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ABSTRACT 

One of the known methods in the literature to obtain different versions, generalizations and 

extensions of inequalities is to use different classes of convex functions such that s-convexity,  

m-convexity, harmonically convexity, r-convexity, quasi-convexity et al. Also, in recent 

years, fractional integral operators have become a frequently used method to obtain new 

versions, generalizations and extensions of classical integral inequalities. One of these 

operators is AB-fractional integral operator defined by Atangana and Baleanu. In this study, 

we use the AB-fractional integral operators to establish some new generalized integral 

inequalities that are connected with the celebrated Hermite Hadamard integral inequality with 

the help of s-convex functions in the second sense. 

 

1.  INTRODUCTION 

Convex functions, which are of high importance for the theory of inequality in terms of wide 

range of applications and features, are the focus of researchers in many applied fields such as 

convex programming. Let’s start by remembering this useful function class. 

 

Definition 1.1 The function RR],[: baf , is said to be convex if the following inequality 

holds 

)()(1)())(1( yfxfyxf    (1.1) 

for all ],[, bayx   and [0,1] . We say that f  is concave if )( f  is convex. 

 

Definition 1.2 (see [3],[6]) Let 1<0 s . A function R)[0,:f , is said to be s-Breckner 

convex or s-convex in the second sense, if for every )[0,, yx  and 0,   with 1=  , 

we have 

 

                     ).()()( yfxfyxf ss    (1.2) 

The set of all s-convex functions in the second sense is denoted by 
2

sK . 

 

It can be easily seen that for 1=s , s-convexity reduces to the ordinary convexity of functions 

defined on )[0, . 

mailto:erhanset@yahoo.com
mailto:alikaraoglan@odu.edu.tr
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Hermite-Hadamard inequality, one of the first types of inequality in which convex functions 

are used in inequality theory, is an aesthetic inequality whose lower and upper bounds can be 

expressed in arithmetic mean. This famous inequality is expressed as follows. 

 

Assume that RR If :  is a convex mapping defined on the interval I  of R  where 

.< ba  The following statement; 

 

            
2

)()(
)(

1

2

bfaf
dxxf

ab

ba
f

b

a













 
  (1.3) 

 

holds and known as Hermite-Hadamard inequality. 

 

In [5] Dragomir and Fitzpatrick proved a variant of Hadamard¡¦s inequality which holds for s-

convex functions in the second sense. 

Theorem 1.1 Suppose that R)[0,:f  is an s-convex function in the second sense, where 

(0,1)s , and let )[0,, ba , ba < . If ],[ baLf  , then the following inequalities hold 

 

                          .
1

)()(
)(

1

2
2 1















 




s

bfaf
dxxf

ab

ba
f

b

a

s  

 

Definition 1.3 (see, [4],[9]) Let ),(1 baH  be the Sobolev space of order 1 given as follows 

 

                                        )}.,(:),({=),( 22

1 baLubaLubaH '   

 

In this paper, we will denote normalization function as )(B  with 1=(1)=(0) BB  and (.)  

is Gamma function. 

 

Left hand side of Atangana-Baleanu integral operator has been defined as follows. 

 

Definition 1.4 [2] The fractional integral associate to the new fractional derivative with non-

local kernel of a function ),(1 baHf   as defined: 

                       dyytyf
B

tf
B

tfI
t

a

AB

a

1))((
)()(

)(
)(

1
=)( 
















 

where (0,1].,> ab  

 

In [1], the authors have given the right hand side of integral operator as following; 

                     .))((
)()(

)(
)(

1
=)( 1dytyyf

B
tf

B
tfI

b

t
b

AB 















 

 

The Gamma function )(z  developed by Euler is usually defined as follow. 
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Definition 1.5 [8] Assume that 0>)(z , the Gamma function is denoted by )(z  and 

defined as follow. 

                                             .=)( 1

0
dttez zt 



  

 

Definition 1.6 [8] Assume that 0>)(  and 0>)( , the Beta function is denoted by 

),(   and defined as 

                                            .1=,
11

1

0
dttt

 
  

 

The main aim of this study is to obtain new Hermite-Hadamard type inequalities via 

Atangana-Baleanu integral operators for s -convex functions in the second sense using 

identity that provided by Set et al. in [7]. The main findings are supported by some reduced 

results. 

 

2.  MAIN RESULTS 

 

We will give the identity that provided by Set et al. to obtain main results as follow. 

 

Lemma 2.1  [7] Let R],[: baf  be differentiable function on ),( ba  with ba < . Then we 

have the following identity for Atangana-Baleanu fractional integral operators 

 

   
)(

)()2(1

)()(

)()()()(
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where ],[(0,1], bat , )(B  is normalization function and (.)  is Gamma function. 

 

Theorem 2.1  Let R],[: baf  be differentiable function on ),( ba  with ba <0  and 

],[1 baLf ''  . If || ''f  is a s -convex function in the second sense, we have the following 

inequality for Atangana-Baleanu fractional integral operators 
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where ],[ bat , (0,1] , (0,1]s , )(B  is normalization function, (.)  is Gamma 

function and (.)  is Beta function. 

 

Proof. By using the identity that is given in Lemma 2.1, we can write 
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By using s -convexity in the second sense of || ''f , we get 
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So, the proof is completed. 

 

Remark 2.1 In Theorem 2.1, if we choose 1=s , the inequality (2.1) reduces to the inequality 

in Theorem 2.1 in [7]. 

 

Theorem 2.2  Let R],[: baf  be differentiable function on ),( ba  with ba <0  and 

],[1 baLf ''  . If q''f ||  is a s -convex function in the second sense, we have the following 

inequality for Atangana-Baleanu fractional integral operators 
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where 1=11   qp , 1>q , ],[ bat , (0,1]s , (0,1] , )(B  is normalization function, 

(.)  is Gamma function and (.)  is Beta function. 

 

Proof. By using Lemma 2.1, we have 
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By applying Hölder inequality, we get 
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By using s -convexity in the second sense of q''f || , we obtain 
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So, the proof is completed. 

 

Remark 2.2 In Theorem 2.2, if we choose 1=s , the inequality (2.2) reduces to the inequality 

in Theorem 2.2 in [7]. 

 

Theorem 2.3  Let R],[: baf  be differentiable function on ),( ba  with ba <0  and 

],[1 baLf ''  . If q''f ||  is a s -convex function in the second sense, we have the following 

inequality for Atangana-Baleanu fractional integral operators 
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where ],[ bat , (0,1]s , (0,1] , 1q , )(B  is normalization function, (.)  is Gamma 

function and (.)  is Beta function. 

 

Proof. By using Lemma 2.1, we get 
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By applying power mean inequality, we get 
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By using s -convexity in the second sense of q''f || , we get 
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So, the proof is completed. 

 

Remark 2.3 In Theorem 2.3, if we choose 1=s , the inequality (2.3) reduces to the inequality 

in Theorem 2.4 in [7]. 

 

Theorem 2.4  Let R],[: baf  be differentiable function on ),( ba  with ba <0  and 

],[1 baLf ''  . If q''f ||  is a s -convex function in the second sense, we have the following 

inequality for Atangana-Baleanu fractional integral operators 
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where ],[ bat , (0,1]s , (0,1] , 1=11   qp , 1>q , )(B  is normalization function, 

(.)  is Gamma function and (.)  is Beta function. 

 

Proof. By using Lemma 2.1, we get 
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By using the Young inequality as qp y
q
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11

 , we have 
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By using s -convexity in the second sense of q''f || , we have 
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So, the proof is completed. 

 

Remark 2.4 In Theorem 2.4, if we choose 1=s , the inequality (2.4) reduces to the inequality 

in Theorem 2.3 in [7]. 
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ABSTRACT 

 
This research is on the new versions of Bullen-type inequalities. These inequalities 

established by means of convex mappings include conformable fractional integral 

operators. Obtaining these inequalities, well-known Hölder inequality and power mean 

inequality are also utilized. The resulting Bullen-type inequalities are a generalization of 

some of the studies on this subject, including Riemann integrals and Riemann-Liouville 

integrals. What’s more, new results are obtained through special choices. 

 

1. INTRODUCTION 
 

Convex theory is a subject that has been used in many fields of optimization theory, energy 

systems, engineering applications, and physics and has guided many studies in the literature. 

Also, the convex theory is an available way to solve many problems from different branches 

of mathematics. Convexity theory has an important place in these branches of mathematics, 

especially in inequalities. Hermite-Hadamard, Simpson, Newton, and Bullen-type inequalities 

are the most well-known of these inequalities. 

 

Today’s researchers use the derivative and integral as a tool to produce different solutions to 

almost all of the problems that arise in each of the fields of basic science such as mathematics, 

physics, chemistry, and engineering such as industry and electricity. Classical derivative, 

classical integral, and differential concepts although it solves most of the problems that arise 

in many areas of technology, these concepts are insufficient in solving many of them. 

Fractional calculus has been the solution to these problems. Many authors began to deal with 

the discrete versions of this fractional calculus benefiting from the theory of time scales. Two 

basic approaches are used to do this fractional calculation. The first approach called the 

Riemann-Liouville approach, in addition to repeating the integral operator 𝑛 times, he made it 

possible to convert it to an integral with the Cauchy formula where then 𝑛! is changed to the 

mailto:myildiz@aku.edu.tr
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Gamma function, and hence the fractional integral operator of non-integer order is described. 

These integers were then used to find the Riemann-Liouville and Caputo fractional 

derivatives. The second approach is the Grünwald–Letnikov approach which is the aid of 

iterating the derivative 𝑛 times and then fractionalizing involving the Gamma function in the 

binomial coefficients. In the results obtained with these approaches, the calculations seemed 

complicated as the product rule and the chain rule properties were lost from the properties of 

the derivative. That’s why the Conformable fractional approach was developed, which 

depends on the fundamental definition of the derivative in [18]. In [2], the author proved that 

the conformable approach in [18] cannot yield good results when compared to the Caputo 

definition for specific functions. This flaw in the conformable definition was avoided by some 

extensions of the conformable approach [12, 22]. Based on these approaches, Jarad obtained 

the definitions of conformable fractional integrals in [15]. Inspired by all these studies, 

fractional calculus attracts researchers every day. 

 

In [3], Bullen introduced Bullen-type inequalities in 1978, which is named after him, and 

which has guided many studies in the literature. Dragomir and Wang acquired a natural 

generalization of Bullen’s inequality in [8]. Sarikaya et al. acquired generalized Bullen-type 

inequalities in [20]. Erden and Sarikaya proved the generalized inequalities of Bullen-type 

with the aid of the local fractional integrals on fractal sets in [10]. Du et al. utilized the 

generalized fractional integrals to discover Bullen-type inequalities in [9]. Hwang et al. have 

constructed some new Hermite-Hadamard-type, Bullen-type, and Simpson-type inequalities 

in [11] with the aid of fractional integrals. Starting from the equality they obtained, 𝐼�̇�can et 

al. found some new Hermite-Hadamard and Bullen-type inequalities via functions whose 

derivatives in modulus at certain power are convex in [13]. Tseng et al. acquired some 

Hadamard-type and Bullen-type inequalities via Lipschitzian functions and give several 

applications with help of the special means in [21]. With help of the some Euler-type 

identities, Matic et al. presented a generalization of Bullen-Simpson’s inequality based on 

(2ô)-convex mappings in [19]. Çakmak presented some new Bullen-type inequalities based 

on differentiable mappings with the help of the 𝑠–convexity and Riemann-Liouville fractional 

integral operators via Gauss hyper-geometric function in [4]. Also the author proved a new 

identity based on differentiable mappings and established some new inequalities via 

differentiable mappings with the aid of the h-convex mappings involving Bullen-type 

inequalities in [5]. In [16], Kara et al. obtained the above and below bounds via 

parameterized-type inequalities utilizing the Riemann–Liouville fractional integral operators 

and limited second derivative functions. These presented some new Bullen-type inequalities 

according to the specific choices of the parameter. Besides all this, Çakmak has done two 

different studies in [6] and [7] on Bullen-type inequalities involving a different conformable 

fractional integral operator. 

 

With the help of the continuing research and mentioned papers above, we will acquire some 

Bullen-type inequalities via differentiable convex mappings involving conformable fractional 

integral operators. The entire form of study takes the form of four sections including the 

introduction. In Section 2, the fundamentals definitions of Riemann-Liouville integral 

operators and conformable integrals will be explained for building our main results. In 

addition, recalls will be made about gamma, beta, and incompleted beta functions, which are 

well-known in the literature. In Section 3, an identity will be present for the case of 
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differentiable convex mappings involving the conformable fractional integral operators. By 

utilizing this equality, we prove some Bullen-type inequalities via convex mappings with the 

help of conformable fractional integrals. More precisely, Hölder and power-mean inequalities, 

which are well-known in the literature, will use in some of the proven inequalities. 

Furthermore, we also present some corollaries and remarks. Finally, in Section 4, ideas that 

will guide the researchers will be given. Interested researchers will be informed that new 

versions of the inequalities we have acquired can be derived via different fractional integrals. 

 

 

2. PRELIMINARIES 

 

In order to create our main results, in this section, the gamma function, beta function, 

incomplete beta function, the definition of Rieman-Liouville integrals, and the definition of 

Conformable fractional integrals will be presented. 

 

Definition 1. The gamma function, beta function, and incomplete beta function are defined by  

 

 𝛤(𝑥):= ∫ 𝑡𝑥−1𝑒−𝑡𝑑𝑡,
∞

0
 

 

 𝐵(𝑥, 𝑦):= ∫ 𝑡𝑥−1(1 − 𝑡)𝑦−1𝑑𝑡,
1

0
 

and 

 𝑩(𝑥, 𝑦, 𝑟):= ∫ 𝑡𝑥−1(1 − 𝑡)𝑦−1𝑑𝑡,
𝑟

0
 

 

respectively. Here, 0 < 𝑥, 𝑦 < ∞ and 𝑟 ∈ [0,1].  
 

Riemann-Liouville integral operators are defined by as follows 

 

Definition 2.  [17] For 𝑓 ∈ 𝐿1[𝑎, 𝑏], the Riemann-Liouville integrals of order 𝛽 > 0 are 

given by  

 𝐽𝑎+
𝛽

𝑓(𝑥) =
1

𝛤(𝛽)
∫ (𝑥 − 𝑡)𝛽−1𝑥

𝑎
𝑓(𝑡)𝑑𝑡,   𝑥 > 𝑎 (2.1) 

and 

 𝐽𝑏−
𝛽

𝑓(𝑥) =
1

𝛤(𝛽)
∫ (𝑡 − 𝑥)𝛽−1𝑓

𝑏

𝑥
(𝑡)𝑑𝑡,   𝑥 < 𝑏. (2.2) 

 

The Riemann-Liouville integrals will be equal to classical integrals for the condition 𝛽 = 1.  

 

In [15], Jarad et al. gave the fractional conformable integral operators. 

 

Definition 3. [15] For 𝑓 ∈ 𝐿1[𝑎, 𝑏], the fractional conformable integral operator  𝛽𝐽𝑎+
𝛼 𝑓(𝑥) 

and 𝛽𝐽𝑏−
𝛼 𝑓(𝑥) of order 𝛽 ∈ 𝐶, 𝑅𝑒(𝛽) > 0 and 𝛼 ∈ (0,1] are presented by  

 

  𝛽𝐽𝑎+
𝛼 𝑓(𝑥) =

1

𝛤(𝛽)
∫ (

(𝑥−𝑎)𝛼−(𝑡−𝑎)𝛼

𝛼
)
𝛽−1𝑥

𝑎

𝑓(𝑡)

(𝑡−𝑎)1−𝛼 𝑑𝑡,     𝑡 > 𝑎 

 (2.3) 

and  
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  𝛽𝐽𝑏−
𝛼 𝑓(𝑥) =

1

𝛤(𝛽)
∫ (

(𝑏−𝑥)𝛼−(𝑏−𝑡)𝛼

𝛼
)
𝛽−1𝑏

𝑥

𝑓(𝑡)

(𝑏−𝑡)1−𝛼 𝑑𝑡,     𝑡 < 𝑏, (2.4) 

 

respectively.  

 

If we consider 𝛼 = 1, then the fractional integral in (2.3) reduces to the Riemann-Liouville 

fractional integral in (2.1). Furthermore, the fractional integral in (2.4) coincides with the 

Riemann-Liouville fractional integral in (2.2) when 𝛼 = 1. For some recent results connected 

with fractional integral inequalities, see [1, 14] and the references cited therein. 

 

3. MAIN RESULTS 

In this section, we use conformable fractional integrals to construct Bullen-type inequalities 

for differentiable convex mappings. First, let’s set up the following identity to establish 

Bullen-type inequalities. 

 

Lemma 1. Consider that 𝑓: [𝑎, 𝑏] → 𝑅 is a differentiable mapping on (𝑎, 𝑏) such that 

𝑓′ ∈ 𝐿1[𝑎, 𝑏]. Then, the following equality holds: 

 

 
1

2
[𝑓 (

𝑎+𝑏

2
) +

𝑓(𝑎)+𝑓(𝑏)

2
] (3.1) 

 −
2𝛼𝛽−1𝛼𝛽𝛤(𝛽+1)

(𝑏−𝑎)𝛼𝛽 [ 𝛽𝐽𝑏−
𝛼 𝑓 (

𝑎+𝑏

2
) +  𝛽𝐽𝑎+

𝛼 𝑓 (
𝑎+𝑏

2
)] 

 =
(𝑏−𝑎)𝛼𝛽

4
∫ [(

1−(1−𝑡)𝛼

𝛼
)
𝛽

−
1

2𝛼𝛽]
1

0
 

 × [𝑓′ (
1−𝑡

2
𝑎 +

1+𝑡

2
𝑏) − 𝑓′ (

1+𝑡

2
𝑎 +

1−𝑡

2
𝑏)] 𝑑𝑡. 

  

Proof. Employing the integration by parts gives, 

 

 𝐼1 = ∫ [(
1−(1−𝑡)𝛼

𝛼
)
𝛽

−
1

2𝛼𝛽] [𝑓′ (
1−𝑡

2
𝑎 +

1+𝑡

2
𝑏) − 𝑓′ (

1−𝑡

2
𝑎 +

1+𝑡

2
𝑏)] 𝑑𝑡

1

0
 (3.2) 

  

 =
2

𝑏−𝑎
[(

1−(1−𝑡)𝛼

𝛼
)
𝛽

−
1

2𝛼𝛽] 𝑓 (
1−𝑡

2
𝑎 +

1+𝑡

2
𝑏)|

0

1

 

  

  −
2𝛽

𝑏−𝑎
∫ (

1−(1−𝑡)𝛼

𝛼
)
𝛽−1

(1 − 𝑡)𝛼−1𝑓 (
1−𝑡

2
𝑎 +

1+𝑡

2
𝑏)𝑑𝑡

1

0
 

  

  +
2

𝑏−𝑎
[(

1−(1−𝑡)𝛼

𝛼
)
𝛽

−
1

2𝛼𝛽] 𝑓 (
1+𝑡

2
𝑎 +

1−𝑡

2
𝑏)|

0

1

 

  

  −
2𝛽

𝑏−𝑎
∫ (

1−(1−𝑡)𝛼

𝛼
)
𝛽−1

(1 − 𝑡)𝛼−1𝑓 (
1+𝑡

2
𝑎 +

1−𝑡

2
𝑏)𝑑𝑡

1

0
 

  

 =
2

(𝑏−𝑎)𝛼𝛽
[𝑓 (

𝑎+𝑏

2
) +

𝑓(𝑎)+𝑓(𝑏)

2
] 
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  −
2𝛽

𝑏−𝑎
∫ (

1−(1−𝑡)𝛼

𝛼
)
𝛽−11

0
(1 − 𝑡)𝛼−1𝑓 (

1−𝑡

2
𝑎 +

1+𝑡

2
𝑏)𝑑𝑡 

  

  −
2𝛽

𝑏−𝑎
∫ (

1−(1−𝑡)𝛼

𝛼
)
𝛽−1

(1 − 𝑡)𝛼−1𝑓 (
1+𝑡

2
𝑎 +

1−𝑡

2
𝑏)𝑑𝑡

1

0
. 

 

With the help of the change of variables in (3.2), then the equality (3.2) turns into the 

following equality 

  

 𝐼1 =
2

(𝑏−𝑎)𝛼𝛽 [𝑓 (
𝑎+𝑏

2
) +

𝑓(𝑎)+𝑓(𝑏)

2
] (3.3) 

  

  −(
2

𝑏−𝑎
)
𝛼𝛽+1 𝛤(𝛽+1)

𝛤(𝛽)
∫ (

(
𝑏−𝑎

2
)
𝛼
−(𝑏−𝑥)𝛼

𝛼
)

𝛽−1

𝑓(𝑥)

(𝑏−𝑥)1−𝛼 𝑓(𝑥)𝑑
𝑏
𝑎+𝑏

2

𝑥 

  

  −(
2

𝑏−𝑎
)
𝛼𝛽+1 𝛤(𝛽+1)

𝛤(𝛽)
∫ (

(
𝑏−𝑎

2
)
𝛼
−(𝑥−𝑎)𝛼

𝛼
)

𝛽−1

𝑓(𝑥)

(𝑥−𝑎)1−𝛼 𝑓(𝑥)𝑑𝑥
𝑎+𝑏

2
𝑎

 

  

 =
2

(𝑏−𝑎)𝛼𝛽 [𝑓 (
𝑎+𝑏

2
) +

𝑓(𝑎)+𝑓(𝑏)

2
] 

  

  −(
2

𝑏−𝑎
)
𝛼𝛽+1

𝛤(𝛽 + 1) [ 𝛽𝐽𝑏−
𝛼 𝑓 (

𝑎+𝑏

2
) +  𝛽𝐽𝑎+

𝛼 𝑓 (
𝑎+𝑏

2
)]. 

 

If the expression (3.3) is multiplied by 
(𝑏−𝑎)𝛼𝛽

4
, then the proof of Lemma 1 becomes clear.  

 

Theorem 1.  Suppose that 𝑓: [𝑎, 𝑏] → 𝑅 is a differentiable mapping on (𝑎, 𝑏) such that 

𝑓′ ∈ 𝐿1[𝑎, 𝑏] and |𝑓′| is convex on [𝑎, 𝑏]. Under these conditions, the following inequality is 

derived:  

 

 |
1

2
[𝑓 (

𝑎+𝑏

2
) +

𝑓(𝑎)+𝑓(𝑏)

2
] −

2𝛼𝛽−1𝛼𝛽𝛤(𝛽+1)

(𝑏−𝑎)𝛼𝛽 [ 𝛽𝐽𝑏−
𝛼 𝑓 (

𝑎+𝑏

2
)+𝛽𝐽𝑎+

𝛼 𝑓 (
𝑎+𝑏

2
)]| (3.4) 

  

 ≤
(𝑏−𝑎)𝛼𝛽

4
𝜙1(𝛼, 𝛽)[|𝑓′(𝑏)| + |𝑓′(𝑎)|]. 

