )()()()( 321 zzzz Y+Y+Y=Y , (12)

( )
( ) ( )

( )å
¥

=

+

+
¥

+
++=F

0

222

2201 !12k

kk

kxy k
ziiiz glaat , (13)
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( )åå
¥
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+

¥
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¥

+
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+=Y

0
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zSi

k
ziiz larlbt ,

( ) ( ) ( )dtztctgtgz
L

-=F ò
1

2
1

2 w
p

w
, ( ) ( ) ( )dtzttgzz

L

--=Y ò -

1

2
22 sin

2 w
p

w
p

,            (14)

( ) ( ) ( ) 11113

2
2

dtzitctgtgiz
L

--=F ò w
p

w
, (15)

( ) ( ) ( )ò +
î
í
ì --=Y

2

1113 2 L

zitctgtgiz
w
p

w

( ) ( ) ( ) ( ) 1111
2

11 sin2 dttgzitztzitctg
þ
ý
ü

úû
ù

êë
é -++-+

w
p

w
p

w
p

.

Here )(tg , )( 11 tg , )(0 tg –are the desired functions, the integrals in (14) and (15) are taken along the line

[ ] [ ]{ }haahL ,,1 +--= ; [ ] [ ]{ }rbbrL ,,2 +--= [9];
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( ) ( )[ ]0,0,
1
2)( xuxu

dx
d

к
ixg ss
s

s -+ -
+

-=
m

, ( ) ( )[ ]yy
dy
d

к
yg ss

s

s ,0,0
1
2)(1

-+ -
+

= uu
m

,       (16)

( ) ( )[ ]0,0,
1
2)(0 xuxu

dx
d

к
ixg bb
b

b -+ -
+

-=
m

. (17)

To the main concepts should be added additional conditions arising from the physical meaning of the problem [7]

( )ò
-

=
l

l

0000 dttg , ( )ò
-

-

=
a

h

dttg 0 , ( )ò =
h

a

dttg 0 , ( )ò
-

-

=
b

r

dttg 0111 , ( )ò =
r

b

dttg 0111 . (18)

Applying the method described in, we obtain relations defining the coefficients ka2 , kb2 of the functions )(0 zF

, )(0 zY . The unknown function ( )xg0 must be determined from the boundary condition (8). Substituting (10) –

(11) into (8), we obtain a singular integral equation, which, after changing variables and using quadrature formulas

[10], is replaced by a finite system of algebraic equations. To determine the unknown coefficients k2a , k2b of the

functions )(1 zF and )(1 zY , we consider the solution of the elastic problem for the plane, and we consider the

quantities kA2 to be given for now (we will find kA2 below).

We transform the boundary condition (6) as follows [10, 11]
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where
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We expand the functions ( )qj1 , ( )q1f on the contour of the inclusion of lt = in complex Fourier

series. These rows will have the form [11]
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Substituting expression (20) for the integrals and changing the order of integration, after calculating the

integrals using residue theory, we find
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Substituting into the left side of the boundary condition (19) instead of )(1 zF , )(1 zF , )(1 zF¢ and

)(1 zY their expansion into Laurent series in a neighbor-hood of the zero point and equating the coefficients for

identical powers of ( )qiexp , we obtain two infinite systems of linear algebraic equations with respect to the

coefficients k2a , k2b [12]:
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The coefficients k2b are determined by the relations
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Where the expression for kjA , , jb and the defining relations for the coefficients k2b are given in (23)

and (24). Moreover, with the difference that in the relations defining jb and k2b , instead of kA2¢ , one should take

kM 2¢ in this case

¥-=¢ xyiMM t200 , ¥+=¢ xyiMM t22 , kk MM 22 =¢ , ( )...,3,2,1 ±±=k ,

kkk CAM 222 += , kkk CCC 222 ¢¢+¢= ( )...,2,1,0 ±±=k .

Acting similarly with the boundary condition (20), after some transformations we obtain the same system

of equations as (23) with respect to *
+22 ja for к-=e , and instead of the coefficients kA2¢ , in this case, we

should take *
kA2
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Here *
kC2 ( )...,2,1,0 ±±=k are determined from (22) for sк-=e .
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Using the obtained relations and performing some transformations, we obtain formulas that determine the

coefficients k2a , k2b , 0A , kA 2- in terms of kA2 , as well as an infinite system of linear algebraic equations with

respect to kA2 [13]:
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Here, kB2 is defined in (25), kC2 – is defined in (22) for 1=e , *
kC2 – is defined in (22) for sк-=e

, kj ,g and *
kj ,g are defined in (23) for 1=e and sк-=e , respectively.

To determine the desired function )(xg , we have the boundary condition on the line L1. Requiring that

functions (12) – (15) satisfy the boundary condition on the banks of the prefracture zone 1L , we obtain, after some

transformations, a singular integral equation for ( )xg [14, 21]:

( ) ( ) )()(1

1

xiqxHdtxtKtg x
L

-=+-òw
, ( )xtctgxtK -=-

w
p)( , (27)

)()()()()( xxxxxxH ssss Y+F¢+F+F= , )()()( 31 xxxs F+F=F ,

)()()( 31 xxxs Y+Y=Y .

Similarly, satisfying the boundary condition on the line 2L , after some transformations we obtain one more

singular integral equation with respect to the desired function )(1 yg :

( ) ( ) ( ) )()(11
2

1112
2

yiqyNdtytshyttg y
L

-=+úû
ù

êë
é --- -ò w

p
w
p

, (28)

where )()()()()( 0000 iyiyiyiyiyyN Y+F¢+F+F= , )()()( 210 zzz F+F=F ,

)()()( 210 zzz Y+Y=Y .

Satisfying functions (10) – (11) of the boundary condition (8), after some transformations, we obtain a

singular integral equation of the first kind by the Cauchy kernel with respect to the function )( 00 xg [15, 22]:
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where )()()( 02020 xxxxH Y+F¢= ,

0)(0 =xf x on the free banks of cracks;

)()( 00 xiqxf xx -= on the banks of the end zones of cracks.

Thus, infinite algebraic systems (23), together with three singular integral equations (27) – (29), are the

main resolving equations of the problem, which allow one to determine the desired functions ( )xg , ( )yg and

( )00 xg , and the coefficients ka2 , kb2 , k2a . It should be recalled that the algebraic system (23) contains the

coefficients kC2 and kB2 , depending on the desired functions ( )xg , ( )yg and ( )00 xg , respectively. Thus,

systems (23) and integral equations (27) – (29) turned out to be coupled and must be solved together.

ALGEBRAIZATION OF THE MAIN RESOLVING EQUATIONS

Using the expansion of the function zctg
w
p

in the main strip of periods, the singular integral equation

(27) after some transformations, we bring to the following form [16, 22 ]
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Given that )()( xgxg --= , by changing variables, we transform equation (30) to the form [55]
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Now, we transform equation (31) to a form convenient for finding its approximate solution. To do this,

apply another change of variables.

We carry out another change of variables
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With such a change of variables, the integration interval [ ]1,1l goes into the interval [ ]11,- ,  and the

transformed singular integral equation (31) takes the usual form, convenient for numerical solution
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Function ( )tp takes purely imaginary values. We reduce equation (33) to a finite system of linear

equations, bypassing the intermediate stage of regularization and reducing it to the Fredholm equation of the second

kind.

The solution of equation (33) can be represented as [18, 22]
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where ( )h0p is Hölder continuous on a function.

We will seek function ( )t0p in the form of an Lagrange interpolation polynomial constructed from

Chebyshev nodes
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we obtain the formulas for all integral terms in equations (33) and system (25)
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The given quadrature formulas (35) make it possible to reduce the main resolving equations to two finite

systems of algebraic equations for approximate values 0
kp , 0

vR of the desired function at the nodal points, as well

as to two infinite systems of algebraic equations for the coefficients k2a , k2b .

After some transformations, the singular integral equation (27) reduces to the following algebraic system of

equations
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We now turn to the second singular integral equation (28). Using the expansion of function zsh
w
p2-

and taking into account =)( 11 tg )( 11 tg --= , after changing the variables, we transform equation (28) to a form

more convenient for finding its approximate solution
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Let's make another change of variables
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In this case, the integration interval [ ]12 ,l goes into the interval [ ]11,- , and the integral equation

takes the following form
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Repeating the above method, we replace the singular integral equation with a finite system of linear algebraic

equations with respect to the desired function 0
vR :

( ) ( ),
2
1

1
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0
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n

v
mvmv qNRa hh -=+å

=

* (m = 1, 2, …, M – 1), (39)
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The right – hand side of the resulting finite systems includes unknown stresses ( )mxq h and ( )myq h at

the nodal points belonging to the prefracture zones. Using the obtained solution, equations (3), (4) can be

represented as

To the resulting system of equations (36) – (39), additional equations (18) written in discrete form are

added

( )( )
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ltl ( )( )
.0

11
2
11 2
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2
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n

v
v

o
vR

ltl
(40)