Here, 

 𝜙1(𝛼, 𝛽) = ∫ |(
1−(1−𝑡)𝛼

𝛼
)
𝛽

−
1

2𝛼𝛽| 𝑑𝑡
1

0
=

1

𝛼𝛽 [
1

2
− (1 − (

1

2
)

1

𝛽
)

1

𝛼

] (3.5) 

  

 +
1

𝛼𝛽+1
[𝐵 (

1

𝛼
, 𝛽 + 1) − 2𝑩(

1

𝛼
, 𝛽 + 1, (

1

2
)

1

𝛽
)], 

 

where beta function and incomplete beta function are denoted as 𝐵 and 𝑩, respectively.  

 



5
th 

INTERNATIONAL CONFERENCE  

ON MATHEMATICAL AND RELATED SCIENCES 

 ICMRS 2022 

27-30 OCTOBER, 2022 

 

Proceedings Book of ICMRS 2022 

 
16 

Proof. If we take the absolute value of both sides of (3.1), then we obtain  

 

 |
1

2
[𝑓 (

𝑎+𝑏

2
) +

𝑓(𝑎)+𝑓(𝑏)

2
] (3.6) 

  

 −
2𝛼𝛽−1𝛼𝛽𝛤(𝛽+1)

(𝑏−𝑎)𝛼𝛽
[ 𝛽𝐽𝑏−

𝛼 𝑓 (
𝑎+𝑏

2
) +  𝛽𝐽𝑎+

𝛼 𝑓 (
𝑎+𝑏

2
)]| 

  

 ≤
(𝑏−𝑎)𝛼𝛽

4
∫ |(

1−(1−𝑡)𝛼

𝛼
)
𝛽

−
1

2𝛼𝛽
|

1

0
|𝑓′ (

1−𝑡

2
𝑎 +

1+𝑡

2
𝑏)| 𝑑𝑡 

  

  +
(𝑏−𝑎)𝛼𝛽

4
∫ |(

1−(1−𝑡)𝛼

𝛼
)
𝛽

−
1

2𝛼𝛽|
1

0
|𝑓′ (

1+𝑡

2
𝑎 +

1−𝑡

2
𝑏)| 𝑑𝑡. 

 

It is known that |𝑓′| is convex on [𝑎, 𝑏]. It follows  

 

 |
1

2
[𝑓 (

𝑎+𝑏

2
) +

𝑓(𝑎)+𝑓(𝑏)

2
] −

2𝛼𝛽−1𝛼𝛽𝛤(𝛽+1)

(𝑏−𝑎)𝛼𝛽 [ 𝛽𝐽𝑏−
𝛼 𝑓 (

𝑎+𝑏

2
)+𝛽𝐽𝑎+

𝛼 𝑓 (
𝑎+𝑏

2
)]| 

  

 ≤
(𝑏−𝑎)𝛼𝛽

4
∫ |(

1−(1−𝑡)𝛼

𝛼
)
𝛽

−
1

2𝛼𝛽|
1

0
(
1−𝑡

2
|𝑓′(𝑏)| +

1+𝑡

2
|𝑓′(𝑎)| +

1−𝑡

2
|𝑓′(𝑎)| +

                               
1+𝑡

2
|𝑓′(𝑏)|) 𝑑𝑡 

  

 =
(𝑏−𝑎)𝛼𝛽

4
∫ |(

1−(1−𝑡)𝛼

𝛼
)
𝛽

−
1

2𝛼𝛽|
1

0
[|𝑓′(𝑏)| + |𝑓′(𝑎)|]𝑑𝑡. 

 

Thus, the proof of Theorem 1 is finished.  

 

Corollary 1. If we set 𝛼 = 1 in Theorem 1, then we have  

 

 |
1

2
[𝑓 (

𝑎+𝑏

2
) +

𝑓(𝑎)+𝑓(𝑏)

2
] −

2𝛽−1𝛤(𝛽+1)

(𝑏−𝑎)𝛽
[𝐽𝑏−

𝛽
𝑓 (

𝑎+𝑏

2
) + 𝐽𝑎+

𝛽
𝑓 (

𝑎+𝑏

2
)]| 

  

 ≤
𝑏−𝑎

4
𝜙1(1, 𝛽)[|𝑓′(𝑏)| + |𝑓′(𝑎)|], 

where 

 𝜙1(1, 𝛽) = ∫ |𝑡𝛽 −
1

2
| 𝑑𝑡

1

0
=

𝛽

𝛽+1
(
1

2
)

1

𝛽
+

1

𝛽+1
−

1

2
. (3.7) 

  

 

Remark 1. Let us consider 𝛼 = 1 and 𝛽 = 1 in Theorem 1, then we acquire 

 

 |
1

2
[𝑓 (

𝑎+𝑏

2
) +

𝑓(𝑎)+𝑓(𝑏)

2
] −

1

𝑏−𝑎
∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
| ≤

𝑏−𝑎

16
[|𝑓′(𝑏)| + |𝑓′(𝑎)|], 

 

which is given by Hwang et al. in [11, Remark 4.2].  
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Theorem 2.  Suppose that 𝑓: [𝑎, 𝑏] → 𝑅 is a differentiable mapping on (𝑎, 𝑏), such that 

𝑓′ ∈ 𝐿1[𝑎, 𝑏]. In addition, suppose that |𝑓′|𝑞 is convex on [𝑎, 𝑏] with 𝑞 > 1. Then the 

following inequality can be written 

 

 |
1

2
[𝑓 (

𝑎+𝑏

2
) +

𝑓(𝑎)+𝑓(𝑏)

2
] (3.8) 

  

 −
2𝛼𝛽−1𝛼𝛽𝛤(𝛽+1)

(𝑏−𝑎)𝛼𝛽 [ 𝛽𝐽𝑏−
𝛼 𝑓 (

𝑎+𝑏

2
) +  𝛽𝐽𝑎+

𝛼 𝑓 (
𝑎+𝑏

2
)]| 

  

 ≤
(𝑏−𝑎)𝛼𝛽

4
(𝜓1

𝛼,𝛽(𝑝))

1

𝑝
[(

|𝑓′(𝑏)|
𝑞
+3|𝑓′(𝑎)|

𝑞

4
)

1

𝑞

+ (
|𝑓′(𝑎)|

𝑞
+3|𝑓′(𝑏)|

𝑞

4
)

1

𝑞

] 

  

 ≤
(𝑏−𝑎)𝛼𝛽

4
(4𝜓1

𝛼,𝛽(𝑝))

1

𝑝 [|𝑓′(𝑎)| + |𝑓′(𝑏)|]. 

 

Here, 
1

𝑝
+

1

𝑞
= 1 and 

 𝜓1
𝛼,𝛽(𝑝) = ∫ |(

1−(1−𝑡)𝛼

𝛼
)
𝛽

−
1

2𝛼𝛽|
𝑝

𝑑𝑡.
1

0
 

  

Proof. If the properties of Hölder’s inequality are used in (3.6), then we acquire  

 

 |
1

2
[𝑓 (

𝑎+𝑏

2
) +

𝑓(𝑎)+𝑓(𝑏)

2
] −

2𝛼𝛽−1𝛼𝛽𝛤(𝛽+1)

(𝑏−𝑎)𝛼𝛽 [ 𝛽𝐽𝑏−
𝛼 𝑓 (

𝑎+𝑏

2
)+𝛽𝐽𝑎+

𝛼 𝑓 (
𝑎+𝑏

2
)]| 

  

 ≤
(𝑏−𝑎)𝛼𝛽

4
{(∫ |(

1−(1−𝑡)𝛼

𝛼
)
𝛽

−
1

2𝛼𝛽|
𝑝

1

0
𝑑𝑡)

1

𝑝

(∫ |𝑓′ (
1−𝑡

2
𝑎 +

1+𝑡

2
𝑏)|

𝑞1

0
𝑑𝑡)

1

𝑞
 

  

  + (∫ |(
1−(1−𝑡)𝛼

𝛼
)
𝛽

−
1

2𝛼𝛽|
𝑝

1

0
𝑑𝑡)

1

𝑝

(∫ |𝑓′ (
1+𝑡

2
𝑎 +

1−𝑡

2
𝑏)|

𝑞1

0
𝑑𝑡)

1

𝑞
}. 

 

Applying the convexity of |𝑓′|𝑞 on [𝑎, 𝑏], we have the following inequality  

 

 |
1

2
[𝑓 (

𝑎+𝑏

2
) +

𝑓(𝑎)+𝑓(𝑏)

2
] −

2𝛼𝛽−1𝛼𝛽𝛤(𝛽+1)

(𝑏−𝑎)𝛼𝛽
[ 𝛽𝐽𝑏−

𝛼 𝑓 (
𝑎+𝑏

2
)+𝛽𝐽𝑎+

𝛼 𝑓 (
𝑎+𝑏

2
)]| 

  

 ≤
(𝑏−𝑎)𝛼𝛽

4
{(∫ |(

1−(1−𝑡)𝛼

𝛼
)
𝛽

−
1

2𝛼𝛽
|
𝑝

1

0
𝑑𝑡)

1

𝑝

 

  

  × [(
|𝑓′(𝑎)|

𝑞
+3|𝑓′(𝑏)|

𝑞

4
)

1

𝑞

+ (
3|𝑓′(𝑎)|

𝑞
+|𝑓′(𝑏)|

𝑞

4
)

1

𝑞

]}  
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 =
(𝑏−𝑎)𝛼𝛽

4
(𝜓1

𝛼,𝛽(𝑝))

1

𝑝
[(

|𝑓′(𝑏)|
𝑞
+3|𝑓′(𝑎)|

𝑞

4
)

1

𝑞

+ (
|𝑓′(𝑎)|

𝑞
+3|𝑓′(𝑏)|

𝑞

4
)

1

𝑞

]. 

 

The second inequality of Theorem 2 can be acquired immediately by letting 𝜛1 = 3|𝑓′′(𝑎)|𝑞, 
𝜌1 = |𝑓′′(𝑏)|𝑞, 𝜛2 = |𝑓′′(𝑎)|𝑞 and 𝜌2 = 3|𝑓′′(𝑏)|𝑞 and applying the inequality:  

 

 ∑ (𝜛𝑘 + 𝜌𝑘)
𝑠𝑛

𝑘=1 ≤ ∑ 𝜛𝑘
𝑠𝑛

𝑘=1 + ∑ 𝜌𝑘
𝑠𝑛

𝑘=1 ,    0 ≤ 𝑠 < 1. 
 

Thus, the proof of Theorem 2 is completed.  

 

Corollary 2. If Theorem 2 is evaluated as 𝛼 = 1, the following result is obtained 

 

 |
1

2
[𝑓 (

𝑎+𝑏

2
) +

𝑓(𝑎)+𝑓(𝑏)

2
] −

2𝛽−1𝛤(𝛽+1)

(𝑏−𝑎)𝛽
[𝐽𝑏−

𝛽
𝑓 (

𝑎+𝑏

2
) + 𝐽𝑎+

𝛽
𝑓 (

𝑎+𝑏

2
)]| 

  

 ≤
𝑏−𝑎

4
(𝛯𝛽(𝑝))

1

𝑝
[(

|𝑓′(𝑏)|
𝑞
+3|𝑓′(𝑎)|

𝑞

4
)

1

𝑞

+ (
|𝑓′(𝑎)|

𝑞
+3|𝑓′(𝑏)|

𝑞

4
)

1

𝑞

] 

  

 ≤
𝑏−𝑎

4
(4𝛯𝛽(𝑝))

1

𝑝 [|𝑓′(𝑎)| + |𝑓′(𝑏)|]. 

Here, 

 𝛯𝛽(𝑝) = ∫ |𝑡𝛽 −
1

2
|
𝑝1

0
𝑑𝑡. 

  

Corollary 3. When we consider 𝛼 = 1 and 𝛽 = 1, we can write the Theorem 2 in the 

following format  

 

 |
1

2
[𝑓 (

𝑎+𝑏

2
) +

𝑓(𝑎)+𝑓(𝑏)

2
] −

1

𝑏−𝑎
∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
| 

  

 ≤
𝑏−𝑎

8
(

1

𝑝+1
)

1

𝑝
[(

|𝑓′(𝑏)|
𝑞
+3|𝑓′(𝑎)|

𝑞

4
)

1

𝑞

+ (
|𝑓′(𝑎)|

𝑞
+3|𝑓′(𝑏)|

𝑞

4
)

1

𝑞

] 

  

 ≤
𝑏−𝑎

8
(

4

𝑝+1
)

1

𝑝 [|𝑓′(𝑎)| + |𝑓′(𝑏)|]. 

  

Theorem 3. Consider the existence of a differentiable mapping such that 𝑓: [𝑎, 𝑏] → 𝑅 on 

(𝑎, 𝑏) and 𝑓′ ∈ 𝐿1[𝑎, 𝑏]. Let’s also assume that the function |𝑓′|𝑞 is convex on [𝑎, 𝑏] with 

𝑞 ≥ 1. Then, the following inequality is established:  

 

 |
1

2
[𝑓 (

𝑎+𝑏

2
) +

𝑓(𝑎)+𝑓(𝑏)

2
] −

2𝛼𝛽−1𝛼𝛽𝛤(𝛽+1)

(𝑏−𝑎)𝛼𝛽
[ 𝛽𝐽𝑏−

𝛼 𝑓 (
𝑎+𝑏

2
)+𝛽𝐽𝑎+

𝛼 𝑓 (
𝑎+𝑏

2
)]| 
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 ≤

(𝑏−𝑎)𝛼𝛽

4
(𝜙1(𝛼, 𝛽))

1−
1

𝑞 [(
(𝜙1(𝛼,𝛽)+𝜙2(𝛼,𝛽))

2
|𝑓′(𝑏)|𝑞 +

                                
(𝜙1(𝛼,𝛽)−𝜙2(𝛼,𝛽))

2
|𝑓′(𝑎)|𝑞)

1

𝑞
 

  

  +(
(𝜙1(𝛼,𝛽)−𝜙2(𝛼,𝛽))

2
|𝑓′(𝑏)|𝑞 +

(𝜙1(𝛼,𝛽)+𝜙2(𝛼,𝛽))

2
|𝑓′(𝑎)|𝑞)

1

𝑞
]. 

 

Here, 𝜙1(𝛼, 𝛽) is described as in (3.5) and 

 

 𝜙2(𝛼, 𝛽) = ∫ 𝑡 |(
1−(1−𝑡)𝛼

𝛼
)
𝛽

−
1

2𝛼𝛽|
1

0
𝑑𝑡 =

1

𝛼𝛽 {
1

2
− [1 − (1 − (

1

2
)

1

𝛽
)

1

𝛼

]

2

−
1

4
} 

  

  +
1

𝛼𝛽+1 [𝐵 (
1

𝛼
, 𝛽 + 1) − 2𝑩(

1

𝛼
, 𝛽 + 1, (

1

2
)

1

𝛽
) 

  

  −𝐵 (
2

𝛼
, 𝛽 + 1) + 2𝑩 (

2

𝛼
, 𝛽 + 1, (

1

2
)

1

𝛽
)], 

 

where 𝐵 and 𝑩 denote the beta function and incomplete beta function, respectively.  

 

Proof. With the help of the power-mean inequality, we have  

 

 |
1

2
[𝑓 (

𝑎+𝑏

2
) +

𝑓(𝑎)+𝑓(𝑏)

2
] −

2𝛼𝛽−1𝛼𝛽𝛤(𝛽+1)

(𝑏−𝑎)𝛼𝛽 [ 𝛽𝐽𝑏−
𝛼 𝑓 (

𝑎+𝑏

2
)+𝛽𝐽𝑎+

𝛼 𝑓 (
𝑎+𝑏

2
)]| 

  

 ≤
(𝑏−𝑎)𝛼𝛽

4
{(∫ |(

1−(1−𝑡)𝛼

𝛼
)
𝛽

−
1

2𝛼𝛽|
1

0
𝑑𝑡)

1−
1

𝑞

 

  

 × [(∫ |(
1−(1−𝑡)𝛼

𝛼
)
𝛽

−
1

2𝛼𝛽
| |𝑓′ (

1−𝑡

2
𝑎 +

1+𝑡

2
𝑏)|

𝑞1

0
𝑑𝑡)

1

𝑞

 

  

  +(∫ |(
1−(1−𝑡)𝛼

𝛼
)
𝛽

−
1

2𝛼𝛽
| |𝑓′ (

1+𝑡

2
𝑎 +

1−𝑡

2
𝑏)|

𝑞1

0
𝑑𝑡)

1

𝑞

]}. 

 

Since |𝑓′|𝑞 is convex on [𝑎, 𝑏], we establish 
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 |
1

2
[𝑓 (

𝑎+𝑏

2
) +

𝑓(𝑎)+𝑓(𝑏)

2
] −

2𝛼𝛽−1𝛼𝛽𝛤(𝛽+1)

(𝑏−𝑎)𝛼𝛽
[ 𝛽𝐽𝑏−

𝛼 𝑓 (
𝑎+𝑏

2
)+𝛽𝐽𝑎+

𝛼 𝑓 (
𝑎+𝑏

2
)]| 

  

 ≤
(𝑏−𝑎)𝛼𝛽

4
{(∫ |(

1−(1−𝑡)𝛼

𝛼
)
𝛽

−
1

2𝛼𝛽|
1

0
𝑑𝑡)

1−
1

𝑞

 

  

  × [(∫ |(
1−(1−𝑡)𝛼

𝛼
)
𝛽

−
1

2𝛼𝛽
|

1

0
(
1+𝑡

2
|𝑓′(𝑏)|𝑞 +

1−𝑡

2
|𝑓′(𝑎)|𝑞)𝑑𝑡)

1

𝑞

 

  

  +(∫ |(
1−(1−𝑡)𝛼

𝛼
)
𝛽

−
1

2𝛼𝛽
|

1

0
(
1+𝑡

2
|𝑓′(𝑎)|𝑞 +

1−𝑡

2
|𝑓′(𝑏)|𝑞)𝑑𝑡)

1

𝑞

]}. 

 

With this calculation, the proof ends.  

 

Corollary 4. If 𝛼 = 1 in Theorem 3, the following inequality is obtained 

 

 |
1

2
[𝑓 (

𝑎+𝑏

2
) +

𝑓(𝑎)+𝑓(𝑏)

2
] −

2𝛽−1𝛤(𝛽+1)

(𝑏−𝑎)𝛽
[𝐽𝑏−

𝛽
𝑓 (

𝑎+𝑏

2
) + 𝐽𝑎+

𝛽
𝑓 (

𝑎+𝑏

2
)]| 

  

 ≤
(𝑏−𝑎)

4
(𝜙1(1, 𝛽))

1−
1

𝑞 [(
𝛺1(𝛽)|𝑓′(𝑏)|

𝑞
+𝛺2(𝛽)|𝑓′(𝑎)|

𝑞

2
)

1

𝑞

 

  

  +(
𝛺1(𝛽)|𝑓′(𝑎)|

𝑞
+𝛺2(𝛽)|𝑓′(𝑏)|

𝑞

2
)

1

𝑞

], 

 

where 𝜙1(1, 𝛽) is defined as in (3.7) and 

 𝜙2(1, 𝛽) =
𝛽−2

2(𝛽+2)
(
1

2
)

2

𝛽
+

1

𝛽+2
−

1

4
. 

 

Here,  

 

 𝛺1(𝛽) = 𝜙1(1, 𝛽) + 𝜙2(1, 𝛽) 
  

 = (
𝛽

𝛽+1
) (

1

2
)
1/𝛽

+ (
𝛽−2

2(𝛽+2)
) (

1

2
)

2

𝛽
+

2𝛽+3

(𝛽+1)(𝛽+2)
−

3

4
 

and 

 𝛺2(𝛽) = 𝜙1(1, 𝛽) − 𝜙2(1, 𝛽)) 

  

 = (
𝛽

𝛽+1
) (

1

2
)
1/𝛽

− (
𝛽−2

2(𝛽+2)
) (

1

2
)

2

𝛽
+

1

(𝛽+1)(𝛽+2)
−

1

4
. 

  

Corollary 5.  If we take 𝛼 = 1 and 𝛽 = 1 in Theorem 3, we acquire 
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 |
1

2
[𝑓 (

𝑎+𝑏

2
) +

𝑓(𝑎)+𝑓(𝑏)

2
] −

1

𝑏−𝑎
 ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
| 

  

 ≤
𝑏−𝑎

16
[(

7|𝑓′(𝑏)|
𝑞
+5|𝑓′(𝑎)|

𝑞

12
)

1

𝑞

+ (
5|𝑓′(𝑏)|

𝑞
+7|𝑓′(𝑎)|

𝑞

12
)

1

𝑞

]. 

 

4.  CONCLUSION 

 

In the current research, we derive the new Bullen-type inequalities by making use of 

Conformable fractional integrals. Convexity of the function, Hölder and power-mean 

inequalities are used in these inequalities. Furthermore, special choices of the variables in the 

theorems, generalizations of some articles, and new results were found. In the future, the 

authors may derive new inequalities of different fractional types related to these Bullen-type 

inequalities. Interested readers can also establish new inequalities using different kinds of 

convexities. These inequalities created are new as far as we know and according to the 

literature review. These inequalities will inspire new studies in various fields of mathematics. 
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ABSTRACT 

 
 The main object of this paper is to present the Hermite-Hadamard inequalities for 

superquadratics functions. We establish the midpoint inequalities with using a important 

integral identity (see Lemma 4) for differentiable superquadratic mappings. 

 

1. INTRODUCTION 

 
The usefulness of inequalities involving convex functions is realized from the very beginning 

and is now widely acknowledged as one of the prime driving forces behind the development 

of several modern branches of mathematics and has been given considerable attention. Some 

famous results for such estimations consist of Hermite-Hadamard, trapezoid, midpoint, 

Simpson or Jensen inequalities ect. 

Let  RRIf :   be a convex mapping defined on the interval I of real numbers and  

Iba ,  with .ba  The following double inequality is well known in the literature as the 

Hermite-Hadamard inequalities [9]: 

 

 
   

.
2

1

2

bfaf
dxxf

ab

ba
f

b

a













 
              (1.1) 

 

The most well-known inequalities related to the integral mean of a convex function are the 

Hermite Hadamard inequalities. It gives an estimate from both sides of the mean value of a 

convex function and also ensure the integrability of convex function. It is also a matter of 

great interest and one has to note that some of the classical inequalities for means can be 

obtained from Hadamard's inequality under the utility of peculiar convex functions f : These 

inequalities for convex functions play a crucial role in analysis and as well as in other areas of 

pure and applied mathematics. The absolute value of the difference of the second part of the 

(1.1) inequalities is known as the trapezoidal inequality in the literature and was given by 

Dragomir and Agarwal in 1998 [8]. Then, in 2004, the absolute value of the difference of the 

first part of the (1.1) inequalities, known as the midpoint inequality by Kirmanci, was given 

[10]. 