The right – hand sides of the obtained algebraic systems (36), (39), and (19) contain unknown values of the

stresses ( )mxq h , ( )myq h and ( )myq h0 at the nodal points belonging to the end zones before failure. The

unknown values of stresses in bonds arising on the banks of the zones of pre–fracture are determined from the

additional conditions (3) – (4). Using the solution obtained, relations (3) – (4) can be written [19]

( )[ ],)()(,
1
2

)( 00
0 xqxqxC

dx
d

к
i

xg xx
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b

+
-=

m ( )[ ],)()(,
1
2
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dx
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к
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xg xx
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+
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m
(41)

( )[ ].)()(,
1
2

)(1 yqyqyC
dy
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к
yg yy

s

s

+
=

m

These equations serve to determine the stresses in the bonds. We represent these equations (41) in the

following form
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To construct the missing equations, we require that conditions (42) be satisfied at the corresponding nodal

points belonging to the end zones ( )ll ,1 , ( ) ( )11 ,, aahh U , ( ) ( )11 ,, bbrr U . As a result, we obtain three

algebraic systems for finding approximate values ( )
0

0
mxq h (m0 = 1, 2, …, M0), ( )

1mxq h (m1 = 1, 2, …, M1) and

( )
2myq h (m2 = 1, 2, …, M2) respectively:
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Here ( ) ( ) ( ),21 10 MкC bb mp ll -+=* ( ) ( ) ( ),211 MahкC ss mp -+=*

( ) ( ) ( ).212 MrbкC ss mp -+-=*
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For the closure of the obtained algebraic equations, five equations are lacking that determine the sizes of

the end zones of the cracks. Since the solution of integral equations is sought in the class of everywhere bounded

functions (stresses), it is necessary to add the conditions of boundedness of stresses at the ends of the end zones of

cracks to the obtained systems. These conditions have the form [20]
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After determining the values of functions 0
kp and 0

vR , the stress intensity factors in the vicinity of the crack

tips were found by the relations [23]
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To analyze the ultimate equilibrium of cracks with end zones, two conditions (two – parameter criterion) of

fracture are necessary. The first criterion is the condition for the propagation of the crack tip, and the second is the

condition for breaking bonds at the edge of the end zone.

As the first condition for destruction, we use the force criterion for the destruction of Irwin. The condition

of limiting equilibrium of the crack tip corresponds to the condition

IIcII KK = , (48)

where IIcK – is the constant of the material, determined empirically [23]

As the second condition for fracture, we use the criterion for a critical shift of the crack faces and we

believe that bond breaking at the edge of the end zone     ( dx -=* l or 1dry -=* ) occurs when the

condition

( ) ( ) ( ) cruuxV duu =-+-= -+-+
*

22
, (49)

where crd – is the ultimate bond length [5, 38].



3rd INTERNATIONAL CONFERENCE
ON MATHEMATICAL AND RELATED SCIENCES:

CURRENT TRENDS AND DEVELOPMENTS
ICMRS 2020

20-22 NOVEMBER, 2020

334

The solution of the system of algebraic equations (16), (17), (36), (39), (41), (47), (48) and (49) allows (for

a given crack length and bond characteristics) to find the critical external load ¥
xyt and the limit shift of the end

zone in the state of limiting equilibrium cracks.

For given sizes of cracks and end zones, using the limit values IIcK and crd , we can distinguish the

equilibrium and growth modes of cracks under monotonic loading. If the conditions are met

IIcII KK ³ , ( )*xV and ( ) cryV d<* ,

then the crack tip advances with a simultaneous increase in the length of the end zone without breaking bonds.

This stage of crack development can be considered as a process of adaptability to a given level of external

loads.

The crack tip growth with simultaneous breaking of bonds at the edge of the end zone will occur under the

conditions

IIcII KK ³ , ( *xV or ) cry d³* .

So, for example, under the conditions

IIcII KK < , ( *xV or ) cry d³*

bonds are broken without advancement of the crack tip and the size of the end zone is reduced, striving for a critical

value for a given load level.

Under the conditions

IIcII KK < , ( *xV and ) cry d<*

the position of the crack tip and the end zone will not change [23].

Since the sizes of the end zones of the cracks are unknown, the combined algebraic system of equations is

nonlinear even with linear relationships. To solve it, the method of successive approximations is used. In each

approximation, the combined algebraic system was solved by the Gauss method with the choice of the main

element. In the case of the nonlinear law of bond deformation, an iterative method similar to the elastic solution

method is used to determine the forces in the pre – fracture zones. In numerical calculations, it was assumed that

30=M , which corresponds to dividing the integration interval into 30 chebyshev nodes.