Recall that a convex function satisfies 

mailto:sarikayamz@gmail.com
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      xyxCxy   

for all  yx,  where  )()( xxC    (or, if     is not differentiable at x , any number between 

the left and right derivatives at x ). In [1], the authors introduced the class of superquadratic 

functions, defined as follows. Superquadratic functions have been introduced as a 

modification of convex functions in [1]. The definition of the superquadratic functions on 

which the study will be built is as follows: 

 Definition 1. [1] A function    R,0:   is superquadratic provided that for all  0x   

there exists a constant  RCx    such that 

       xyxyCxy x         (1.2) 

for all  .0y   

We say that     is subquadratic if     is a superquadratic function. It is shown that if     is a 

nonnegative superquadratic function, then   is convex and 0)0()0(   . 

 Remark 1. For 2)( xx  , equality holds in (1.2), with xxC 2)(  . Also, the definition, with  

xy  , forces  0)0(  , from which it follows that one can always take  )0(C  to be 0 . If     

is differentiable and satisfies  0)0()0(  , then one sees easily that the )(xC  appearing 

in the definition is necessarily )(x  . 

Some basic properties and examples of superquadratic functions can be found in [1]. 

 Lemma 1. [1] Let     be a superquadratic function with  xC   as in Definition Definition 

Superquadratic. 

(i) Then  0)0(   . 

(ii) If  0)0()0(    , then   xCx    whenever     is differentiable at  0x  . 

(iii) If  0  , then     is convex and  0)0()0(   . 

 Lemma 2. [2] Suppose that     is superquadratic and non-negative. Then     is convex and 

increasing. Also, if  )(xC   is as in (1.2), then  0)( xC . 

 Proof.  Convexity is shown in [2]. Together with  0)0(    and  0)( x  , this implies that  

   is increasing. As mentioned already, we can take  0)0( C  . For  0x   and  xy   , we 

can rewrite (1.2) as  

.0
)()()(

)( 





yx

yxyx
xC


 

The next lemma (essentially Lemma 3.2 of [1]) gives a simple sufficient condition. We 

include a sketch of the proof for completeness. The next result gives a sufficient condition 

when convexity(concavity) implies super(sub)quaradicity. 
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 Lemma 3. [1] If   is convex(concave) and 0)0()0(   , then   is super(sub)quadratic. 

The converse of is not true. 

 Proof. First, since      is convex and  0)0(   , we have  )()]/([)( yxyxxx     for  

0, yx , and hence  

)()()( yxyx    

 (that is,      is superadditive).  Now let  0 xy .  Then  

.0)]()()([

)()()()()(

0








dtxtxt

xxyxyxy

xy





 

 Similarly for the case  0 yx . 

 Remark 2.  Hence  pxx )(   is superquadratic for  2p   and subquadratic for  21  p . 

(It is also easily seen that  pxx )(   is subquadratic for 10  p  , with  0)( xC ). 

Subquadraticity does always not imply concavity; i.e.,there exists a subquadratic function 

which is convex. For example, pxx )( , 0x  and 21  p  is subquadratic and convex. 

 

The following inequality is due to M. Petrovic [11]. 

 Theorem 1.  Let   a0  , and let  Raf ),0[:   be a continuous and convex function. 

Then for every  Nn   and every  ),0[,...,, 21 axxx n    such that  ),0[,...21 axxx n    we 

have 

  ).0(1),...()(...)()()( 21321 fnxxxfxfxfxfxf nn   

Banic and Varosanec in [6] gave an important result with characterizations of the 

superquadratic functions, which are analogous to the well known characterizations of the 

convex functions: For the function  R),0[:   the following conditions are equivalent: 

A)     is a superquadratic function, i.e., there exists a constant  xC   such that 

 

        .0,,  yxxyxyCxy x   

B) The inequality 

 

         12122121 )1()1()1()1( xxttxxttxtxtxttx      (1.3) 

 

holds for all  0, 21 xx   and   .1,0t   
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C) For all  0, 21 xx   and  21 xxx    we have 

.
)()()()()()(

2

22

1

11

xx

xxxx

xx

xxxx








 
 

In 2008, Banic et al. [7] proved the following Hermite-Hadamard inequality for 

superquadratic functions by using Jensen's inequality for superquadratic functions: 

 Theorem 2.  Let R),0[:  be an integrable superquadratic function and ba 0  . 

Then 

 

   
 

         .
1

2

1

2

1

2

2
dxxbaxaxxb

ab

ba

dxx
ab

dx
ba

x
ab

ba

b

a

b

a

b

a



















 











 














(1.4) 

In this paper, we firstly prove the Hermite-Hadamard inequalities using the definition of the 

superquadratic function in (1.3). Then, we will investigate some inequalities connected with 

the left part of the inequality (1.4). In order to achieve our goals, we have to establish a 

important integral identity (see Lemma 4) for differentiable superquadratic mappings. 

 
2. MIDPOINT INEQUALITIES 

 
Now, let's start our main results with a new proof of the above Theorem 2: 

 Proof.  For ],1,0[t  let  ,)1( bttax   .)1( tbaty    Since   is a superquadratic 

function, then  

    .21
2

)1(
2

1
)1(

2

1

2



















 
t

ab
tbatbtta

ba
    (2.1) 

Then integrating the resulting inequality with respect to t  over  1,0 , we obtain 

   

.21
2

)1(
2

1
)1(

2

1

2

1

0

1

0

1

0

dtt
ab

dttbatdtbtta

ba
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With change of variable  tbatybttax  )1(,)1(   and  
2

21 baxt    in the above 

integrals, we obtain 

 
 

dx
ba

x
ab

dxx
ab

ba

b

a

b

a








 















 

 2

11

2

2




 

and the first inequality is proved. 

To prove the other half of the inequality in (1.4), since   is a superquadratic function, for 

every ]1,0[t , we have, 

   

        .)1(212

)1()1(

abttabttbfaf

tbatbtta









 

Then integrating the resulting inequality with respect to t  over  1,0 , we obtain 

   

         .)1(212

)1()1(

1

0

1

0

1

0

1

0

dtabttdtabttbfaf

dttbatdtbtta













 

With change of variable  tbatybttax  )1(,)1( , 
ab
axt


1  and 

ab
xbt


  in the above 

integrals, we get 

 
   

 
        dxxbaxaxxb

ab

bfaf
dxx

ab

b

a

b

a








  

2

1

2

1
 

and the second inequality is proved. 

 Lemma 4.  Let R),0[:  be an integrable superquadratic function and ba 0 , then 

the following equality holds: 

       

          

  .
2

1

2

0
2

111

1
2

1

1

2

1

2

1

0

dx
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xx
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dt
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atbttab

b
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   (2.2) 
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 Proof.  It's easy to calculate the following equalities  

     

     

     

 
 

      ,1
2

1
1

0
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1

1
2

1
1

1
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1
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1
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1

2
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2
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0

0

2

1

0
1
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1
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and 
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If we add 1I  and 2I  and multiply by  ,ab   the proof is completed as below: 
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 Theorem 3.  Let R),0[:  be an integrable superquadratic function and ba 0  and  

  be a superquadratic. Then, the following midpoint inequality holds: 
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 Proof.  Taking absulate value of (2.2), we get 
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dt
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dtatbttab
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ba

xx
ab

ba b
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     (2.3) 

From Theorem 1 and Lemma 4 due to  ,0     t   is convex function, then by using 

Petrovic inequality, we get 
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and 
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Considering (2.4) and (2.5) in (2.3), we get the following inequality 
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and this is completed the proof. 

 Theorem 4.  Let R),0[:  be an integrable superquadratic function and ba 0  and  
r

  be a superquadratic. Then, the following midpoint inequality holds: 
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where  ,1r   .111 
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 Proof.  From Lemma 4 , then by using Hölder Inequality, we get 
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Since  ,0
r

   
r

  is convex function in Lemma 1 and using Hermite-Hadamard inequality, 

we have  
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and this completed the proof. 

CONCLUSION 

 
In this research, we have proved the Hermite-Hadamard inequalities for superquadratics 

functions. We establish the midpoint inequalities with using a important integral identity for 

differentiable superquadratic mappings. It is an interesting and new problem that the 

upcoming researchers may use the techniques of this research and prove fractional 

inequalities and similar inequalities or similiar our results can be obtained for superquadratics 

functions. 
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ABSTRACT 

In this article, some trapezoid-type inequalities are obtained for s-convex functions by 

means of conformable fractional integrals. These inequalities obtained are 

generalizations of inequalities for Riemann-Liouville fractional integrals and Riemann 

integrals. 

1. INTRODUCTION AND PRELIMINARIES 

The theory of convexity is an important study area of the literature. Research on convex 

functions is used in pure and applied mathematics. A formal definition for convex function 

may be stated as follows: 

 

Definition 1. [6] Let 𝐼 be convex set on 𝑅. The function 𝑓: 𝐼 → 𝑅 is called convex on 𝐼, if it 

satisfies the following inequality: 

 

 𝑓(𝜂𝑥 + (1 − 𝜂)𝑦) ≤ 𝜂𝑓(𝑥) + (1 − 𝜂)𝑓(𝑦) (1.1) 

 

for all (𝑥, 𝑦) ∈ 𝐼 and 𝜂 ∈ 0,1].  The mapping 𝑓 is a concave on 𝐼 if the inequality (1.1) holds 

in reversed direction for all 𝜂 ∈ 0,1] and 𝑥, 𝑦 ∈ 𝐼.  

 

Definition 2 [4]Let 𝑓: [0,∞] → 𝑅 be a function and 0 < 𝑠 ≤ 1. Then we have 

 

 𝑓(𝜇𝑥 + 𝜈𝑦) ≤ 𝜇𝑠𝑓(𝑥) + 𝜈𝑠𝑓(𝑦) (1.2) 

 

for 𝜇 + 𝜈 = 1. The function 𝑓 that provides this inequality is named the 𝑠 -convex mapping in 

the second sense.  

 

Remark 1 If we take 𝑠 = 1 in Definition 2, then Definition 2 reduce to Definition 1.  
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Convex functions are widely used in integral inequalities. The Hermite-Hadamard inequality 

discovered by C. Hermite and J. Hadamard (see, e.g., [6], [17, p.137]) is one of the most well 

established inequalities in the theory of convex functions with a geometrical interpretation 

and many applications. This inequality states that if 𝑓: 𝐼 → 𝑅 is a convex function on the 

interval 𝐼 of real numbers and 𝑎, 𝑏 ∈ 𝐼 with 𝑎 < 𝑏, then  

 

 𝑓 (
𝑎+𝑏

2
) ≤

1

𝑏−𝑎
∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
≤

𝑓(𝑎)+𝑓(𝑏)

2
. (1.3) 

 

Both inequalities hold in the reversed direction if 𝑓 is concave. Hermite-Hadamard inequality 

has been considered the most useful inequality in mathematical analysis. This inequality has 

been extended in a number of ways. For example, Dragomir and Agarwal first obtained 

trapezoid inequalities for convex functions in [5]. In [19], Sarikaya et al. generalized the 

inequalities (1.3) for fractional integrals and the authors also proved some corresponding 

trapezoid type inequalities. 

Fractional integrals have been a focus of researchers in recent years. Before presenting some 

fractional integral definitions, let’s give definitions of the gamma and the beta functions. 

 

Definition 3. The gamma function and the beta function are defined by  

 

 𝛤(𝑥):= ∫ 𝑡𝑥−1𝑒−𝑡∞

0
𝑑𝑡, 

 

and 

 𝐵(𝑥, 𝑦):= ∫ 𝑡𝑥−1(1 − 𝑡)𝑦−11

0
𝑑𝑡, 

 

respectively. Here, 0 < 𝑥, 𝑦 < ∞.  

 

In [15], Kilbas et al. gave fractional integrals, also namely Riemann-Liouville integral 

operators as follows: 

 

Definition 4. [15] For 𝑓 ∈ 𝐿1[𝑎, 𝑏], the Riemann-Liouville integrals of order 𝛽 > 0 are given 

by  

 

 𝐽𝑎+
𝛽

𝑓(𝑥) =
1

𝛤(𝛽)
∫ (𝑥 − 𝑡)𝛽−1𝑥

𝑎
𝑓(𝑡)𝑑𝑡,   𝑥 > 𝑎 (1.4) 

 

and 

 

 𝐽𝑏−
𝛽

𝑓(𝑥) =
1

𝛤(𝛽)
∫ (𝑡 − 𝑥)𝛽−1𝑏

𝑥
𝑓(𝑡)𝑑𝑡,   𝑥 < 𝑏, (1.5) 

 

respectively. The Riemann-Liouville integrals will be equal to their classical integrals for the 

condition 𝛽 = 1.  

 

The conformable fractional approach was developed, which depends on the fundamental 

definition of the derivative in [16]. In [2], the author proved that the conformable approach in 
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[16] cannot yield good results when compared to the Caputo definition for specific functions. 

This flaw in the conformable definition was avoided by some extensions of the conformable 

approach [8, 20]. Based on these approaches, Jarad et al. obtained the definitions of 

conformable fractional integrals in [11]. 

 

Definition 5. [11] For 𝑓 ∈ 𝐿1[𝑎, 𝑏], the fractional conformable integral operator  𝛽𝐽𝑎+
𝛼 𝑓 and 

 𝛽𝐽𝑏−
𝛼 𝑓 of order 𝛽 > 0 and 𝛼 ∈ (0,1] are presented by  

 

  𝛽𝐽𝑎+
𝛼 𝑓(𝑥) =

1

𝛤(𝛽)
∫ (

(𝑥−𝑎)𝛼−(𝑡−𝑎)𝛼

𝛼
)
𝛽−1𝑥

𝑎

𝑓(𝑡)

(𝑡−𝑎)1−𝛼 𝑑𝑡,     𝑡 > 𝑎 (1.6) 

 

and  

  𝛽𝐽𝑏−
𝛼 𝑓(𝑥) =

1

𝛤(𝛽)
∫ (

(𝑏−𝑥)𝛼−(𝑏−𝑡)𝛼

𝛼
)
𝛽−1𝑏

𝑥

𝑓(𝑡)

(𝑏−𝑡)1−𝛼 𝑑𝑡,     𝑡 < 𝑏, (1.7) 

 

respectively.  

 

If we consider 𝛼 = 1, then the fractional integral in (1.6) reduces to the Riemann-Liouville 

fractional integral in (1.4). Furthermore, the fractional integral in (1.7) coincides with the 

Riemann-Liouville fractional integral in (1.5) when 𝛼 = 1. For some recent results connected 

with fractional integral inequalities, see [1, 10] and the references cited therein. 

Hyder et al. obtained the following equality that we will use in our principal outcomes. 

 

Lemma 1. [3] Consider that 𝑓: [𝑎, 𝑏] → 𝑅 is a differentiable function on (𝑎, 𝑏) and 𝑓′ ∈
𝐿[𝑎, 𝑏]. Then, for 𝛽 > 0 and 𝛼 ∈ (0,1], we obtain the following equality 

 

 
𝑓(𝑎)+𝑓(𝑏)

2
−

2𝛼𝛽−1𝛤(𝛽+1)𝛼𝛽

(𝑏−𝑎)𝛼𝛽 [ 𝑎
𝛽
ϒ𝛼𝑓 (

𝑎+𝑏

2
) 𝛽ϒ𝑏

𝛼𝑓 (
𝑎+𝑏

2
)] 

 =
𝛼𝛽(𝑏−𝑎)

4
[∫  

1

0
(
1−(1−𝑡)𝛼

𝛼
)
𝛽

𝑓′ (
1−𝑡

2
𝑎 +

1+𝑡

2
𝑏)𝑑𝑡 

 −∫  
1

0
(
1−(1−𝑡)𝛼

𝛼
)
𝛽

𝑓′ (
1+𝑡

2
𝑎 +

1−𝑡

2
𝑏) 𝑑𝑡]. 

  

 

Hyder et al. acquired some new trapezoid-type inequalities using conformable fractional 

integrals in [3]. Inspired by all the studies mentioned, we will esatblish some new trapezoid-

type inequalities via 𝑠 -convex functions based on conformable fractional integrals. 

2. PRINCIPAL OUTCOMES 

This section presents trapezoid-type inequalities type via differentiable 𝑠 -convex functions. 

 

Theorem 1.  Let 𝑓: [𝑎, 𝑏] → 𝑅 be a differentiable mapping on (𝑎, 𝑏). If |𝑓′| is 𝑠 -convex on 
[𝑎, 𝑏], then we get the following inequality  
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 |
𝑓(𝑎)+𝑓(𝑏)

2
−

2𝛼𝛽−1𝛤(𝛽+1)𝛼𝛽

(𝑏−𝑎)𝛼𝛽
[ 𝑎

𝛽
ϒ𝛼𝑓 (

𝑎+𝑏

2
)+𝛽ϒ𝑏

𝛼𝑓 (
𝑎+𝑏

2
)]| 

 ≤
𝑏−𝑎

2𝑠+2 (
1

𝛼
𝐵 (𝛽 + 1,

𝑠+1

𝛼
) + 𝛹(𝛼, 𝛽, 𝑠)) [|𝑓′(𝑎)| + |𝑓′(𝑏)|] 

where 

 𝛹(𝛼, 𝛽, 𝑠):= ∫  
1

0
(1 − (1 − 𝑡)𝛼)𝛽(1 + 𝑡)𝑠𝑑𝑡 (2.1) 

 

and 𝐵(⋅,⋅) refers to the beta function. 

 

Proof. By taking modulus of Lemma 1, we acquire 

 

 |
𝑓(𝑎)+𝑓(𝑏)

2
−

2𝛼𝛽−1𝛤(𝛽+1)𝛼𝛽

(𝑏−𝑎)𝛼𝛽 [ 𝑎
𝛽
ϒ𝛼𝑓 (

𝑎+𝑏

2
)+𝛽ϒ𝑏

𝛼𝑓 (
𝑎+𝑏

2
)]| (2.2) 

 ≤
𝛼𝛽(𝑏−𝑎)

4
[∫  

1

0
(
1−(1−𝑡)𝛼

𝛼
)
𝛽

|𝑓′ (
1−𝑡

2
𝑎 +

1+𝑡

2
𝑏)| 𝑑𝑡 

 +∫  
1

0
(
1−(1−𝑡)𝛼

𝛼
)
𝛽

|𝑓′ (
1+𝑡

2
𝑎 +

1−𝑡

2
𝑏)| 𝑑𝑡]. 

 

With help of the 𝑠 -convexity of |𝑓′|, we acquire 

 

 |
𝑓(𝑎)+𝑓(𝑏)

2
−

2𝛼𝛽−1𝛤(𝛽+1)𝛼𝛽

(𝑏−𝑎)𝛼𝛽 [ 𝑎
𝛽
ϒ𝛼𝑓 (

𝑎+𝑏

2
)+𝛽ϒ𝑏

𝛼𝑓 (
𝑎+𝑏

2
)]| 

 ≤
𝛼𝛽(𝑏−𝑎)

4⋅2𝑠 [∫  
1

0
(
1−(1−𝑡)𝛼

𝛼
)
𝛽

[(1 − 𝑡)𝑠|𝑓′(𝑎)| + (1 + 𝑡)𝑠|𝑓′(𝑏)|]𝑑𝑡 

 +∫  
1

0
(
1−(1−𝑡)𝛼

𝛼
)
𝛽

[(1 − 𝑡)𝑠|𝑓′(𝑏)| + (1 + 𝑡)𝑠|𝑓′(𝑎)|]]. 

 

By using the fact that 

 

 ∫  
1

0
[(1 − (1 − 𝑡)𝛼)𝛽](1 − 𝑡)𝑠𝑑𝑡 =

1

𝛼
𝐵 (𝛽 + 1,

𝑠+1

𝛼
), (2.3) 

we have 

 

 |
𝑓(𝑎)+𝑓(𝑏)

2
−

2𝛼𝛽−1𝛤(𝛽+1)𝛼𝛽

(𝑏−𝑎)𝛼𝛽 [ 𝑎
𝛽
ϒ𝛼𝑓 (

𝑎+𝑏

2
)+𝛽ϒ𝑏

𝛼𝑓 (
𝑎+𝑏

2
)]| 

 ≤
(𝑏−𝑎)

4⋅2𝑠 ((
1

𝛼
𝐵 (𝛽 + 1,

𝑠+1

𝛼
) + 𝛹(𝛼, 𝛽, 𝑠)) |𝑓′(𝑎)| + (𝛹(𝛼, 𝛽, 𝑠) +

1

𝛼
𝐵 (𝛽 + 1,

𝑠+1

𝛼
)) |𝑓′(𝑏)|) 

 =
(𝑏−𝑎)

2𝑠+2
(

1

𝛼
𝐵 (𝛽 + 1,

𝑠+1

𝛼
) + 𝛹(𝛼, 𝛽, 𝑠)) [|𝑓′(𝑎)| + |𝑓′(𝑏)|] 

 

which completes the proof.  

 

Corollary 1. If we choose 𝛼 = 1 in Theorem 1, then we have  
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 |
𝑓(𝑎)+𝑓(𝑏)

2
−

2𝛽−1𝛤(𝛽+1)

(𝑏−𝑎)𝛽
[𝐽𝑎+

𝛽
𝑓 (

𝑎+𝑏

2
) + 𝐽𝑏−

𝛽
𝑓 (

𝑎+𝑏

2
)]| 

 ≤
𝑏−𝑎

2𝑠+2
(𝐵(𝛽 + 1, 𝑠 + 1) + 𝛹(1, 𝛽, 𝑠))[|𝑓′(𝑎)| + |𝑓′(𝑏)|]. 

 

Remark 2. If we take 𝛼 = 1 and 𝛽 = 1 in Theorem 1, then we have  

 

 |
𝑓(𝑎)+𝑓(𝑏)

2
−

1

𝑏−𝑎
∫  

𝑏

𝑎
𝑓(𝑥)𝑑𝑥| 

 ≤
𝑏−𝑎

2(𝑠+1)(𝑠+2)
(𝑠 +

1

2𝑠) [|𝑓′(𝑎)| + |𝑓′(𝑏)|] 

 

which is given by Kırmacı et al. in [14]. 

 

Remark 3. In Theorem 1, if we choose 𝑠 = 1, then Theorem 1 reduce to [3, Theorem 5].  

 

Theorem 2.  Consider that 𝑓: [𝑎, 𝑏] → 𝑅 is a differentiable function on (𝑎, 𝑏). If |𝑓′|𝑞 is 𝑠 -

convex on [𝑎, 𝑏] for 𝑞 > 1, then we establish the following inequality  

 

 |
𝑓(𝑎)+𝑓(𝑏)

2
−

2𝛼𝛽−1𝛤(𝛽+1)𝛼𝛽

(𝑏−𝑎)𝛼𝛽 [ 𝑎
𝛽
ϒ𝛼𝑓 (

𝑎+𝑏

2
)+𝛽ϒ𝑏

𝛼𝑓 (
𝑎+𝑏

2
)]| 

 ≤
𝑏−𝑎

4⋅2
𝑠
𝑞

(
1

𝛼
𝐵 (𝑝𝛽 + 1,

1

𝛼
))

1

𝑝
 

 × [(
|𝑓′(𝑎)|

𝑞
+(2𝑠+1−1)|𝑓′(𝑏)|

𝑞

𝑠+1
)

1

𝑞

+ (
(2𝑠+1−1)|𝑓′(𝑎)|

𝑞
+|𝑓′(𝑏)|

𝑞

𝑠+1
)

1

𝑞

] 

 

where 
1

𝑝
= 1 −

1

𝑞
. 

 

Proof. By using the Hölder’s inequality, we obtain 

 

 ∫  
1

0
(
1−(1−𝑡)𝛼

𝛼
)
𝛽

|𝑓′ (
1−𝑡

2
𝑎 +

1+𝑡

2
𝑏)| 𝑑𝑡 (2.4) 

 ≤ (∫  
1

0
(
1−(1−𝑡)𝛼

𝛼
)
𝛽𝑝

𝑑𝑡)

1

𝑝

(∫  
1

0
|𝑓′ (

1−𝑡

2
𝑎 +

1+𝑡

2
𝑏)| 𝑑𝑡)

1

𝑞
. 

From the 𝑠 -convexity of |𝑓′|𝑞, we get  

 

 ∫  
1

0
(
1−(1−𝑡)𝛼

𝛼
)
𝛽

|𝑓′ (
1−𝑡

2
𝑎 +

1+𝑡

2
𝑏)| 𝑑𝑡 (2.5) 

 ≤

1

𝛼𝛽
(∫  

1

0
(1 − (1 − 𝑡)𝛼)𝑝𝛽𝑑𝑡)

1

𝑝
(∫  

1

0
[(

1−𝑡

2
)

𝑠
|𝑓′(𝑎)|𝑞 + (

1+𝑡

2
)

𝑠
|𝑓′(𝑏)|𝑞] 𝑑𝑡)

1

𝑞
 

 =
1

2
𝑠
𝑞⋅𝛼𝛽

(
1

𝛼
𝐵 (𝑝𝛽 + 1,

1

𝛼
))

1

𝑝
(

|𝑓′(𝑎)|
𝑞
+(2𝑠+1−1)|𝑓′(𝑏)|

𝑞

𝑠+1
)

1

𝑞

. 

 



5
th 

INTERNATIONAL CONFERENCE  

ON MATHEMATICAL AND RELATED SCIENCES 

 ICMRS 2022 

27-30 OCTOBER, 2022 

 

Proceedings Book of ICMRS 2022 

 
39 

Similarly, we can write 

 

 ∫  
1

0
(
1−(1−𝑡)𝛼

𝛼
)
𝛽

|𝑓′ (
1+𝑡

2
𝑎 +

1−𝑡

2
𝑏)| 𝑑𝑡 (2.6) 

 ≤
1

2
𝑠
𝑞⋅𝛼𝛽

(
1

𝛼
𝐵 (𝑝𝛽 + 1,

1

𝛼
))

1

𝑝
(

(2𝑠+1−1)|𝑓′(𝑎)|
𝑞
+|𝑓′(𝑏)|

𝑞

𝑠+1
)

1

𝑞

. 

 

On substituting the inequalities (2.5) and (2.6) in (2.2), then the proof is accomplished.  

 

Corollary 2. If we choose 𝛼 = 1 in Theorem 2, then we have 

 

 |
𝑓(𝑎)+𝑓(𝑏)

2
−

2𝛽−1𝛤(𝛽+1)

(𝑏−𝑎)𝛽
[𝐽𝑎+

𝛽
𝑓 (

𝑎+𝑏

2
) + 𝐽𝑏−

𝛽
𝑓 (

𝑎+𝑏

2
)]| 

 ≤
𝑏−𝑎

4⋅2
𝑠
𝑞

(
𝑝𝛽

𝑝𝛽+1
)

1

𝑝
 

 × [(
|𝑓′(𝑎)|

𝑞
+(2𝑠+1−1)|𝑓′(𝑏)|

𝑞

𝑠+1
)

1

𝑞

+ (
(2𝑠+1−1)|𝑓′(𝑎)|

𝑞
+|𝑓′(𝑏)|

𝑞

𝑠+1
)

1

𝑞

]. 

  

Corollary 3. If we take 𝛼 = 1 and 𝛽 = 1 in Theorem 2, then we have 

 

 |
𝑓(𝑎)+𝑓(𝑏)

2
−

1

𝑏−𝑎
∫ 𝑓(𝑥)

𝑏

𝑎
𝑑𝑥| 

 ≤
𝑏−𝑎

4⋅2
𝑠
𝑞

(
𝑝

𝑝+1
)

1

𝑝
 

 × [(
|𝑓′(𝑎)|

𝑞
+(2𝑠+1−1)|𝑓′(𝑏)|

𝑞

𝑠+1
)

1

𝑞

+ (
(2𝑠+1−1)|𝑓′(𝑎)|

𝑞
+|𝑓′(𝑏)|

𝑞

𝑠+1
)

1

𝑞

]. 

  

Remark 4. If we allow 𝑠 = 1 in Theorem 2, then Theorem 2 and [3, Theorem 6] are 

identical.  

 

Theorem 3.  Let us note that 𝑓: [𝑎, 𝑏] → 𝑅 is a differentiable function on (𝑎, 𝑏). If |𝑓′|𝑞 is 𝑠 -

convex function on [𝑎, 𝑏] for some 𝑞 ≥ 1, then we have the inequality 

 

 |
𝑓(𝑎)+𝑓(𝑏)

2
−

2𝛼𝛽−1𝛤(𝛽+1)𝛼𝛽

(𝑏−𝑎)𝛼𝛽 [ 𝑎
𝛽
ϒ𝛼𝑓 (

𝑎+𝑏

2
)+𝛽ϒ𝑏

𝛼𝑓 (
𝑎+𝑏

2
)]| 

 ≤
𝑏−𝑎

2
𝑠
𝑞
+2

(
1

𝛼
𝐵 (𝛽 + 1,

1

𝛼
))

1−
1

𝑞
 

 × [(
1

𝛼
𝐵 (𝛽 + 1,

𝑠+1

𝛼
) |𝑓′(𝑎)|𝑞 + 𝛹(𝛼, 𝛽, 𝑠)|𝑓′(𝑏)|𝑞)

1

𝑞
 

 +(𝛹(𝛼, 𝛽, 𝑠)|𝑓′(𝑎)|𝑞 + (
1

𝛼
𝐵 (𝛽 + 1,

𝑠+1

𝛼
)) |𝑓′(𝑏)|𝑞)

1

𝑞
]. 
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Here 𝛹(𝛼, 𝛽, 𝑠) is defined as in (2.1).  

 

Proof. By using power mean inequality, we get 

 

 ∫  
1

0
(
1−(1−𝑡)𝛼

𝛼
)
𝛽

|𝑓′ (
1−𝑡

2
𝑎 +

1+𝑡

2
𝑏)| 𝑑𝑡 

 ≤ (∫  
1

0
|(

1−(1−𝑡)𝛼

𝛼
)
𝛽

| 𝑑𝑡)
1−

1

𝑞

 

 × (∫  
1

0
|(

1−(1−𝑡)𝛼

𝛼
)
𝛽

| |𝑓′ (
1−𝑡

2
𝑎 +

1+𝑡

2
𝑏)|

𝑞

𝑑𝑡)

1

𝑞

. 

 

Because of 𝑠 -convexity of |𝑓′|𝑞, we acquire  

 

 ∫  
1

0
(
1−(1−𝑡)𝛼

𝛼
)
𝛽

|𝑓′ (
1−𝑡

2
𝑎 +

1+𝑡

2
𝑏)| 𝑑𝑡 (2.7) 

 ≤
1

𝛼𝛽2
𝑠
𝑞

(
1

𝛼
𝐵 (𝛽 + 1,

1

𝛼
))

1−
1

𝑞
 

 × (∫  
1

0
(1 − (1 − 𝑡)𝛼)𝛽[(1 − 𝑡)𝑠|𝑓′(𝑎)|𝑞 + (1 + 𝑡)𝑠|𝑓′(𝑏)|𝑞]𝑑𝑡)

1

𝑞
 

 =
1

𝛼𝛽2
𝑠
𝑞

(
1

𝛼
𝐵 (𝛽 + 1,

1

𝛼
))

1−
1

𝑞
 

 × ((
1

𝛼
𝐵 (𝛽 + 1,

𝑠+1

𝛼
) |𝑓′(𝑎)|𝑞 + 𝛹(𝛼, 𝛽, 𝑠)|𝑓′(𝑏)|𝑞))

1

𝑞
. 

 

Similarly, we get 

 

 ∫  
1

0
(
1−(1−𝑡)𝛼

𝛼
)
𝛽

|𝑓′ (
1+𝑡

2
𝑎 +

1−𝑡

2
𝑏)| 𝑑𝑡 (2.8) 

 ≤
1

𝛼𝛽2
𝑠
𝑞

(
1

𝛼
𝐵 (𝛽 + 1,

1

𝛼
))

1−
1

𝑞
 

 × (𝛹(𝛼, 𝛽, 𝑠)|𝑓′(𝑎)|𝑞 + (
1

𝛼
𝐵 (𝛽 + 1,

𝑠+1

𝛼
)) |𝑓′(𝑏)|𝑞)

1

𝑞
. 

 

By considering (2.7) and (2.8) in (2.2), we obtain the required result.  

 

Corollary 4. If we choose 𝛼 = 1 in Theorem 3, then we have 

 

 |
𝑓(𝑎)+𝑓(𝑏)

2
−

2𝛽−1𝛤(𝛽+1)

(𝑏−𝑎)𝛽
[𝐽𝑎+

𝛽
𝑓 (

𝑎+𝑏

2
) + 𝐽𝑏−

𝛽
𝑓 (

𝑎+𝑏

2
)]| 

 ≤
𝑏−𝑎

2
𝑠
𝑞
+2

(
𝛽

𝛽+1
)
1−

1

𝑞
[(𝐵(𝛽 + 1, 𝑠 + 1)|𝑓′(𝑎)|𝑞 + 𝛹(1, 𝛽, 𝑠)|𝑓′(𝑏)|𝑞)

1

𝑞 

 +(𝛹(1, 𝛽, 𝑠)|𝑓′(𝑎)|𝑞 + (𝐵(𝛽 + 1, 𝑠 + 1))|𝑓′(𝑏)|𝑞)
1

𝑞]. 
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Corollary 5. If we take 𝛼 = 1 and 𝛽 = 1 in Theorem 3, then we have 

 

 |
𝑓(𝑎)+𝑓(𝑏)

2
−

1

𝑏−𝑎
∫ 𝑓(𝑥)

𝑏

𝑎
𝑑𝑥| 

 ≤
𝑏−𝑎

2
𝑠
𝑞
+2

(
1

2
)
1−

1

𝑞
[(

1

(𝑠+1)(𝑠+2)
|𝑓′(𝑎)|𝑞 + (

2𝑠+2−1

𝑠+1
−

2𝑠+1−1

𝑠+2
) |𝑓′(𝑏)|𝑞)

1

𝑞
 

 +((
2𝑠+2−1

𝑠+1
−

2𝑠+1−1

𝑠+2
) |𝑓′(𝑎)|𝑞 +

1

(𝑠+1)(𝑠+2)
|𝑓′(𝑏)|𝑞)

1

𝑞

]. 

  

Remark 5. If we set 𝑠 = 1 in Theorem 3, then the Theorem 3 turns into [3, Theorem 7]. 

 

3. CONCLUSION 

In this research, we acquired some inequality of trapezoid type for s -convex functions by 

means of conformable fractional integrals. In the future studies, researchers can obtain some 

new inequalities with the aid of the different kinds of convex mappings or other types of 

fractional integral operators. 
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ABSTRACT 

 
In the current research, some midpoint-type inequalities are acquired via 𝑠 -convex 

mappings with the aid of conformable fractional integrals. Some studies in the literature 

have been generalized using the well-known Hölder and power-mean inequalities and 𝑠 

-convex mappings. Some results including Riemann-Liouville integrals and Riemann 

integrals established based on 𝑠 -convex mappings by special choices of variables 

within functions are obtained 

 

1. INTRODUCTION 

 

Convex theory is a research area that has been utilized in many fields of optimization theory, 

energy systems, engineering applications, and physics and has guided many regions of the 

literature. Moreover, the convex theory is an available way to solve many problems from 

different branches of mathematics. Convexity theory is important in these branches of 

mathematics, especially in inequalities. Hermite-Hadamard, midpoint type, and trapezoid type 

inequalities are the most well-known of these inequalities. 

 

These inequalities, described by C. Hermite and J. Hadamard, express that if 𝑓: 𝐼 → 𝑅 is a 

convex mapping on the interval 𝐼 of real numbers and 𝑎, 𝑏 ∈ 𝐼 with 𝑎 < 𝑏, then  

 

 𝑓 (
𝑎+𝑏

2
) ≤

1

𝑏−𝑎
∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
≤

𝑓(𝑎)+𝑓(𝑏)

2
. (1.1) 

 

If 𝑓 is concave, both of the inequalities hold in the opposite direction. See, please more 

references [7, 17]. The left side of the Hermite-Hadamard inequality, namely the midpoint 

inequality, has been the focus of many studies. Kirmac  first, obtained midpoint inequalities 

for convex functions in [14]. Moreover in [18], Qaisar and Hussain presented several 

generalized midpoint type inequalities. Sarikaya et al. and Iqbal et al. proved some fractional 

mailto:mkiris@gmail.com
mailto:hasan64kara@gmail.com
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trapezoid and midpoint type inequalities for convex functions in [19] and [11], respectively.In 

[4] and [5], researchers established some generalized midpoint type inequalities for Riemann-

Liouville fractional integrals. 

 

Fractional calculus is an effective tool to explain physical phenomena and also real-world 

problems. The concept of fractional order derivatives and integrals that will shed light on 

some unknown points about differential equations and solutions of some fractional order 

differential equations, which proved to be useless for their solution, is a novelty in applied 

sciences as well as mathematics. New derivatives and integrals contribute to the solution of 

differential equations that are expressed and solved in classical analysis, as well as fractional 

order derivatives and integrals. Moreover, it has increased its contribution to the literature 

with its applications in areas such as engineering, biostatistics, and mathematical biology. 

Fractional derivative and integral operators not only differed from each other in terms of 

singularity, locality, and kernels but also brought innovations to fractional analysis in terms of 

their usage areas and spaces. 

 

The Conformable fractional approach was developed, which depends on the fundamental 

definition of the derivative in [16]. In [2], the author proved that the conformable approach in 

[16] cannot yield good results when compared to the Caputo definition for specific functions. 

This flaw in the conformable definition was avoided by some extensions of the conformable 

approach [10, 20]. Based on these approaches, Jarad obtained the definitions of conformable 

fractional integrals in [13]. Inspired by all these studies, fractional calculus attracts 

researchers every day. 

 

Igbal et al. obtained some new midpoint-type inequalities in [11] with the help of Riemann-

Liouville fractional integrals. Hyder et al obtained some new midpoint-type inequalities using 

conformable fractional integrals in [3]. Inspired by all the studies mentioned, we will obtain 

some new midpoint-type inequalities for 𝑠 -convex functions with the aid of conformable 

fractional integrals. 

 

 

2. PRELIMINARIES 

 

In order to create our main results, in this section, we give the fundamental definitions and an 

identity. 

 

Definition 1. The gamma function and beta function are defined  

 

 𝛤(𝑥):= ∫  
∞

0
𝑡𝑥−1𝑒−𝑡𝑑𝑡, 

 

 𝐵(𝑥, 𝑦):= ∫  
1

0
𝑡𝑥−1(1 − 𝑡)𝑦−1𝑑𝑡, 

 

respectively. Here, 0 < 𝑥, 𝑦 < ∞.  

 

Definition 2. [6]Let 𝑓: [0,∞] → 𝑅 be a function and 0 < 𝑠 ≤ 1. Then we have 
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 𝑓(𝜆𝑥 + 𝛾𝑦) ≤ 𝜆𝑠𝑓(𝑥) + 𝛾𝑠𝑓(𝑦) (2.1) 

 

for 𝜆 + 𝛾 = 1. The function 𝑓 that provides this inequality is called the 𝑠 -convex function in 

the second sense.  

 

Remark 1. If we take 𝑠 = 1 in Definition 2, then Definition 2 reduce to deinition of classical 

convexity.  

 

In [15], Kilbas et al. presented fractional integrals, also namely Riemann-Liouville integral 

operators as follows: 

 

Definition 3.  [15] For 𝑓 ∈ 𝐿1[𝑎, 𝑏], the Riemann-Liouville integrals of order 𝛽 > 0 are 

given by  

 

 𝐽𝑎+
𝛽

𝑓(𝑥) =
1

𝛤(𝛽)
∫  

𝑥

𝑎
(𝑥 − 𝑡)𝛽−1𝑓(𝑡)𝑑𝑡,   𝑥 > 𝑎 (2.2) 

and 

 𝐽𝑏−
𝛽

𝑓(𝑥) =
1

𝛤(𝛽)
∫  

𝑏

𝑥
(𝑡 − 𝑥)𝛽−1𝑓(𝑡)𝑑𝑡,   𝑥 < 𝑏, (2.3) 

 

respectively. The Riemann-Liouville integrals will be equal to their classical integrals for the 

condition 𝛽 = 1.  

 

In paper [13], Jarad et al. gave the fractional conformable integral operators. 

 

Definition 4. [13] For 𝑓 ∈ 𝐿1[𝑎, 𝑏], the fractional conformable integral operator  𝛽𝐽𝑎+
𝛼 𝑓(𝑥) 

and 𝛽𝐽𝑏−
𝛼 𝑓(𝑥) of order 𝛽 > 0 and 𝛼 ∈ (0,1] are presented by  

 

  𝛽𝐽𝑎+
𝛼 𝑓(𝑥) =

1

𝛤(𝛽)
∫  

𝑥

𝑎
(
(𝑥−𝑎)𝛼−(𝑡−𝑎)𝛼

𝛼
)
𝛽−1 𝑓(𝑡)

(𝑡−𝑎)1−𝛼 𝑑𝑡,     𝑡 > 𝑎 (2.4) 

and  

  𝛽𝐽𝑏−
𝛼 𝑓(𝑥) =

1

𝛤(𝛽)
∫  

𝑏

𝑥
(
(𝑏−𝑥)𝛼−(𝑏−𝑡)𝛼

𝛼
)
𝛽−1 𝑓(𝑡)

(𝑏−𝑡)1−𝛼
𝑑𝑡,     𝑡 < 𝑏, (2.5) 

 

respectively.  

 

If we consider 𝛼 = 1, then the fractional integral in (2.4) reduces to the Riemann-Liouville 

fractional integral in (2.2). Furthermore, the fractional integral in (2.5) coincides with the 

Riemann-Liouville fractional integral in (2.3) when 𝛼 = 1. For some recent results connected 

with fractional integral inequalities, see [1, 12] and the references cited therein. 

Hyder et al. obtained the following identity that we will use in our main results. 

 

Lemma 1. [3] Let 𝑓: [𝑎, 𝑏] → 𝑅 be a differentiable mapping on (𝑎, 𝑏) and 𝑓′ ∈ 𝐿1[𝑎, 𝑏]. 
Then, for 𝛽 > 0 and 𝛼 ∈ (0,1], the identity below is valid. 

 

 
2𝛼𝛽−1𝛤(𝛽+1)𝛼𝛽

(𝑏−𝑎)𝛼𝛽
[ 𝑎

𝛽
ϒ𝛼𝑓 (

𝑎+𝑏

2
)
𝛽

ϒ𝑏
𝛼𝑓 (

𝑎+𝑏

2
)] − 𝑓 (

𝑎+𝑏

2
) (2.6) 
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 =
𝛼𝛽(𝑏−𝑎)

4
[∫  

1

0
[

1

𝛼𝛽 − (
1−(1−𝑡)𝛼

𝛼
)
𝛽

] 𝑓′ (
1−𝑡

2
𝑎 +

1+𝑡

2
𝑏) 𝑑𝑡 

 −∫  
1

0
[

1

𝛼𝛽 − (
1−(1−𝑡)𝛼

𝛼
)
𝛽

] 𝑓′ (
1+𝑡

2
𝑎 +

1−𝑡

2
𝑏) 𝑑𝑡]. 

 

 

3.  MAIN RESULTS 

 

This section provides numerous inequalities of the midpoint type for differentiable 𝑠 -convex 

functions in the second sense. 

 

Theorem 1.  Let 𝑓: [𝑎, 𝑏] → 𝑅 be a differentiable mapping on (𝑎, 𝑏). If |𝑓′| is 𝑠 -convex on 

[𝑎, 𝑏], then we get the inequality below. 

  

 |
2𝛼𝛽−1𝛤(𝛽+1)𝛼𝛽

(𝑏−𝑎)𝛼𝛽 [ 𝑎
𝛽
ϒ𝛼𝑓 (

𝑎+𝑏

2
) + 𝛽ϒ𝑏

𝛼𝑓 (
𝑎+𝑏

2
)] − 𝑓 (

𝑎+𝑏

2
)| (3.1) 

 ≤
𝑏−𝑎

2𝑠+2 (
2𝑠+1

𝑠+1
−

1

𝛼
𝐵 (𝛽 + 1,

𝑠+1

𝛼
) − 𝛹(𝛼, 𝛽, 𝑠)) [|𝑓′(𝑎)| + |𝑓′(𝑏)|] 

 

where 

 𝛹(𝛼, 𝛽, 𝑠):= ∫  
1

0
(1 − (1 − 𝑡)𝛼)𝛽(1 + 𝑡)𝑠𝑑𝑡 (3.2) 

 

and 𝐵(⋅,⋅) refers to the Euler Beta function.  