To determine the limiting state at which crack growth occurs, the condition of a critical shift of the crack

faces is used. Using the obtained solution, the conditions determining the ultimate external load are the following

( ) 00000 )()(, cxx qqC dlll = ( ) cxy qqC dlll =*** )()(, ( ) cyx qqC dlll =*** )()(, 111 ,     (50)

where 0
cd and cd – are the crack resistance characteristics of the inclusion material and the binder, respectively;

0l , *l and 1
*l – are the coordinates of the points at the base of the prefracture zones for inclusion and binder,

respectively.
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The analysis of the extremely equilibrium state of a piecewise homogeneous medium under which crack

growth occurs reduces to a parametric study of the combined algebraic system and crack growth criterion (50) for

various laws of bond deformation, elastic constant materials, and geometric characteristics of a perforated body.

Calculations were carried out to determine the ultimate loads causing crack growth. Each of the infinite

systems was reduced to five equations, and with the help of one of them the unknown coefficients k2b were

eliminated from the remaining equations. The resulting system in each approximation was solved by the Gauss

method. In the calculations, h was considered constant equal to 90,0=h ; 3,0=- br .  In addition, it was

accepted for the binder material 32,0=v ; МPа5105,2 ×=m , and for inclusion material 33,00 =v ;

МPа5
0 106,4 ×=m .

Based on the numerical results, graphs of the dependence of the critical (ultimate) load

IIcxy Kwtt ¥
* =
l on the crack length of the plane and in the inclusion are constructed.

In fig. 2 graphs of the dependence of the critical load l
*t on the crack length in the inclusion are presented

(Fig. 2).

Fig. 2. Dependences of the critical load IIcxy Kwtt ¥
* =
l on the crack

length in the inclusion.
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In fig. 3 presents graphs of the dependence of the relative length of the prefracture zone

( ) la-=* ll on the dimensionless value of the external loading *
¥ tt xy for various values of the radius of

the holes (curves 1 – 4): 2,01 =-l ; 3,02 =-l ; 4,03 =-l ; 5,04 =-l ( Fig. 3).

Fig. 3. Dependences of the relative length of the prefracture zone ( ) la-=* ll on the dimensionless value of

the external loading *
¥ tt xy for some values of the radius of the holes 5,02,0 ¸=l (curves 1–4).

In fig. Figure 4 shows the dependence of the forces in the bonds ¥
xyxq t along the prefracture zone on

the dimensionless coordinate ( ) ( ) 22 axax -¢++= ll for various values of the radius of the holes:

5,02,0 ¸=l (curves 1–4) (Fig. 4).
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Fig. 4. Dependences of the distribution of tangential stresses in the bonds ¥
xyxq t along the prefracture zone for various

values of the radius of the holes: 5,02,0 ¸=l (curves 1–4).

The joint solution of the resolving algebraic system and conditions (50) makes it possible (with the given

crack resistance characteristics of the material) to determine the critical value of the external load, the sizes of the

prefracture zones for the state of ultimate equilibrium, at which a crack appears.

Based on the numerical results in fig. 5, graphs of the dependence of the critical load *
¥* = ttt xy on

the distance l-=* aa for the prefracture zone collinear abscissa axis at 3,0=l are plotted (Fig. 5)
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Fig. 5. Dependence of the critical load *
¥* = ttt xy on the distance

l-=* aa at 3,0=l .

In fig. Figure 6 shows the dependence of the critical load a*t upon changing  the length of the pre-fracture

zone a-=* ll for 3,0=l , 05,0=*a (Fig 6.).
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Fig. 6. The dependence of the critical load *
¥* = ttt xy

a when changing the length of the pre–fracture

zone a-=* ll at 3,0=l , 05,0=*a .

In fig. Figure 7 shows the dependence of the relative length of the prefracture end zone ( ) l1ll -=d

on the dimensionless value of the loading intensity *
¥ tt xy for some values of the radius of the holes (curves 1–

4): 2,01 =-l ; 3,02 =-l ; 4,03 =-l ; 5,04 =-l ( Fig.7).

Fig. 7. Dependences of the relative length of the prefracture end zone ( ) l1ll -=d on the dimensionless

value of the loading intensity *
¥ tt xy for some values of the radius of the holes (curves 1–4): 5,02,0 ¸=l .

In fig. figure 8 shows the dependence of the shear stresses in the bonds ¥
xyxq t on the relative size d for various

values of the radius of the holes: 5,02,0 ¸=l (curves 1–4).
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Fig. 8. Dependences of the distribution of tangential stresses in bonds ¥
xyxq t on the relative size of the end zone

d for some values of the radius of the hole: 5,02,0 ¸=l (curves 1–4).
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