 

Proof. By taking modulus of Lemma 1, we acquire 

 

 |
2𝛼𝛽−1𝛤(𝛽+1)𝛼𝛽

(𝑏−𝑎)𝛼𝛽 [ 𝑎
𝛽
ϒ𝛼𝑓 (

𝑎+𝑏

2
)
𝛽

ϒ𝑏
𝛼𝑓 (

𝑎+𝑏

2
)] − 𝑓 (

𝑎+𝑏

2
)| (3.3) 

 ≤
𝛼𝛽(𝑏−𝑎)

4
[∫  

1

0
|

1

𝛼𝛽 − (
1−(1−𝑡)𝛼

𝛼
)
𝛽

| |𝑓′ (
1−𝑡

2
𝑎 +

1+𝑡

2
𝑏)| 𝑑𝑡 

 +∫  
1

0
|

1

𝛼𝛽 − (
1−(1−𝑡)𝛼

𝛼
)
𝛽

| |𝑓′ (
1+𝑡

2
𝑎 +

1−𝑡

2
𝑏)| 𝑑𝑡]. 

 

With help of the 𝑠 -convexity of |𝑓′|, we have 

 

 |
2𝛼𝛽−1𝛤(𝛽+1)𝛼𝛽

(𝑏−𝑎)𝛼𝛽
[ 𝑎

𝛽
ϒ𝛼𝑓 (

𝑎+𝑏

2
) + 𝛽ϒ𝑏

𝛼𝑓 (
𝑎+𝑏

2
)] − 𝑓 (

𝑎+𝑏

2
)| 

 ≤
𝛼𝛽(𝑏−𝑎)

4⋅2𝑠 [∫  
1

0
|

1

𝛼𝛽 − (
1−(1−𝑡)𝛼

𝛼
)
𝛽

| [(1 − 𝑡)𝑠|𝑓′(𝑎)| + (1 + 𝑡)𝑠|𝑓′(𝑏)|]𝑑𝑡 

 +∫  
1

0
|

1

𝛼𝛽 − (
1−(1−𝑡)𝛼

𝛼
)
𝛽

| [(1 − 𝑡)𝑠|𝑓′(𝑏)| + (1 + 𝑡)𝑠|𝑓′(𝑎)|]] 

 =
𝑏−𝑎

4⋅2𝑠
(∫  

1

0
[1 − (1 − (1 − 𝑡)𝛼)𝛽]((1 − 𝑡)𝑠 + (1 + 𝑡)𝑠)𝑑𝑡) [|𝑓′(𝑎)| +

|𝑓′(𝑏)|]. 
 

By using the facts that 
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 ∫  
1

0
[1 − (1 − (1 − 𝑡)𝛼)𝛽](1 − 𝑡)𝑠𝑑𝑡 =

1

𝑠+1
−

1

𝛼
𝐵 (𝛽 + 1,

𝑠+1

𝛼
) (3.4) 

and 

 ∫  
1

0
[1 − (1 − (1 − 𝑡)𝛼)𝛽](1 + 𝑡)𝑠𝑑𝑡 (3.5) 

 =
2𝑠+1

𝑠+1
−

1

𝑠+1
− ∫  

1

0
(1 − (1 − 𝑡)𝛼)𝛽(1 + 𝑡)𝑠𝑑𝑡 

 =
2𝑠+1−1

𝑠+1
− 𝛹(𝛼, 𝛽, 𝑠), 

 

we have 

 

 |
2𝛼𝛽−1𝛤(𝛽+1)𝛼𝛽

(𝑏−𝑎)𝛼𝛽 [ 𝑎
𝛽
ϒ𝛼𝑓 (

𝑎+𝑏

2
) + 𝛽ϒ𝑏

𝛼𝑓 (
𝑎+𝑏

2
)] − 𝑓 (

𝑎+𝑏

2
)| 

 ≤
𝑏−𝑎

2𝑠+2
(

2𝑠+1

𝑠+1
−

1

𝛼
𝐵 (𝛽 + 1,

𝑠+1

𝛼
) − 𝛹(𝛼, 𝛽, 𝑠)) [|𝑓′(𝑎)| + |𝑓′(𝑏)|] 

 

which completes the proof.  

 

Corollary 1 If we choose 𝛼 = 1 in Theorem 1, then we have 

 

 |
2𝛽−1𝛤(𝛽+1)

(𝑏−𝑎)𝛽
[𝐽𝑎+

𝛽
𝑓 (

𝑎+𝑏

2
) + 𝐽𝑏−

𝛽
𝑓 (

𝑎+𝑏

2
)] − 𝑓 (

𝑎+𝑏

2
)| (3.6) 

 ≤
𝑏−𝑎

2𝑠+2 (
2𝑠+1

𝑠+1
− 𝐵(𝛽 + 1, 𝑠 + 1) − 𝛹(1, 𝛽, 𝑠)) [|𝑓′(𝑎)| + |𝑓′(𝑏)|]. 

  

Remark 2. If we take 𝑠 = 1 in Corollary 1, then we have 

 

 |
2𝛽−1𝛤(𝛽+1)

(𝑏−𝑎)𝛽
[𝐽𝑎+

𝛽
𝑓 (

𝑎+𝑏

2
) + 𝐽𝑏−

𝛽
𝑓 (

𝑎+𝑏

2
)] − 𝑓 (

𝑎+𝑏

2
)| (3.7) 

 ≤
𝑏−𝑎

4
(

𝛽

𝛽+1
) [|𝑓′(𝑎)| + |𝑓′(𝑏)|]. 

 

which is given by Ertu�̆�ral et al. in [9, Corollary 4.7].  

 

Remark 3. Let us consider 𝛼 = 1 and 𝛽 = 1 in Theorem 1, then we have 

 

 |
1

𝑏−𝑎
∫  

𝑏

𝑎
𝑓(𝑥)𝑑𝑥 − 𝑓 (

𝑎+𝑏

2
)| ≤

𝑏−𝑎

(𝑠+1)(𝑠+2)
(1 −

1

2𝑠+1) [|𝑓′(𝑎)| + |𝑓′(𝑏)|]. 

 

which is given by Du et al. in [8, Theorem 2.1 (for m=k=1 and t=0)].  

 

Remark 4. In Theorem 1, if we choose 𝑠 = 1, then Theorem 1 reduce to [3, Theorem 2].  

 

Theorem 2  Consider that 𝑓: [𝑎, 𝑏] → 𝑅 is a differentiable function on (𝑎, 𝑏). If |𝑓′|𝑞 is 𝑠 -

convex on [𝑎, 𝑏] for 𝑞 > 1, then we establish the following inequality 
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 |
2𝛼𝛽−1𝛤(𝛽+1)𝛼𝛽

(𝑏−𝑎)𝛼𝛽
[ 𝑎

𝛽
ϒ𝛼𝑓 (

𝑎+𝑏

2
)
𝛽

ϒ𝑏
𝛼𝑓 (

𝑎+𝑏

2
)] − 𝑓 (

𝑎+𝑏

2
)| (3.8) 

 ≤
𝑏−𝑎

4⋅2
𝑠
𝑞

(1 −
1

𝛼
𝐵 (𝑝𝛽 + 1,

1

𝛼
))

1

𝑝
 

 × [(
1

𝑠+1
|𝑓′(𝑎)|𝑞 +

2𝑠+1−1

𝑠+1
|𝑓′(𝑏)|𝑞)

1

𝑞
+ (

1

𝑠+1
|𝑓′(𝑎)|𝑞 +

2𝑠+1−1

𝑠+1
|𝑓′(𝑏)|𝑞)

1

𝑞
] 

where 
1

𝑝
= 1 −

1

𝑞
.  

 

Proof. By using the equality (3.3) and Hölder’s inequality, we obtain 

 

 |
2𝛼𝛽−1𝛤(𝛽+1)𝛼𝛽

(𝑏−𝑎)𝛼𝛽
[ 𝑎

𝛽
ϒ𝛼𝑓 (

𝑎+𝑏

2
) + 𝛽ϒ𝑏

𝛼𝑓 (
𝑎+𝑏

2
)] − 𝑓 (

𝑎+𝑏

2
)| (3.9) 

 ≤
𝛼𝛽(𝑏−𝑎)

4
[(∫  

1

0
|

1

𝛼𝛽 − (
1−(1−𝑡)𝛼

𝛼
)
𝛽

|
𝑝

𝑑𝑡)

1

𝑝

(∫  
1

0
|𝑓′ (

1−𝑡

2
𝑎 +

1+𝑡

2
𝑏)|

𝑞

𝑑𝑡)

1

𝑞
 

 +(∫  
1

0
|

1

𝛼𝛽 − (
1−(1−𝑡)𝛼

𝛼
)
𝛽

|
𝑝

𝑑𝑡)

1

𝑝

(∫  
1

0
|𝑓′ (

1+𝑡

2
𝑎 +

1−𝑡

2
𝑏)|

𝑞

𝑑𝑡)

1

𝑞
]. 

 

Because of 𝑠 -convexity of |𝑓′|𝑞, we get  

 

 (∫  
1

0
|

1

𝛼𝛽 − (
1−(1−𝑡)𝛼

𝛼
)
𝛽

|
𝑝

𝑑𝑡)

1

𝑝

(∫  
1

0
|𝑓′ (

1−𝑡

2
𝑎 +

1+𝑡

2
𝑏)|

𝑞

𝑑𝑡)

1

𝑞
 (3.10) 

 ≤
1

𝛼𝛽 (∫  
1

0
(1 − (1 − (1 − 𝑡)𝛼)𝛽)

𝑝
𝑑𝑡)

1

𝑝
 

× (
1

2𝑠
∫  

1

0

[(
1 − 𝑡

2
)

𝑠

|𝑓′(𝑎)|𝑞 + |𝑓′(𝑏)|𝑞] 𝑑𝑡)

1
𝑞

 

 ≤
1

2
𝑠
𝑞𝛼𝛽

(∫  
1

0
(1 − (1 − (1 − 𝑡)𝛼)𝛽𝑝)𝑑𝑡)

1

𝑝
(

1

𝑠+1
|𝑓′(𝑎)|𝑞 +

2𝑠+1−1

𝑠+1
|𝑓′(𝑏)|𝑞)

1

𝑞
 

 ≤
1

2
𝑠
𝑞𝛼𝛽

(1 −
1

𝛼
𝐵 (𝑝𝛽 + 1,

1

𝛼
))

1

𝑝
(

1

𝑠+1
|𝑓′(𝑎)|𝑞 +

2𝑠+1−1

𝑠+1
|𝑓′(𝑏)|𝑞)

1

𝑞
. 

 

Here, we used the fact that 

 

 (𝜛 − 𝜎)𝑗 ≤ 𝜛𝑗 − 𝜎𝑗 , (3.11) 

 

for any 𝜛 > 𝜎 ≥ 0 and 𝑗 ≥ 1. 

Similarly, we can write 
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 (∫  
1

0
|

1

𝛼𝛽 − (
1−(1−𝑡)𝛼

𝛼
)
𝛽

|
𝑝

𝑑𝑡)

1

𝑝

(∫  
1

0
|𝑓′ (

1+𝑡

2
𝑎 +

1−𝑡

2
𝑏)|

𝑞

𝑑𝑡)

1

𝑞
 (3.12) 

 ≤
1

2
𝑠
𝑞𝛼𝛽

(1 −
1

𝛼
𝐵 (𝑝𝛽 + 1,

1

𝛼
))

1

𝑝
(
2𝑠+1−1

𝑠+1
|𝑓′(𝑎)|𝑞 +

1

𝑠+1
|𝑓′(𝑏)|𝑞)

1

𝑞
. 

 

On substituting the inequalities (3.10) and (3.12) in (3.9), then the proof is accomplished.  

 

Corollary 2. If we choose 𝛼 = 1 in Theorem 2, then we have 

 

 |
2𝛽−1𝛤(𝛽+1)

(𝑏−𝑎)𝛽
[𝐽𝑎+

𝛽
𝑓 (

𝑎+𝑏

2
) + 𝐽𝑏−

𝛽
𝑓 (

𝑎+𝑏

2
)] − 𝑓 (

𝑎+𝑏

2
)| (3.13) 

 ≤
𝑏−𝑎

4⋅2
𝑠
𝑞

(
𝑝𝛽

𝑝𝛽+1
)

1

𝑝
 

 × [(
1

𝑠+1
|𝑓′(𝑎)|𝑞 +

2𝑠+1−1

𝑠+1
|𝑓′(𝑏)|𝑞)

1

𝑞
+ (

1

𝑠+1
|𝑓′(𝑎)|𝑞 +

2𝑠+1−1

𝑠+1
|𝑓′(𝑏)|𝑞)

1

𝑞
]. 

  

Corollary 3. If we choose 𝛼 = 1 and 𝛽 = 1 in Theorem 2, then we have 

 

 |
1

𝑏−𝑎
∫  

𝑏

𝑎
𝑓(𝑥)𝑑𝑥 − 𝑓 (

𝑎+𝑏

2
)| (3.14) 

 ≤
𝑏−𝑎

4⋅2
𝑠
𝑞

(
𝑝

𝑝+1
)

1

𝑝
 

 × [(
1

𝑠+1
|𝑓′(𝑎)|𝑞 +

2𝑠+1−1

𝑠+1
|𝑓′(𝑏)|𝑞)

1

𝑞
+ (

1

𝑠+1
|𝑓′(𝑎)|𝑞 +

2𝑠+1−1

𝑠+1
|𝑓′(𝑏)|𝑞)

1

𝑞
]. 

  

Remark 5. If we allow 𝑠 = 1 in Theorem 2, then Theorem 2 and [3, Theorem 3] are 

identical.  

 

Theorem 3  Let us note that 𝑓: [𝑎, 𝑏] → 𝑅 is a differentiable function on (𝑎, 𝑏). If |𝑓′|𝑞 is 𝑠 -

convex on [𝑎, 𝑏] for some 𝑞 ≥ 1, then the inequality below is fulfilled. 

 

 |
2𝛼𝛽−1𝛤(𝛽+1)𝛼𝛽

(𝑏−𝑎)𝛼𝛽 [ 𝑎
𝛽
ϒ𝛼𝑓 (

𝑎+𝑏

2
) +𝛽 ϒ𝑏

𝛼𝑓 (
𝑎+𝑏

2
)] − 𝑓 (

𝑎+𝑏

2
)| 

 ≤
𝑏−𝑎

2
𝑠
𝑞
+2

(1 −
1

𝛼
𝐵 (𝛽 + 1,

1

𝛼
))

1−
1

𝑞
 

 × [((
1

𝑠+1
−

1

𝛼
𝐵 (𝛽 + 1,

𝑠+1

𝛼
)) |𝑓′(𝑎)|𝑞 + (

2𝑠+1−1

𝑠+1
− 𝛹(𝛼, 𝛽, 𝑠)) |𝑓′(𝑏)|𝑞)

1

𝑞

 

 +((
2𝑠+1−1

𝑠+1
− 𝛹(𝛼, 𝛽, 𝑠)) |𝑓′(𝑎)|𝑞 + (

1

𝑠+1
−

1

𝛼
𝐵 (𝛽 + 1,

𝑠+1

𝛼
)) |𝑓′(𝑏)|𝑞)

1

𝑞

]. 

 



5
th 

INTERNATIONAL CONFERENCE  

ON MATHEMATICAL AND RELATED SCIENCES 

 ICMRS 2022 

27-30 OCTOBER, 2022 

 

Proceedings Book of ICMRS 2022 

 
50 

Here 𝛹(𝛼, 𝛽, 𝑠) is defined as in (3.2).  

 

Proof. With help of the equality (3.3) and by using power mean inequality, 

 

 |
2𝛼𝛽−1𝛤(𝛽+1)𝛼𝛽

(𝑏−𝑎)𝛼𝛽
[ 𝑎

𝛽
ϒ𝛼𝑓 (

𝑎+𝑏

2
) + 𝛽ϒ𝑏

𝛼𝑓 (
𝑎+𝑏

2
)] − 𝑓 (

𝑎+𝑏

2
)| (3.15) 

 ≤
𝛼𝛽(𝑏−𝑎)

4
[(∫  

1

0
|

1

𝛼𝛽
− (

1−(1−𝑡)𝛼

𝛼
)
𝛽

| 𝑑𝑡)
1−

1

𝑞

 

 × (∫  
1

0
|

1

𝛼𝛽 − (
1−(1−𝑡)𝛼

𝛼
)
𝛽

| |𝑓′ (
1−𝑡

2
𝑎 +

1+𝑡

2
𝑏)|

𝑞

𝑑𝑡)

1

𝑞

 

 +(∫  
1

0
|

1

𝛼𝛽 − (
1−(1−𝑡)𝛼

𝛼
)
𝛽

| 𝑑𝑡)
1−

1

𝑞

 

 × (∫  
1

0
|

1

𝛼𝛽 − (
1−(1−𝑡)𝛼

𝛼
)
𝛽

| |𝑓′ (
1+𝑡

2
𝑎 +

1−𝑡

2
𝑏)|

𝑞

𝑑𝑡)

1

𝑞

]. 

 

Taking into account the 𝑠 -convexity of |𝑓′|𝑞, then we acquire  

 

 (∫  
1

0
|

1

𝛼𝛽 − (
1−(1−𝑡)𝛼

𝛼
)
𝛽

| 𝑑𝑡)
1−

1

𝑞

 (3.16) 

 × (∫  
1

0
|

1

𝛼𝛽 − (
1−(1−𝑡)𝛼

𝛼
)
𝛽

| |𝑓′ (
1−𝑡

2
𝑎 +

1+𝑡

2
𝑏)|

𝑞

𝑑𝑡)

1

𝑞

 

 ≤
1

𝛼𝛽2
𝑠
𝑞

(1 −
1

𝛼
𝐵 (𝛽 + 1,

1

𝛼
))

1−
1

𝑞
 

 × (∫  
1

0
(1 − (1 − (1 − 𝑡)𝛼)𝛽)[(1 − 𝑡)𝑠|𝑓′(𝑎)|𝑞 + (1 + 𝑡)𝑠|𝑓′(𝑏)|𝑞]𝑑𝑡)

1

𝑞
 

 =
1

𝛼𝛽2
𝑠
𝑞

(1 −
1

𝛼
𝐵 (𝛽 + 1,

1

𝛼
))

1−
1

𝑞
 

 × (
1

𝑠+1
−

1

𝛼
𝐵 (𝛽 + 1,

𝑠+1

𝛼
) |𝑓′(𝑎)|𝑞 + (

2𝑠+1−1

𝑠+1
− 𝛹(𝛼, 𝛽, 𝑠)) |𝑓′(𝑏)|𝑞), 

 

and similarly, we have 

 

 (∫  
1

0
|

1

𝛼𝛽 − (
1−(1−𝑡)𝛼

𝛼
)
𝛽

| 𝑑𝑡)
1−

1

𝑞

 (3.17) 

 × (∫  
1

0
|

1

𝛼𝛽 − (
1−(1−𝑡)𝛼

𝛼
)
𝛽

| |𝑓′ (
1+𝑡

2
𝑎 +

1−𝑡

2
𝑏)|

𝑞

𝑑𝑡)

1

𝑞

] 

 ≤
1

𝛼𝛽2
𝑠
𝑞

(1 −
1

𝛼
𝐵 (𝛽 + 1,

1

𝛼
))

1−
1

𝑞
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 × ((
2𝑠+1−1

𝑠+1
− 𝛹(𝛼, 𝛽, 𝑠)) |𝑓′(𝑎)|𝑞 + (

1

𝑠+1
−

1

𝛼
𝐵 (𝛽 + 1,

𝑠+1

𝛼
)) |𝑓′(𝑏)|𝑞). 

 

By considering (3.16) and (3.17) in (3.15), we obtain the desired result.  

 

Corollary 4 If we choose 𝛼 = 1 in Theorem 3, then we have 

 

 |
2𝛽−1𝛤(𝛽+1)

(𝑏−𝑎)𝛽
[𝐽𝑎+

𝛽
𝑓 (

𝑎+𝑏

2
) + 𝐽𝑏−

𝛽
𝑓 (

𝑎+𝑏

2
)] − 𝑓 (

𝑎+𝑏

2
)| 

 ≤
𝑏−𝑎

2
𝑠
𝑞
+2

(
𝛽

𝛽+1
)
1−

1

𝑞
 

                           ×

[
 
 
 
 

((
1

𝑠 + 1
− 𝐵(𝛽 + 1, 𝑠 + 1)) |𝑓′(𝑎)|𝑞

+ (
2𝑠+1 − 1

𝑠 + 1
− 𝛹(1, 𝛽, 𝑠)) |𝑓′(𝑏)|𝑞)

1
𝑞

 

 +((
2𝑠+1−1

𝑠+1
− 𝛹(1, 𝛽, 𝑠)) |𝑓′(𝑎)|𝑞 + (

1

𝑠+1
− 𝐵(𝛽 + 1, 𝑠 + 1)) |𝑓′(𝑏)|𝑞)

1

𝑞

]. 

  

Corollary 5. If we take 𝛼 = 1 and 𝛽 = 1 in Theorem 3, then we have 

 

 |
1

𝑏−𝑎
∫  

𝑏

𝑎
𝑓(𝑥)𝑑𝑥 − 𝑓 (

𝑎+𝑏

2
)| 

 ≤
𝑏−𝑎

2
𝑠
𝑞
+2

(
1

2
)
1−

1

𝑞
 

 × [((
1

𝑠+2
) |𝑓′(𝑎)|𝑞 + (

2𝑠+2−2

𝑠+1
−

2𝑠+2−1

𝑠+2
) |𝑓′(𝑏)|𝑞)

1

𝑞

 

 +((
2𝑠+2−2

𝑠+1
−

2𝑠+2−1

𝑠+2
) |𝑓′(𝑎)|𝑞 + (

1

𝑠+2
) |𝑓′(𝑏)|𝑞)

1

𝑞

]. 

  

Remark 6. If we set 𝑠 = 1 in Theorem 3, then Theorem 3 turns into [3, Theorem 4].  

 

CONCLUSION 

 

In this study, some  conformable fractional midpoint type inequalities in the case of s -convex 

functions are presented. Moreover, it is investigated several inequalities for Riemann-

Liouville fractional integrals and Riemann integrals by choosing special cases of our main 
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results. In future papers, improvement or generalization of our results can be investigated by 

using different kinds of convex function classes or other types fractional integral operators. 
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ABSTRACT 

 
In the current paper, two new improvements for Hermite-Hadamard type inequalities are 

acquired with the help of the Conformable fractional integrals for convex functions. In 

achieving these improvements, two different functions are defined. More precisely, the 

convexity and increasing of the function are used. These improvements generalize some of 

the research in the literature. 

 

1. INTRODUCTION 

 

Fractional calculus has many applications in several different fields such as physics, 

chemistry, engineering, and mathematics. In terms of achieving more practical results in 

solving many problems, the application of arithmetic carried out in classical analysis in the 

fractional analysis is very significant. By using non-integer order dynamic models based on 

fractional computation, many practical dynamical systems are better characterized. Although 

integer orders in the classical analysis are a model that is not appropriate for nature, fractional 

computation in which arbitrary orders are studied helps us to obtain more practical 

approaches. 

 

Fractional integral operators in a variety of scientific disciplines have been investigated 

widely. Using the derivative’s fundamental limit formulation, a newly well-behaved 

straightforward fractional derivative known as the conformable derivative is improved in 

paper [11]. Some significant requirements that cannot be fulfilled by the Riemann-Liouville 

and Caputo definitions are fulfilled by the conformable derivative. However, in paper [2] the 

author proved that the conformable approach in [11] cannot yield good results when 

compared to the Caputo definition for specific functions. This flaw in the conformable 

definition was avoided by some extensions of the conformable approach [5, 17]. Based on 

these approaches, Jarad et al. obtained the definitions of conformable fractional integrals in 

[9]. Inspired by all these studies, fractional calculus attracts researchers every day. 

 

The Hermite-Hadamard inequality is one of the most famous inequalities for convex functions 

in the literature. Some refinements of the Hermite–Hadamard inequality via convex mappings 

have been extensively obtained by a number researchers (see, [3, 12]). In [4], Dragomir 

presented an improvement for the first inequality of Hermite–Hadamard inequality. In [15], 

mailto:hsyn.budak@gmail.com
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Yang and Hong obtained an improvement for the second inequality of the Hermite–Hadamard 

inequality. Sar kaya et al. acquired Hermite–Hadamard inequality involving Riemann-

Liouville fractional integrals in [13]. By using an identity for both sides of this inequality 

obtained by Sar kaya et al., Xiang proved a new extension of this inequality in [14]. Set et al. 

offered a new Hermite–Hadamard inequality including conformable fractional integrals in [8]. 

In this investigation, we will present a new improvement for the first inequality of this 

expression obtained by Set et al., with the help of Jensen’s inequality. We acquire a new 

extension for the second inequality of the Hermite–Hadamard type inequality based on 

conformable fractional integrals using the identity obtained by Xiang. 

 

2. PRELIMINARIES 

  

In order to create our main results, in this section, we present gamma function, beta function, 

definitions of Rieman-Liouville fractional integrals, and definitions of conformable fractional 

integrals. 

 

Definition 1. The gamma function and beta function are defined by  

 

 𝛤(𝑥):= ∫ 𝑡𝑥−1∞

0
𝑒−𝑡𝑑𝑡, 

and  

 𝐵(𝑥, 𝑦):= ∫ 𝑡𝑥−11

0
(1 − 𝑡)𝑦−1𝑑𝑡, 

 

respectivelly. Here, 0 < 𝑥, 𝑦 < ∞.  

 

In [10], Kilbas et al. gave fractional integrals, also namely Riemann-Liouville fractional 

integral operators as follows: 

 

Definition 2.  [10] For 𝑓 ∈ 𝐿1[𝑎, 𝑏], the Riemann-Liouville integrals of order 𝛽 > 0 are 

given by  

 

 𝐽𝑎+
𝛽

𝑓(𝑥) =
1

𝛤(𝛽)
∫ (𝑥 − 𝑡)𝛽−1𝑥

𝑎
𝑓(𝑡)𝑑𝑡,   𝑥 > 𝑎 (2.1) 

and 

 𝐽𝑏−
𝛽

𝑓(𝑥) =
1

𝛤(𝛽)
∫ (𝑡 − 𝑥)𝛽−1𝑏

𝑥
𝑓(𝑡)𝑑𝑡,   𝑥 < 𝑏, (2.2) 

 

respectively. The Riemann-Liouville integrals will be equal to their classical integrals for the 

condition 𝛽 = 1.  

 

In [9], Jarad et al. gave the following fractional conformable integral operators. 

 

Definition 3. [9] For 𝑓 ∈ 𝐿1[𝑎, 𝑏], the fractional conformable integral operator 𝛽𝐽𝑎+
𝛼 𝑓(𝑥) 

and 𝛽𝐽𝑏−
𝛼 𝑓(𝑥) of order𝛽 ∈ 𝐶, 𝑅𝑒(𝛽) > 0 and 𝛼 ∈ (0,1] are presented by  

 

  𝛽𝐽𝑎+
𝛼 𝑓(𝑥) =

1

𝛤(𝛽)
∫ (

(𝑥−𝑎)𝛼−(𝑡−𝑎)𝛼

𝛼
)
𝛽−1𝑥

𝑎

𝑓(𝑡)

(𝑡−𝑎)1−𝛼 𝑑𝑡,     𝑡 > 𝑎 (2.3) 
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and  

  𝛽𝐽𝑏−
𝛼 𝑓(𝑥) =

1

𝛤(𝛽)
∫ (

(𝑏−𝑥)𝛼−(𝑏−𝑡)𝛼

𝛼
)
𝛽−1𝑏

𝑥

𝑓(𝑡)

(𝑏−𝑡)1−𝛼 𝑑𝑡,     𝑡 < 𝑏, (2.4) 

 

respectively. 

 

Remark 1. If we consider 𝛼 = 1 in Definition 3, then Definition 3 reduces to Definition 2.  

  

For some recent results connected with fractional integral inequalities, see [1, 7] and the 

references cited therein. 

Set et al. achieved a new Hermite–Hadamard inequality with the help of the conformable 

fractional integral operators. 

 

Theorem 1. [8]Note that 𝑓 is a convex function on [𝑎, 𝑏]. Then the following inequality is 

satisfied. 

 

 𝑓 (
𝑎+𝑏

2
) ≤

𝛤(𝛽+1)𝛼𝛽

2(𝑏−𝑎)𝛼𝛽 [ 𝛽𝐽𝑏−
𝛼 𝑓(𝑎) +  𝛽𝐽𝑎+

𝛼 𝑓(𝑏)] ≤
𝑓(𝑎)+𝑓(𝑏)

2
. (2.5) 

 

Here, 𝛽 > 0,  𝛼 ∈ (0,1] and 𝛤 is gamma function.  

 

Theorem 2 (Weighted Jensen Inequality (WJI)). [6] Let 𝑓: [𝑎, 𝑏] → 𝑅 be a convex function 

and let also 𝜛: [𝑎, 𝑏] → 𝑅+ and 𝜙: [𝑎, 𝑏] → [𝑎, 𝑏] be two integrable functions. Then we have 

 

 𝑓 (
1

∫ 𝜛(𝑥)
𝑏
𝑎 𝑑𝑥

∫ 𝜛(𝑥)
𝑏

𝑎
𝜙(𝑥)𝑑𝑥) ≤

1

∫ 𝜛(𝑥)
𝑏
𝑎 𝑑𝑥

∫ 𝜛(𝑥)
𝑏

𝑎
𝑓(𝜙(𝑥))𝑑𝑥. 

  

 

Xiang obtained the following equality that we will use in our main result. 

 

Lemma 1. [16][14] Consider 𝑓: [𝑎, 𝑏] → 𝑅 is a convex mapping and 𝑟 be described by 

 

 𝑟(𝑢) =
1

2
[𝑓 ((

𝑎+𝑏

2
) −

𝑢

2
) + 𝑓 ((

𝑎+𝑏

2
) +

𝑢

2
)]. 

 

Then 𝑟 is convex, increasing on [0, 𝑏 − 𝑎] and for all 𝑢 ∈ [0, 𝑏 − 𝑎], 
 

 𝑓 (
𝑎+𝑏

2
) ≤ 𝑟(𝑢) ≤

𝑓(𝑎)+𝑓(𝑏)

2
. 

  

3. MAIN RESULTS 

 

In this section, we use conformable fractional integrals to obtain refinements of Hermite-

Hadamard type inequalities. 
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Theorem 3. Let 𝑓: [𝑎, 𝑏] → 𝑅 be a convex function and let 𝑊𝐵: [0,1] → 𝑅 be a function 

described by 

 

 𝑊𝐵(𝑡) =
𝛼𝛽𝛽

2(𝑏−𝑎)𝛼𝛽 ∫ 𝑓 (𝑡𝑥 + (1 − 𝑡)
𝑎+𝑏

2
)

𝑏

𝑎
𝛹(𝑥)𝑑𝑥. 

 

Here, 𝛼 ∈ [0,1], 𝛽 > 0, and 

 

 𝛹(𝑥) = [(
(𝑏−𝑎)𝛼−(𝑥−𝑎)𝛼

𝛼
)
𝛽−1

(𝑥 − 𝑎)𝛼−1 + (
(𝑏−𝑎)𝛼−(𝑏−𝑥)𝛼

𝛼
)
𝛽−1

(𝑏 − 𝑥)𝛼−1]. 

 

Then we have 

  

    1.  𝑊𝐵 is a convex mapping on [0,1]. 
 

    2.  We have the following inequality: 

 

 𝑓 (
𝑎+𝑏

2
) ≤ 𝑊𝐵(𝑡) ≤

𝛼𝛽𝛤(𝛽+1)

2(𝑏−𝑎)𝛼𝛽 [ 𝛽𝐽𝑏−
𝛼 𝑓(𝑎) +  𝛽𝐽𝑎+

𝛼 𝑓(𝑏)] (3.1) 

 

    3.  𝑊𝐵 is monotonically increasing on [0,1].  
  

Proof. 1. Let 𝑡1, 𝑡2 ∈ [0,1] and 𝜆, 𝛾 ∈ [0,1] with 𝜆 + 𝛾 = 1. Then we have 

 

 𝑊𝐵(𝜆𝑡1 + 𝛾𝑡2) 

 =
𝛼𝛽𝛽

2(𝑏−𝑎)𝛼𝛽 ∫ ((𝜆𝑡1 + 𝛾𝑡2)𝑥 + (1 − (𝜆𝑡1 + 𝛾𝑡2))
𝑎+𝑏

2
)

𝑏

𝑎
𝑓𝛹(𝑥)𝑑𝑥 

 =
𝛼𝛽𝛽

2(𝑏−𝑎)𝛼𝛽 ∫ 𝑓 (𝜆 (𝑡1𝑥 + (1 − 𝑡1)
𝑎+𝑏

2
) + 𝛾 (𝑡2𝑥 + (1 − 𝑡2)

𝑎+𝑏

2
))

𝑏

𝑎
𝛹(𝑥)𝑑𝑥. 

 

With the help of the convexity of 𝑓, we obtain  

 

 𝑊𝐵(𝜆𝑡1 + 𝛾𝑡2) 

 ≤
𝛼𝛽𝛽

2(𝑏−𝑎)𝛼𝛽 ∫ [𝜆𝑓 (𝑡1𝑥 + (1 − 𝑡1)
𝑎+𝑏

2
) + 𝛾𝑓 (𝑡2𝑥 + (1 − 𝑡2)

𝑎+𝑏

2
)]

𝑏

𝑎
𝛹(𝑥)𝑑𝑥 

 = 𝜆𝑊𝐵(𝑡1) + 𝛾𝑊𝐵(𝑡2) 
 

from wich we have 𝑊𝐵 is convex on [0,1]. 
 

2. Before employing the WJI, let’s denote the following expressions  

 

 𝜛(𝑥) 

 =
𝛼𝛽𝛽

2(𝑏−𝑎)𝛼𝛽 [(
(𝑏−𝑎)𝛼−(𝑥−𝑎)𝛼

𝛼
)
𝛽−1

(𝑥 − 𝑎)𝛼−1 + (
(𝑏−𝑎)𝛼−(𝑏−𝑥)𝛼

𝛼
)
𝛽−1

(𝑏 −

𝑥)𝛼−1] 



5
th 

INTERNATIONAL CONFERENCE  

ON MATHEMATICAL AND RELATED SCIENCES 

 ICMRS 2022 

27-30 OCTOBER, 2022 

 

Proceedings Book of ICMRS 2022 

 
58 

 =
𝛼𝛽𝛽

2(𝑏−𝑎)𝛼𝛽
𝛹(𝑥) 

 

and 

 

 𝜙(𝑥) = 𝑡𝑥 + (1 − 𝑡)
𝑎+𝑏

2
. 

 

With the help of the change of variables 𝑗 = (𝑏 − 𝑎)𝛼 − (𝑥 − 𝑎)𝛼 and 𝑘 = (𝑏 − 𝑎)𝛼 −
(𝑏 − 𝑥)𝛼, then we can write, 

 

 ∫ 𝛹(𝑥)
𝑏

𝑎
𝑑𝑥 = [∫ 𝑗𝛽−1𝑑𝑗

(𝑏−𝑎)𝛼

0
+ ∫ 𝑘𝛽−1𝑑𝑘

(𝑏−𝑎)𝛼

0
] (3.2) 

 =
2(𝑏−𝑎)𝛼𝛽

𝛼𝛽𝛽
. 

 

Thus, we obtain 

 

 ∫ 𝜛(𝑥)𝑑𝑥
𝑏

𝑎
= 1. 

In addition, we have 

 

 ∫ 𝑥𝛹(𝑥)
𝑏

𝑎
𝑑𝑥 (3.3) 

 = ∫ (𝑥 − 𝑎 + 𝑎)
𝑏

𝑎
(
(𝑏−𝑎)𝛼−(𝑥−𝑎)𝛼

𝛼
)
𝛽−1

(𝑥 − 𝑎)𝛼−1𝑑𝑥 

 +∫ (𝑥 − 𝑏 + 𝑏)
𝑏

𝑎
(
(𝑏−𝑎)𝛼−(𝑏−𝑥)𝛼

𝛼
)
𝛽−1

(𝑏 − 𝑥)𝛼−1𝑑𝑥 

 = ∫ (𝑥 − 𝑎)𝛼𝑏

𝑎
(
(𝑏−𝑎)𝛼−(𝑥−𝑎)𝛼

𝛼
)
𝛽−1

𝑑𝑥 + 𝑎
(𝑏−𝑎)𝛼𝛽

𝛼𝛽𝛽
 

 +𝑏
(𝑏−𝑎)𝛼𝛽

𝛼𝛽𝛽
− ∫ (𝑏 − 𝑥)𝛼𝑏

𝑎
(
(𝑏−𝑎)𝛼−(𝑏−𝑥)𝛼

𝛼
)
𝛽−1

𝑑𝑥 

 =
(𝑏−𝑎)𝛼𝛽

𝛼𝛽𝛽
(𝑎 + 𝑏). 

 

Using the equalities (3.2) and (3.3), we can arrive at the following equality 

 

 ∫ 𝜙(𝑥)
𝑏

𝑎
𝜛(𝑥)𝑑𝑥 

 =
𝛼𝛽𝛽

2(𝑏−𝑎)𝛼𝛽 ∫ (𝑡𝑥 + (1 − 𝑡)
𝑎+𝑏

2
)

𝑏

𝑎
𝛹(𝑥)𝑑𝑥 

 =
𝛼𝛽𝑡

2(𝑏−𝑎)𝛼𝛽 ∫ 𝑥𝛹(𝑥)𝑑𝑥
𝑏

𝑎
+

(𝑎+𝑏)(1−𝑡)𝛼𝛽

4(𝑏−𝑎)𝛼𝛽 ∫ 𝛹(𝑥)𝑑𝑥
𝑏

𝑎
 

 =
𝑎+𝑏

2
. 

 

By using WJI, we have 

 

 𝑊𝐵(𝑡) =
𝛼𝛽𝛽

2(𝑏−𝑎)𝛼𝛽 ∫ 𝑓 (𝑡𝑥 + (1 − 𝑡)
𝑎+𝑏

2
)

𝑏

𝑎
𝛹(𝑥)𝑑𝑥 
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 = ∫ 𝜛(𝑥)
𝑏

𝑎
𝑓(𝜙(𝑥))𝑑𝑥 

 ≥ ∫ 𝜛(𝑥)
𝑏

𝑎
𝑑𝑥 ⋅ 𝑓 (

1

∫ 𝜛(𝑥)
𝑏
𝑎 𝑑𝑥

∫ 𝜛(𝑥)
𝑏

𝑎
𝜙(𝑥)𝑑𝑥) 

 = 𝑓 (
𝑎+𝑏

2
) 

 

which completes the proof of first inequality of (3.1). 

 

For the proof of the second inequality in (3.1), by using convexity of 𝑓, we get 

 

 𝑊𝐵(𝑡) =
𝛼𝛽𝛽

2(𝑏−𝑎)𝛼𝛽 ∫ (𝑡𝑥 + (1 − 𝑡)
𝑎+𝑏

2
)

𝑏

𝑎
𝛹(𝑥)𝑑𝑥 

 ≤
𝛼𝛽𝛽

2(𝑏−𝑎)𝛼𝛽 ∫ 𝑡𝑓(𝑥)𝛹(𝑥)𝑑𝑥
𝑏

𝑎
+ (1 − 𝑡)𝑓 (

𝑎+𝑏

2
) 

 =
𝑡𝛼𝛽𝛤(𝛽+1)

2(𝑏−𝑎)𝛼𝛽 [ 𝛽𝐽𝑏−
𝛼 𝑓(𝑎) +  𝛽𝐽𝑎+

𝛼 𝑓(𝑏)] + (1 − 𝑡)𝑓 (
𝑎+𝑏

2
) 

 : = ϒ(𝑡). 
 

Taking the derivative of the function ϒ, 

 

 ϒ′(𝑡) =
𝛼𝛽𝛤(𝛽+1)

2(𝑏−𝑎)𝛼𝛽 [ 𝛽𝐽𝑏−
𝛼 𝑓(𝑎) +  𝛽𝐽𝑎+

𝛼 𝑓(𝑏)] − 𝑓 (
𝑎+𝑏

2
) 

 

It is also seen from the inequality (2.5) that ϒ′(𝑡) ≥ 0. So the function ϒ is increasing, such 

that 

 

 𝑊𝐵(𝑡) ≤ ϒ(𝑡) ≤ ϒ(1) =
𝛼𝛽𝛤(𝛽+1)

2(𝑏−𝑎)𝛼𝛽 [ 𝛽𝐽𝑏−
𝛼 𝑓(𝑎)+𝛽𝐽𝑎+

𝛼 𝑓(𝑏)]. 

 

Thus completes the proof of (3.1). 

3. Since 𝑊𝐵 is convex on [0,1], for 𝑡1, 𝑡2 ∈ [0,1] with 𝑡2 > 𝑡1, we obtain 

 

 
𝑊𝐵(𝑡2)−𝑊𝐵(𝑡1)

𝑡2−𝑡1
≥

𝑊𝐵(𝑡1)−𝑊𝐵(0)

𝑡1−0
=

𝑊𝐵(𝑡1)−𝑓(
𝑎+𝑏

2
)

𝑡1
. 

 

By first inequality in (3.1), we have 𝑊𝐵(𝑡1) ≥ 𝑓 (
𝑎+𝑏

2
), so we get 

 

 
𝑊𝐵(𝑡2)−𝑊𝐵(𝑡1)

𝑡2−𝑡1
≥ 0. 

 

That is, 𝑊𝐵(𝑡2) ≥ 𝛹(𝑡1). This gives that 𝑊𝐵 is monotonically increasing on [0,1]. 
 

So, the proof is accomplished.  

 

Theorem 4.  Let 𝑓 be described as in Theorem 3 and let 𝑊𝐾: [0,1] → 𝑅 is a function defined 

by 
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 𝑊𝐾(𝑡) 

 =
𝛼𝛽

4(𝑏−𝑎)𝛼𝛽 ∫ [𝑓 (
1+𝑡

2
𝑎 +

1−𝑡

2
𝑥) 𝛯1(𝑥) + 𝑓 (

1−𝑡

2
𝑎 +

1+𝑡

2
𝑥) 𝛯2(𝑥)]

𝑏

𝑎
𝑑𝑥 

where 

 𝛯1(𝑥) = (
(𝑏−𝑎)𝛼−(𝑏−

𝑎+𝑥

2
)
𝛼

𝛼
)

𝛽−1

(𝑏 −
𝑎+𝑥

2
)
𝛼−1

+ [
(𝑏−𝑎)𝛼−(

𝑥−𝑎

2
)
𝛼

𝛼
]

𝛽−1

(
𝑥−𝑎

2
)
𝛼−1

 

 𝛯2(𝑥) = (
(𝑏−𝑎)𝛼−(

𝑏−𝑥

2
)
𝛼

𝛼
)

𝛽−1

(
𝑏−𝑥

2
)
𝛼−1

+ [
(𝑏−𝑎)𝛼−(

𝑥+𝑏

2
−𝑎)

𝛼

𝛼
]

𝛽−1

(
𝑥+𝑏

2
− 𝑎)

𝛼−1

. 

Then we have  

  

    1.  𝑊𝐾 is a convex function on [0,1]. 
 

    2.  𝑊𝐾 is monotonically increasing on [0,1]. 
 

    3.  We have the following inequality 

 

 
𝛤(𝛽+1)𝛼𝛽

2(𝑏−𝑎)𝛼𝛽 [ 𝛽𝐽𝑏−
𝛼 𝑓(𝑎) +  𝛽𝐽𝑎+

𝛼 𝑓(𝑏)] ≤ 𝑊𝐾(𝑡) ≤
𝑓(𝑎)+𝑓(𝑏)

2
. 

  

Proof. 1. Let 𝑡1, 𝑡2 ∈ [0,1] and 𝜆, 𝛾 ∈ [0,1] with 𝜆 + 𝛾 = 1. Then we have 

 

 𝑊𝐾(𝜆𝑡1 + 𝛾𝑡2) 

 =
𝛼𝛽

4(𝑏−𝑎)𝛼𝛽 ∫ [𝑓 (
1+𝜆𝑡1+𝛾𝑡2

2
𝑎 +

1−𝜆𝑡1−𝛾𝑡2

2
𝑥) 𝛯1(𝑥)

𝑏

𝑎
 

 +𝑓 (
1−𝜆𝑡1−𝛾𝑡2

2
𝑎 +

1+𝜆𝑡1+𝛾𝑡2

2
𝑥) 𝛯2(𝑥)] 𝑑𝑥 

 =
𝛼𝛽

4(𝑏−𝑎)𝛼𝛽 ∫ 𝑓 (𝜆 ((
1+𝑡1

2
) 𝑎 + (

1−𝑡1

2
) 𝑥) + 𝛾 ((

1+𝑡2

2
) 𝑎 + (

1−𝑡2

2
) 𝑥))

𝑏

𝑎
[𝛯1(𝑥) 

 +𝑓 (𝜆 ((
1−𝑡1

2
) 𝑎 + (

1+𝑡1

2
) 𝑥) + 𝛾 ((

1−𝑡2

2
) 𝑎 + (

1+𝑡2

2
) 𝑥))𝛯2(𝑥)] 𝑑𝑥 

 

By using the convexity of 𝑓, then we have 

 

 𝑊𝐾(𝜆𝑡1 + 𝛾𝑡2) 

 ≤
𝛼𝛽

4(𝑏−𝑎)𝛼𝛽 ∫ {[𝜆𝑓 ((
1+𝑡1

2
) 𝑎 + (

1−𝑡1

2
) 𝑥) + 𝛾𝑓 ((

1+𝑡2

2
) 𝑎 + (

1−𝑡2

2
) 𝑥)] 𝛯1(𝑥)

𝑏

𝑎
 

 +[𝜆𝑓 ((
1−𝑡1

2
) 𝑎 + (

1+𝑡1

2
) 𝑥) + 𝛾𝑓 ((

1−𝑡2

2
) 𝑎 + (

1+𝑡2

2
) 𝑥)] 𝛯2(𝑥)} 𝑑𝑥 

 = 𝜆𝑊𝐾(𝑡1) + 𝛾𝑊𝐾(𝑡2). 
 

Hence, 𝑊𝐾 is convex on [0,1]. 
 

2. By elemantary calculus, we have  
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 𝑊𝐾(𝑡) 

 =
𝛼𝛽

4(𝑏−𝑎)𝛼𝛽 [∫ 𝑓 (
1+𝑡

2
𝑎 +

1−𝑡

2
𝑥)

𝑏

𝑎
𝛯1(𝑥)𝑑𝑥 + ∫ 𝑓 (

1−𝑡

2
𝑎 +

1+𝑡

2
𝑥)

𝑏

𝑎
𝛯2(𝑥)𝑑𝑥] 

 =
𝛼𝛽

4(𝑏−𝑎)𝛼𝛽 {∫ 𝑓 (𝑎 +
1−𝑡

2
𝑥)

𝑏−𝑎

0
 

 × [(
(𝑏−𝑎)𝛼−(𝑏−

𝑥+2𝑎

2
)
𝛼

𝛼
)

𝛽−1

(𝑏 −
𝑥+2𝑎

2
)
𝛼−1

 

 +[
(𝑏−𝑎)𝛼−(

𝑥

2
)
𝛼

𝛼
]

𝛽−1

(
𝑥

2
)
𝛼−1

𝑑𝑥] 

 +∫ 𝑓 (𝑏 −
1−𝑡

2
𝑥)

𝑏−𝑎

0
[(

(𝑏−𝑎)𝛼−(
𝑥

2
)
𝛼

𝛼
)

𝛽−1

(
𝑥

2
)
𝛼−1

 

 +[
(𝑏−𝑎)𝛼−(

2𝑏−𝑥

2
−𝑎)

𝛼

𝛼
]

𝛽−1

(
2𝑏−𝑥

2
− 𝑎)

𝛼−1

] 𝑑𝑥} 

 =
𝛼𝛽

4(𝑏−𝑎)𝛼𝛽 ∫ [𝑓 (𝑎 +
1−𝑡

2
𝑥) + 𝑓 (𝑏 −

1−𝑡

2
𝑥)]

𝑏−𝑎

0
𝛯3(𝑥)𝑑𝑥, 

 

where 

 

 𝛯3(𝑥) = (
(𝑏−𝑎)𝛼−(𝑏−

𝑥+2𝑎

2
)
𝛼

𝛼
)

𝛽−1

(𝑏 −
𝑥+2𝑎

2
)
𝛼−1

 

 +[
(𝑏−𝑎)𝛼−(

𝑥

2
)
𝛼

𝛼
]

𝛽−1

(
𝑥

2
)
𝛼−1

. 

 

It follows from Lemma 1 that 𝑟(𝑡) =
1

2
[𝑓 ((

𝑎+𝑏

2
) −

𝑡

2
) + 𝑓 ((

𝑎+𝑏

2
) +

𝑡

2
)] and 𝜌(𝑡) = 𝑏 − 𝑎 −

(1 − 𝑡)𝑥 are increasing on [0, 𝑏 − 𝑎] and [0,1], respectively. Hence 𝑟(𝜌(𝑡)) = 𝑓 (𝑎 +

(
1−𝑡

2
) 𝑥) + 𝑓 (𝑏 − (

1−𝑡

2
) 𝑥) is increasing on [0,1]. Since 𝛯3(𝑥) is nonegative, it follows that 

𝑊𝐾 is monotically increasing on [0,1]. 
 

3. Since 𝑊𝐾 is monotically increasing on [0,1], we get  

 

 
𝛤(𝛽+1)𝛼𝛽

2(𝑏−𝑎)𝛼𝛽 [ 𝛽𝐽𝑏−
𝛼 𝑓(𝑎) +  𝛽𝐽𝑎+

𝛼 𝑓(𝑏)] 

 = 𝑊𝐾(0) ≤ 𝑊𝐾(𝑡) ≤ 𝑊𝐾(1) 

 =
𝑓(𝑎)+𝑓(𝑏)

2
. 

 

So, the proof is completed.  

4. CONCLUSION 

In this current research, we present an extension of the Hermite-Hadamard inequality for the 

conformable fractional integrals. In the future, researchers can obtain new improvements of 



5
th 

INTERNATIONAL CONFERENCE  

ON MATHEMATICAL AND RELATED SCIENCES 

 ICMRS 2022 

27-30 OCTOBER, 2022 

 

Proceedings Book of ICMRS 2022 

 
62 

Hermite-Hadamard inequality for different types of fractional integrals by utilizing the 

methods and techniques used in this paper. What’s more, researchers can acquire new 

extensions of some inequalities obtained for different kinds of convexity, interval-valued 

functions, and quantum integrals. We hope that the ideas and techniques of this paper will 

inspire interested readers working in this field. 
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ABSTRACT 

 

In this study, we first introduce two mappings depending quantum integrals. Then we show 

that these functions are convex and monotonically increasing. We also prove some 

refinements of the left-hand sides of the  𝑞𝑎-Hermite-Hadamard inequality and  𝑞𝑏-

Hermite-Hadamard inequality. 

 

1. INTRODUCTION 

 

The Hermite-Hadamard inequality was proved by Hermite and Hadamard. It's one of the most 

recognized inequalities in the theory of convex functional analysis, which is stated as follows: 

Let  𝑓 : [𝑎, 𝑏] → 𝑅  be a convex mapping on  [𝑎, 𝑏] . Then 

 

                                    𝑓 (
𝑎+𝑏

2
) ≤

1

𝑏−𝑎
∫ 𝑓(𝑥)

𝑏

𝑎
𝑑𝑥 ≤

𝑓(𝑎)+𝑓(𝑏)

2
.                                           (1.1) 

 

If  𝑓  is concave, both inequalities hold in the reverse direction. Finding many studies in 

inequality theory, the quantum integral has gone through various searches by researchers to 

establish the quantum version of the famous Hermite-Hadamard inequality above. For the 

sake of brevity, let  𝑞 ∈ (0,1)  and we use the following notation (see, [7]): 

 

[𝑛]𝑞 =
1−𝑞𝑛

1−𝑞
= 1 + 𝑞 + 𝑞2+. . . +𝑞𝑛−1.  

 

 Definition 1.  [12] The left quantum derivative or  𝑞𝑎 -derivative of  𝑓  :  [𝑎, 𝑏] → 𝑅  at  

𝑥 ∈ [𝑎, 𝑏]  is expressed as:  

 

𝑎𝐷𝑞𝑓(𝑥) =
𝑓(𝑥)−𝑓(𝑞𝑥+(1−𝑞)𝑎)

(1−𝑞)(𝑥−𝑎)
, 𝑥 ≠ 𝑎.  

 

 Definition 2.  [3] The right quantum derivative or  𝑞𝑏 -derivative of  𝑓  :  [𝑎, 𝑏] → 𝑅  at  

𝑥 ∈ [𝑎, 𝑏]  is expressed as:  

 
𝑏𝐷𝑞𝑓(𝑥) =

𝑓(𝑞𝑥+(1−𝑞)𝑏)−𝑓(𝑥)

(1−𝑞)(𝑏−𝑥)
, 𝑥 ≠ 𝑏.  

 

 Definition 3. [12] The left quantum integral or  𝑞𝑎 -integral of  𝑓  :  [𝑎, 𝑏] → 𝑅  at  𝑥 ∈
[𝑎, 𝑏]  is defined as: 

mailto:hsyn.budak@gmail.com
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∫
𝑥

𝑎
𝑓(𝑡) 𝑎𝑑𝑞𝑡 = (1 − 𝑞)(𝑏 − 𝑎)∑ 𝑞𝑛∞

𝑛=0 𝑓(𝑞𝑛𝑥 + (1 − 𝑞𝑛)𝑎).  

 

 Definition 4.  [3] The right quantum integral or  𝑞𝑏 -integral of  𝑓  :  [𝑎, 𝑏] → 𝑅  at  𝑥 ∈
[𝑎, 𝑏]  is defined as: 

 

∫
𝑏

𝑥
𝑓(𝑡) 𝑏𝑑𝑞𝑡 = (1 − 𝑞)(𝑏 − 𝑎)∑ 𝑞𝑛∞

𝑛=0 𝑓(𝑞𝑛𝑥 + (1 − 𝑞𝑛)𝑏).  

 

In [2,3], Alp et al. and Bermudo et al. derive two different versions of  𝑞 -Hermite-Hadamard 

inequalities and some estimates with the help of the  𝑞 -derivatives and integrals. The  𝑞 -

Hermite-Hadamard inequalities are stated as: 

 

 Theorem 1. [2,3] For a convex mapping 𝑓: [𝑎, 𝑏] → 𝑅, the following inequalities hold: 

 

                  𝑓 (
𝑞𝑎+𝑏

[2]𝑞
) ≤

1

𝑏−𝑎
∫ 𝑓(𝑥)

𝑏

𝑎
 𝑎𝑑𝑞𝑥 ≤

𝑞𝑓(𝑎)+𝑓(𝑏)

[2]𝑞
,                                      (1.2) 

 

                     𝑓 (
𝑎+𝑞𝑏

[2]𝑞
) ≤

1

𝑏−𝑎
∫ 𝑓(𝑥)

𝑏

𝑎
 𝑏𝑑𝑞𝑥 ≤

𝑓(𝑎)+𝑞𝑓(𝑏)

[2]𝑞
.                                    (1.3) 

 

 Remark 1. It is very easy to observe that by adding (1.2) and (1.3), we have following  𝑞-

Hermite-Hadamard inequality (see, [3]): 

 

          𝑓 (
𝑎+𝑏

2
) ≤

1

2(𝑏−𝑎)
[∫ 𝑓(𝑥)

𝑏

𝑎
 𝑎𝑑𝑞𝑥 + ∫ 𝑓(𝑥)

𝑏

𝑎
 𝑏𝑑𝑞𝑥] ≤

𝑓(𝑎)+𝑓(𝑏)

2
.                       (1.4) 

 

Hereabout, Ali et al. [1] and Sitthiwirattham et al. [11] utilized calculates to present the 

following two different and new versions of Hermite-Hadamard type inequalities: 

 

 Theorem 2. [8,9] For a convex mapping 𝑓 : [𝑎, 𝑏] → 𝑅, the following inequalities hold: 

 

        𝑓 (
𝑎+𝑏

2
) ≤

1

𝑏−𝑎
[∫ 𝑓(𝑥)

𝑎+𝑏

2
𝑎

 
𝑎+𝑏

2 𝑑𝑞𝑥 + ∫ 𝑓(𝑥)
𝑏
𝑎+𝑏

2

 𝑎+𝑏

2

𝑑𝑞𝑥] ≤
𝑓(𝑎)+𝑓(𝑏)

2
,                        (1.5) 

 

                𝑓 (
𝑎+𝑏

2
) ≤

1

𝑏−𝑎
[∫ 𝑓(𝑥)

𝑎+𝑏

2
𝑎

 𝑎𝑑𝑞𝑥 + ∫ 𝑓(𝑥)
𝑏
𝑎+𝑏

2

 𝑏𝑑𝑞𝑥] ≤
𝑓(𝑎)+𝑓(𝑏)

2
.                      (1.6) 

 

 Remark 2. If we allow limit as 𝑞 → 1− in (1.2)-(1.6), then the inequalities (1.2)-(1.6) reduce 

to classical Hermite-Hadamard inequality (1.1). 

 

A lot of research has been done on 𝑞-integral inequalities with the help of different 

convexities. For instance, in [4], some new midpoint and trapezoidal type inequalities for 𝑞-

integrals and  𝑞 -differentiable convex functions were established. For more recent 

inequalities in 𝑞-calculus, one can consult [5, 8-10, 12, 13]. 

  The main goal of the paper is to define two functions including quantum integrals. Then we 

prove the convexity and monotony of these functions. With the help of the newly presented 
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functions, we also acquire some improvement of the left-hand sides of the inequalities of 𝑞𝑎-

Hermite-Hadamard type and inequality of 𝑞𝑏-Hermite-Hadamard type. 

 

2. MAIN RESULTS 

 

 In this section, we will define two functions including quantum integrals. We will prove how 

these functions are functions that improve the Hermite-Hadamard inequalities (1.5) and (1.6). 

 

 Theorem 3. Let  𝑓  : [𝑎, 𝑏] → 𝑅 be a convex function and let  Ψ : [0,1] → 𝑅  be a function 

defined by 

𝛹(𝑡) =
1

𝑏−𝑎
∫ 𝑓 (𝑡𝑥 + (1 − 𝑡)

(1+2𝑞)𝑎+𝑏

2[2]𝑞
)

𝑎+𝑏

2
𝑎

 𝑎𝑑𝑞𝑥 

+
1

𝑏−𝑎
∫ 𝑓 (𝑡𝑥 + (1 − 𝑡)

𝑎+(1+2𝑞)𝑏

2[2]𝑞
)

𝑏
𝑎+𝑏

2

 𝑏𝑑𝑞𝑥.  

Then we have; 

1) Ψ is convex on  [0,1].  
2) We have the following inequality: 

 

         𝑓 (
𝑎+𝑏

2
) ≤ 𝛹(𝑡) ≤

1

𝑏−𝑎
[∫ 𝑓(𝑥)

𝑎+𝑏

2
𝑎

 𝑎𝑑𝑞𝑥 + ∫ 𝑓(𝑥)
𝑏
𝑎+𝑏

2

 𝑏𝑑𝑞𝑥].          (2.1) 

 

3) Ψ is monotonically increasing on  [0,1].  
 

 Proof 1). Let  𝑡, 𝑠 ∈ [0,1]  and  𝛼, 𝛽 ∈ [0,1]  with  𝛼 + 𝛽 = 1.  Then we have 

 

𝛹(𝛼𝑡 + 𝛽𝑠) =
1

𝑏−𝑎
[∫ 𝑓 ((𝛼𝑡 + 𝛽𝑠)𝑥 + (1 − (𝛼𝑡 + 𝛽𝑠))

(1+2𝑞)𝑎+𝑏

2[2]𝑞
)

𝑎+𝑏

2
𝑎

 𝑎𝑑𝑞𝑥  

+∫ 𝑓 ((𝛼𝑡 + 𝛽𝑠)𝑥 + (1 − (𝛼𝑡 + 𝛽𝑠))
𝑎 + (1 + 2𝑞)𝑏

2[2]𝑞
)

𝑏

𝑎+𝑏
2

 𝑏𝑑𝑞𝑥]  

=
1

𝑏−𝑎
∫ 𝑓 (𝛼 (𝑡𝑥 + (1 − 𝑡)

(1+2𝑞)𝑎+𝑏

2[2]𝑞
)

𝑎+𝑏

2
𝑎

 +𝛽 (𝑠𝑥 + (1 − 𝑠)
(1+2𝑞)𝑎+𝑏

2[2]𝑞
))  𝑎𝑑𝑞𝑥  

+
1

𝑏−𝑎
∫ 𝑓 (𝛼 (𝑡𝑥 + (1 − 𝑡)

𝑎+(1+2𝑞)𝑏

2[2]𝑞
)

𝑏
𝑎+𝑏

2

 +𝛽 (𝑠𝑥 + (1 − 𝑠)
𝑎+(1+2𝑞)𝑏

2[2]𝑞
))  𝑏𝑑𝑞𝑥.  

 

By using the convexity of 𝑓, we derive 

 

𝛹(𝛼𝑡 + 𝛽𝑠) ≤
1

𝑏−𝑎
∫ [𝛼𝑓 (𝑡𝑥 + (1 − 𝑡)

(1+2𝑞)𝑎+𝑏

2[2]𝑞
)

𝑎+𝑏

2
𝑎

 +𝛽𝑓 (𝑠𝑥 + (1 − 𝑠)
(1+2𝑞)𝑎+𝑏

2[2]𝑞
)]  𝑎𝑑𝑞𝑥  

+
1

𝑏−𝑎
∫ [𝛼𝑓 (𝑡𝑥 + (1 − 𝑡)

𝑎+(1+2𝑞)𝑏

2[2]𝑞
)

𝑏
𝑎+𝑏

2

 +𝛽𝑓 (𝑠𝑥 + (1 − 𝑠)
𝑎+(1+2𝑞)𝑏

2[2]𝑞
)]  𝑏𝑑𝑞𝑥  

=
𝛼

𝑏−𝑎
∫ 𝑓 (𝑡𝑥 + (1 − 𝑡)

(1+2𝑞)𝑎+𝑏

2[2]𝑞
)

𝑎+𝑏

2
𝑎

 𝑎𝑑𝑞𝑥 +
𝛼

𝑏−𝑎
∫ 𝑓 (𝑡𝑥 + (1 − 𝑡)

𝑎+(1+2𝑞)𝑏

2[2]𝑞
)

𝑏
𝑎+𝑏

2

 𝑏𝑑𝑞𝑥  
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+
𝛽

𝑏−𝑎
∫ 𝑓 (𝑠𝑥 + (1 − 𝑠)

(1+2𝑞)𝑎+𝑏

2[2]𝑞
)

𝑎+𝑏

2
𝑎

 𝑎𝑑𝑞𝑥 +
𝛽

𝑏−𝑎
∫ 𝑓 (𝑠𝑥 + (1 − 𝑠)

𝑎+(1+2𝑞)𝑏

2[2]𝑞
)

𝑏
𝑎+𝑏

2

 𝑏𝑑𝑞𝑥  

       = 𝛼𝛹(𝑡) + 𝛽𝛹(𝑠).                                                                                                                                         
                  

Hence, Ψ is convex on  [0,1].  
 

2). By Definition of  𝑞𝑎-integral and  𝑞𝑏-integral, we have 

 

𝛹(𝑡) =
1

𝑏−𝑎
∫ 𝑓 (𝑡𝑥 + (1 − 𝑡)

(1+2𝑞)𝑎+𝑏

2[2]𝑞
)

𝑎+𝑏

2
𝑎

 𝑎𝑑𝑞𝑥 

+
1

𝑏−𝑎
∫ 𝑓 (𝑡𝑥 + (1 − 𝑡)

𝑎+(1+2𝑞)𝑏

2[2]𝑞
)

𝑏
𝑎+𝑏

2

 𝑏𝑑𝑞𝑥  

=
1−𝑞

2
∑ 𝑞𝑛∞

𝑛=0 𝑓 (𝑡 (𝑞𝑛 𝑎+𝑏

2
+ (1 − 𝑞𝑛)𝑎) + (1 − 𝑡)

(1+2𝑞)𝑎+𝑏

2[2]𝑞
)  

+
1−𝑞

2
∑ 𝑞𝑛∞

𝑛=0 𝑓 (𝑡 (𝑞𝑛 𝑎+𝑏

2
+ (1 − 𝑞𝑛)𝑏) + (1 − 𝑡)

𝑎+(1+2𝑞)𝑏

2[2]𝑞
).  

 

Since ∑ (1 − 𝑞)𝑞𝑛∞
𝑛=0 = 1, by using Jensen inequality, we establish  

 

𝛹(𝑡) ≥
1

2
𝑓 (∑ (1 − 𝑞)𝑞𝑛∞

𝑛=0 (𝑡 (
𝑞𝑛𝑏

2
+

(2−𝑞𝑛)𝑎

2
) + (1 − 𝑡)

(1+2𝑞)𝑎+𝑏

2[2]𝑞
))   

+
1

2
𝑓 (∑ (1 − 𝑞)𝑞𝑛∞

𝑛=0 (𝑡 (
𝑞𝑛𝑎

2
+

(2−𝑞𝑛)𝑏

2
) + (1 − 𝑡)

𝑎+(1+2𝑞)𝑏

2[2]𝑞
))   

=
1

2
𝑓 (𝑡 (

𝑏

2[2]𝑞
+

(1+2𝑞)𝑎

2[2]𝑞
) + (1 − 𝑡)

(1+2𝑞)𝑎+𝑏

2[2]𝑞
)  +

1

2
𝑓 (𝑡 (

𝑎

2[2]𝑞
+

(1+2𝑞)𝑏

2[2]𝑞
) + (1 −

𝑡)
𝑎+(1+2𝑞)𝑏

2[2]𝑞
)  

=
1

2
[𝑓 (

(1+2𝑞)𝑎+𝑏

2[2]𝑞
) + 𝑓 (

𝑎+(1+2𝑞)𝑏

2[2]𝑞
)]                                                              

≥ 𝑓 (
𝑎+𝑏

2
)                                                                                     

 

which proves first inequality in (2.1). For the proof of second inequality, by using convexity 

of 𝑓, we get 

𝛹(𝑡) =
1

𝑏−𝑎
∫ 𝑓 (𝑡𝑥 + (1 − 𝑡)

(1+2𝑞)𝑎+𝑏

2[2]𝑞
)

𝑎+𝑏

2
𝑎

 𝑎𝑑𝑞𝑥 

+
1

𝑏−𝑎
∫ 𝑓 (𝑡𝑥 + (1 − 𝑡)

𝑎+(1+2𝑞)𝑏

2[2]𝑞
)

𝑏
𝑎+𝑏

2

 𝑏𝑑𝑞𝑥  

≤
1

𝑏−𝑎
∫ [𝑡𝑓(𝑥) + (1 − 𝑡)𝑓 (

(1+2𝑞)𝑎+𝑏

2[2]𝑞
)]

𝑎+𝑏

2
𝑎

 𝑎𝑑𝑞𝑥  

+
1

𝑏−𝑎
∫ [𝑡𝑓(𝑥) + (1 − 𝑡)𝑓 (

𝑎+(1+2𝑞)𝑏

2[2]𝑞
)]

𝑏
𝑎+𝑏

2

 𝑏𝑑𝑞𝑥  

=
𝑡

𝑏−𝑎
(∫ 𝑓(𝑥)

𝑎+𝑏

2
𝑎

 𝑎𝑑𝑞𝑥 + ∫ 𝑓(𝑥)
𝑏
𝑎+𝑏

2

 𝑏𝑑𝑞𝑥) +
1−𝑡

2
[𝑓 (

(1+2𝑞)𝑎+𝑏

2[2]𝑞
) + 𝑓 (

𝑎+(1+2𝑞)𝑏

2[2]𝑞
)]  

: = 𝑤(𝑡).                                                                                                                 
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By applying the inequalities (1.2) and (1.3) for the intervals [𝑎,
𝑎+𝑏

2
] and [

𝑎+𝑏

2
, 𝑏], 

respectively, we have the inequalities 

             𝑓 (
(1+2𝑞)𝑎+𝑏

2[2]𝑞
) ≤

2

𝑏−𝑎
∫ 𝑓(𝑥)

𝑎+𝑏

2
𝑎

 𝑎𝑑𝑞𝑥                                 (2.2) 

and  

             𝑓 (
𝑎+(1+2𝑞)𝑏

2[2]𝑞
) ≤

2

𝑏−𝑎
∫ 𝑓(𝑥)

𝑏
𝑎+𝑏

2

 𝑏𝑑𝑞𝑥.                                  (2.3) 

 

It is clear from the inequalities (2.2) and (2.3) that 𝑤 is monotonically increasing on [0,1]. 
Therefore we have 

 

𝛹(𝑡) ≤ 𝑤(𝑡) ≤ 𝑤(1) =
1

𝑏−𝑎
[∫

𝑎+𝑏

2
𝑎

𝑓(𝑥) 𝑎𝑑𝑞𝑥 + ∫ 𝑓(𝑥)
𝑏
𝑎+𝑏

2

 𝑏𝑑𝑞𝑥].  

 

This finishes the proof of (2.1). 

 

3). Since  Ψ  is convex on  [0,1],  for  𝑡1, 𝑡2 ∈ [0,1]  with  𝑡2 > 𝑡1,  we obtain  

 
𝛹(𝑡2)−𝛹(𝑡1)

𝑡2−𝑡1
≥

𝛹(𝑡1)−𝛹(0)

𝑡1−0
=

1

𝑡1
(𝛹(𝑡1) −

1

2
[𝑓 (

(1+2𝑞)𝑎+𝑏

2[2]𝑞
) + 𝑓 (

𝑎+(1+2𝑞)𝑏

2[2]𝑞
)])  ≥

1

𝑡1
(𝛹(𝑡1) −

𝑓 (
𝑎+𝑏

2
)).                   (2.4)         

       

The last inequality in (2.4) is clear from the convexity of 𝑓. By first inequality in (2.1), we 

have  Ψ(𝑡1) ≥ 𝑓 (
𝑎+𝑏

2
) , so we get  

 
𝛹(𝑡2)−𝛹(𝑡1)

𝑡2−𝑡1
≥ 0.  

 

That is  Ψ(𝑡2) ≥ Ψ(𝑡1) . This gives that  Ψ  monotonically increasing on  [0,1].  
 

 Theorem 4. Let  𝑓 : [𝑎, 𝑏] → 𝑅  be a convex function and let  ϒ : [0,1] → 𝑅  be a mapping 

defined by 

ϒ(𝑡) =
1

𝑏−𝑎
∫ 𝑓 (𝑡𝑥 + (1 − 𝑡)

(2+𝑞)𝑎+𝑞𝑏

2[2]𝑞
)

𝑎+𝑏

2
𝑎

 
𝑎+𝑏

2 𝑑𝑞𝑥 

+
1

𝑏−𝑎
∫ 𝑓 (𝑡𝑥 + (1 − 𝑡)

𝑞𝑎+(2+𝑞)𝑏

2[2]𝑞
)

𝑏
𝑎+𝑏

2

 𝑎+𝑏

2

𝑑𝑞𝑥  

 

Then we have; 

1)  ϒ  is convex on  [0,1].  
2) We have the following inequality: 

 

                                       𝑓 (
𝑎+𝑞𝑏

[2]𝑞
) ≤ ϒ(𝑡) ≤

1

𝑏−𝑎
∫ 𝑓(𝑥)

𝑏

𝑎
 𝑏𝑑𝑞𝑥.                                 (2.5) 
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3) ϒ  is monotonically increasing on  [0,1].  
 

 Proof 1). Let us consider  𝑡, 𝑠 ∈ [0,1]  and  𝛼, 𝛽 ∈ [0,1]  with  𝛼 + 𝛽 = 1.  Then we get 

 

ϒ(𝛼𝑡 + 𝛽𝑠) =
1

𝑏−𝑎
∫ 𝑓 ((𝛼𝑡 + 𝛽𝑠)𝑥 + (1 − (𝛼𝑡 + 𝛽𝑠))

(2+𝑞)𝑎+𝑞𝑏

2[2]𝑞
)

𝑎+𝑏

2
𝑎

 
𝑎+𝑏

2 𝑑𝑞𝑥  

+
1

𝑏−𝑎
∫ 𝑓 ((𝛼𝑡 + 𝛽𝑠)𝑥 + (1 − (𝛼𝑡 + 𝛽𝑠))

𝑞𝑎+(2+𝑞)𝑏

2[2]𝑞
)

𝑏
𝑎+𝑏

2

 𝑎+𝑏

2

𝑑𝑞𝑥  

=
1

𝑏−𝑎
∫ 𝑓 (𝛼 (𝑡𝑥 + (1 − 𝑡)

(2+𝑞)𝑎+𝑞𝑏

2[2]𝑞
)

𝑎+𝑏

2
𝑎

 +𝛽 (𝑠𝑥 + (1 − 𝑠)
(2+𝑞)𝑎+𝑞𝑏

2[2]𝑞
))  

𝑎+𝑏

2 𝑑𝑞𝑥  

+
1

𝑏−𝑎
∫ 𝑓 (𝛼 (𝑡𝑥 + (1 − 𝑡)

𝑞𝑎+(2+𝑞)𝑏

2[2]𝑞
)

𝑏
𝑎+𝑏

2

 +𝛽 (𝑠𝑥 + (1 − 𝑠)
𝑞𝑎+(2+𝑞)𝑏

2[2]𝑞
))  𝑎+𝑏

2

𝑑𝑞𝑥.  

 

Since  𝑓  is convex on  [𝑎, 𝑏] , we can write 

 

ϒ(𝛼𝑡 + 𝛽𝑠) ≤
1

𝑏−𝑎
∫ [𝛼𝑓 (𝑡𝑥 + (1 − 𝑡)

(2+𝑞)𝑎+𝑞𝑏

2[2]𝑞
)

𝑎+𝑏

2
𝑎

 +𝛽𝑓 (𝑠𝑥 + (1 − 𝑠)
(2+𝑞)𝑎+𝑞𝑏

2[2]𝑞
)]  

𝑎+𝑏

2 𝑑𝑞𝑥  

+
1

𝑏−𝑎
∫ [𝛼𝑓 (𝑡𝑥 + (1 − 𝑡)

𝑞𝑎+(2+𝑞)𝑏

2[2]𝑞
)

𝑏
𝑎+𝑏

2

 +𝛽𝑓 (𝑠𝑥 + (1 − 𝑠)
𝑞𝑎+(2+𝑞)𝑏

2[2]𝑞
)]  𝑎+𝑏

2

𝑑𝑞𝑥  

= 𝛼ϒ(𝑡) + 𝛽ϒ(𝑠).                                                                                                         
 

Therefore, ϒ  is convex on  [0,1].  
 

2). Since  ∑ (1 − 𝑞)𝑞𝑛∞
𝑛=0 = 1,  by using Jensen inequality, we establish 

 

ϒ(𝑡) =
1

𝑏−𝑎
∫ 𝑓 (𝑡𝑥 + (1 − 𝑡)

(2+𝑞)𝑎+𝑞𝑏

2[2]𝑞
)

𝑎+𝑏

2
𝑎

 
𝑎+𝑏

2 𝑑𝑞𝑥 

+
1

𝑏−𝑎
∫ 𝑓 (𝑡𝑥 + (1 − 𝑡)

𝑞𝑎+(2+𝑞)𝑏

2[2]𝑞
)

𝑏
𝑎+𝑏

2

 𝑎+𝑏

2

𝑑𝑞𝑥  

=
(1−𝑞)

2
∑ 𝑞𝑛∞

𝑛=0 𝑓 (𝑡 (𝑞𝑛𝑎 + (1 − 𝑞𝑛)
𝑎+𝑏

2
) + (1 − 𝑡)

(2+𝑞)𝑎+𝑞𝑏

2[2]𝑞
)  

+
(1−𝑞)

2
∑ 𝑞𝑛∞

𝑛=0 𝑓 (𝑡 (𝑞𝑛𝑏 + (1 − 𝑞𝑛)
𝑎+𝑏

2
) + (1 − 𝑡)

𝑞𝑎+(2+𝑞)𝑏

2[2]𝑞
)   

≥
1

2
𝑓 (∑ (1 − 𝑞)𝑞𝑛∞

𝑛=0 (𝑡 (
1+𝑞𝑛

2
𝑎 +

1−𝑞𝑛

2
𝑏) + (1 − 𝑡)

(2+𝑞)𝑎+𝑞𝑏

2[2]𝑞
))  

+
1

2
𝑓 (∑ (1 − 𝑞)𝑞𝑛∞

𝑛=0 (𝑡 (
1+𝑞𝑛

2
𝑏 +

1−𝑞𝑛

2
𝑎) + (1 − 𝑡)

𝑞𝑎+(2+𝑞)𝑏

2[2]𝑞
))  

=
1

2
𝑓 (𝑡 (

(2+𝑞)𝑎+𝑞𝑏

2[2]𝑞
) + (1 − 𝑡)

(2+𝑞)𝑎+𝑞𝑏

2[2]𝑞
) +

1

2
𝑓 (𝑡 (

(2+𝑞)𝑏+𝑞𝑎

2[2]𝑞
) + (1 − 𝑡)

𝑞𝑎+(2+𝑞)𝑏

2[2]𝑞
)  

=
1

2
[𝑓 (

(2+𝑞)𝑎+𝑞𝑏

2[2]𝑞
) + 𝑓 (

(2+𝑞)𝑏+𝑞𝑎

2[2]𝑞
)]                                                                              

≥ 𝑓 (
𝑎+𝑞

2
).                                                                                                                 

 

 This proves first inequality in (2.5). Since 𝑓 is convex on [𝑎, 𝑏],  we have 
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ϒ(𝑡) =
1

𝑏−𝑎
∫ 𝑓 (𝑡𝑥 + (1 − 𝑡)

(2+𝑞)𝑎+𝑞𝑏

2[2]𝑞
)

𝑎+𝑏

2
𝑎

 
𝑎+𝑏

2 𝑑𝑞𝑥 

+
1

𝑏−𝑎
∫ 𝑓 (𝑡𝑥 + (1 − 𝑡)

𝑞𝑎+(2+𝑞)𝑏

2[2]𝑞
)

𝑏
𝑎+𝑏

2

 𝑎+𝑏

2

𝑑𝑞𝑥  

≤
1

𝑏−𝑎
∫ [𝑡𝑓(𝑥) + (1 − 𝑡)𝑓 (

(2+𝑞)𝑎+𝑞𝑏

2[2]𝑞
)]

𝑎+𝑏

2
𝑎

 
𝑎+𝑏

2 𝑑𝑞𝑥 

+
1

𝑏−𝑎
∫ [𝑡𝑓(𝑥) + (1 − 𝑡)𝑓 (

𝑞𝑎+(2+𝑞)𝑏

2[2]𝑞
)]

𝑏
𝑎+𝑏

2

 𝑎+𝑏

2

𝑑𝑞𝑥  

=
𝑡

𝑏−𝑎
[∫ 𝑓(𝑥)

𝑎+𝑏

2
𝑎

 
𝑎+𝑏

2 𝑑𝑞𝑥 + ∫ 𝑓(𝑥)
𝑏
𝑎+𝑏

2

 𝑎+𝑏

2

𝑑𝑞𝑥] +
1−𝑡

2
[𝑓 (

(2+𝑞)𝑎+𝑞𝑏

2[2]𝑞
) + 𝑓 (

𝑞𝑎+(2+𝑞)𝑏

2[2]𝑞
)] 

: = 𝑔(𝑡). 
 

It is clear from the inequality (1.2) and (1.3) that  𝑔  is monotonically increasing on  [0,1].  
Therefore we have 

 

ϒ(𝑡) ≤ 𝑔(𝑡) ≤ 𝑔(1) =
1

𝑏−𝑎
[∫ 𝑓(𝑥)

𝑎+𝑏

2
𝑎

 
𝑎+𝑏

2 𝑑𝑞𝑥 + ∫ 𝑓(𝑥)
𝑏
𝑎+𝑏

2

 𝑎+𝑏

2

𝑑𝑞𝑥].  

 

This finishes the proof of (2.5). 

 

3). Since  ϒ  is convex on  [0,1],  for  𝑡1, 𝑡2 ∈ [0,1]  with  𝑡2 > 𝑡1,  we obtain 

 

ϒ(𝑡2)−ϒ(𝑡1)

𝑡2−𝑡1
≥

ϒ(𝑡1)−ϒ(0)

𝑡1−0
=

ϒ(𝑡1)−𝑓(
𝑎+𝑞𝑏

[2]𝑞
)

𝑡1
.  

 

By the first inequality in (2.5), we have  ϒ(𝑡1) ≥ 𝑓 (
𝑎+𝑞𝑏

[2]𝑞
) , so we get 

 
ϒ(𝑡2)−ϒ(𝑡1)

𝑡2−𝑡1
≥ 0.  

 

That is,  ϒ(𝑡2) ≥ ϒ(𝑡1). This gives that ϒ is monotonically increasing on  [0,1].  
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ABSTRACT 

The public health is at risk due to the bacillus Mycobacterium tuberculosis infection that 

causes tuberculosis (TB). TB-infected individuals typically spread the disease through the air 

when they speak, sneeze, cough, or spit. This illness affects the human body's lungs the most 

frequently, but it can also spread to other organs like the brain, spine, kidneys, and central 

nervous system. In this context, the analysis of the TB mathematical model will be made 

through fractional derivative operators. The solution of the existence of the model to be 

extended to the fractional derivative operator will be examined. Then, the uniqueness of the 

solution of the mathematical model will be investigated. 

1. INTRODUCTION 

Diseases that spread quickly across large geographic areas are known as epidemics. For 

thousands of years, these diseases have been a significant issue for humanity. To examine 

how these diseases arise, mathematical models have been developed. This can give 

information on the disease's pace of spread, its contagiousness, the total number of cases, and 

the estimated total number of fatalities brought on by the sickness.  

A contagious illness called tuberculosis can infect your lungs or other tissues. The organs 

most frequently affected by it are the lungs, but it can also harm your spine, brain, or kidneys. 

The Latin root of the word "tuberculosis" means "nodule" or "anything that stands out." A 

second name for tuberculosis is TB. Not everyone who contracts TB becomes ill, but if you 

do, you need to get treated. If you have the bacterium but no symptoms, you have latent 

tuberculosis, also known as dormant tuberculosis (also called latent TB). Although it may 

appear that TB has disappeared, it is actually dormant (sleeping) inside your body. You have 

active tuberculosis or tuberculosis if you are infected, experience symptoms, and are 

spreadable. 

In this study, we will analyze the tuberculosis mathematical model using the fractional 

derivative operator. First, we will extend the mathematical model to the fractional derivative 

operator. We will then examine the existence and uniqueness of the solution of the model. 
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2. PRELIMINARIES 

        Descriptions and theorems regarding the non-singular fractional Caputo-Fabrizio 

operator are presented in this part. Please see [1,2,3] articles for more detailed information. 

 Definition 2.1. The well-known fractional order Caputo derivative is defined as follows [1], 

let 𝑓 ∈ 𝐻1(𝑎, 𝑏) 

𝐷𝑡
𝜌
𝑓(𝑡) =

1

Γ(𝑛 − 𝜌)
∫

𝑓(𝑛)(𝑟)

(𝑡 − 𝑟)𝜌+1−𝑛

𝑡

𝑎
𝑎
𝐶 , 

 

   (2.1) 

where 𝑛 − 1 < 𝜌 < 𝑛 ∈ 𝑁.  

Definition 2.2. Let 𝑓 ∈ 𝐻1(𝑎, 𝑏), 0 < 𝜌 < 1. The new Caputo fractional derivative is defined 

as follows [2],   

 

                             𝐷𝑡
𝜌
𝑓(𝑡) =

𝜌𝑀(𝜌)

1 − 𝜌
∫

𝑑𝑓(𝑥)

𝑑𝑥
 𝑒𝑥𝑝 [𝜌

𝑥 − 𝑡

1 − 𝜌
] 𝑑𝑥,

𝑡

𝑎
𝑎

𝐶𝐹  
 

    (2.2) 

Here 𝑀(𝜌) is a normalization constant. Also 𝑀(0) and 𝑀(1) are equal to 1. Further it can be 

written below, if the 𝑓 does not belong to 𝐻1(𝑎, 𝑏). 

 

𝐷𝑡
𝜌
𝑓(𝑡) =

𝜌𝑀(𝜌)

1−𝜌
∫ (𝑓(𝑡) − 𝑓(𝑥))𝑒𝑥𝑝 [𝜌

𝑥−𝑡

1−𝜌
] 𝑑𝑥

𝑡

𝑎𝑎
𝐶𝐹 .    (2.3) 

 

Definition 2.3. Let 𝑓 ∈ 𝐻1(𝑎, 𝑏), 0 < 𝜌 < 1. The Caputo-Fabrizio fractional derivative of 

order 𝑓  is as follows [3],  

𝐷⋆
𝜌
𝑓(𝑡) =

1

1 − 𝜌
∫ 𝑓′(𝑥)𝑒𝑥𝑝 [𝜌

𝑥 − 𝑡

1 − 𝜌
] 𝑑𝑥.

𝑡

𝑎

𝐶𝐹      (2.4) 

 

Definition 2.4. Let 0 < 𝜌 < 1. The fractional integral order 𝜌 of a function 𝑓 is defined by 

[3], 

𝐼
𝜌
𝑓(𝑡) =

2(1 − 𝜌)

(2 − 𝜌)𝑀(𝜌)
𝑢(𝑡) +

2𝜌

(2 − 𝜌)𝑀(𝜌)
∫ 𝑢(𝑠)𝑑𝑠

𝑡

𝑎

 
      

(2.5) 

3. MAIN RESULTS 

The original normalized TB virus model can be described by the following equations [4]: 
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RT
dt

dR

TI
dt

dT

ITL
dt

dI

TL
N

SI

dt

dL

S
N

SI

dt

dS























)(

)(

)1()(

2

1

          (3.1) 

 

We present the proposed fractional model to describe the dynamics of TB infection. To 

develop the model, total human population is divided into five epidemiological sub- 

compartments denoted by susceptible S(t ), Exposed L(t ), TB active I(t ), under treatment T (t 

), and recovered individuals after treatment R(t ). 

 

Equations could be written as in the form of Caputo Fabrizio fractional derivative: 

     

RTtRD

TItTD

ITLtID

TL
N

SI
tLD

S
N

SI
tSD

aCF

t

aCF

t

aCF

t

aCF

t

aCF

t























)(

)()(

)()(

)1()()(

)(

0

20

10

0

0

   (3.2) 

In this section we will give the existence and uniqueness of the solutions [5]. Now applying 

the fractional integral in equation (3.2), and let initial values are S0(0) = S(0),  L0(0) = L(0),  

I0(0) = I(0), T0(0) = T (0),  R0(0) = R(0). now we obtain the following, 

 

 

 

 

 

 

 

 

 

 

(3.3) 

 

 

dyyRyT
aaMaM

a

tRtT
aaMaM

a
RtR

dyyTyI
aaMaM

a

tTtI
aaMaM

a
TtT

dyyIyTyL
aaMaM

a

tItTtL
aaMaM

a
ItI

dyyTyL
N

yIyS

aaMaM

a

tTtL
N

tItS

aaMaM

a
LtL

dyyS
N

yIyS

aaMaM

a

tS
N

tItS

aaMaM

a
StS

t

t

t

t

t

))()((
)()(2

2

))()((
)()(2

)1(2
)0()(

))()()((
)()(2

2

))()()((
)()(2

)1(2
)0()(

))()()()((
)()(2

2

))()()()((
)()(2

)1(2
)0()(

)()1)(()(
)()(

)()(2

2

)))()1)(()(
)()(

(
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)1(2
)0()(
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)()(
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For simplicity, we define function 𝐴𝑖  and some constants γi,   i = 1,… ,5     

)()(),(

)()()(),(

)()()()(),(

)()1)(()(
)()(

),(

)(
)()(

),(

5

24

13

2

1

tRtTRtA

tTtITtA

tItTtLItA

tTtL
N

tItS
LtA

tS
N

tItS
StA























                  (3.4) 
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For proving our results for the following continuous functions     𝐹: 𝑆(𝑡), 𝑆1(𝑡), 𝐿(𝑡),   𝐿1(𝑡),
𝐼(𝑡), 𝐼1(𝑡), 𝑇(𝑡), 𝑇1(𝑡), 𝑅(𝑡) 𝑎𝑛𝑑 𝑅1(𝑡),   such that, ‖𝑆(𝑡)‖ ≤ 𝜀1  , 

‖𝐿(𝑡)‖ ≤ 𝜀2, ‖𝐼(𝑡)‖ ≤

𝜀3,‖𝑇(𝑡)‖ ≤ 𝜀4   𝑎𝑛𝑑 ‖𝑅(𝑡)‖ ≤ 𝜀5   . 

Theorem 3.1. The kernels 𝐴𝑖,𝑖=1,..,5 are satisfying the Lipschitz condition if the contractions 

provided 𝛾𝑖 < 1 , 𝑖 = 1, . . ,5. 

Proof. First, we prove that 𝐴1(𝑡, 𝑆) satisfies Lipschitz condition. For S(t) and 𝑆1(𝑡) using 

equation  (3.4) we have, 

 

 

 

  

   

(3.6) 
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If we do exact same thing for A3, A4, A5 they also satisfied the Lipschitz condition. And they 

are contractions with γi < 1, i = 1, . . . , 5. This completes the proof. 

By using kernels Ai and taking all initial values equal zero we rewrite the system given by 

equation (3.3). Then we define recursive formulas of this new system. Furthermore, we 

consider the differences and by taking the norm both sides of difference equations, we have, 
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Theorem 3.2. If   satisfies the condition down below then there is a solution.  

                                � = max{𝛾𝑖} < 1, i = 1,2, … ,5   (3.9) 

Proof. We define the functions 
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Then, for 𝐸1𝑛(𝑡), we get 



5
th 

INTERNATIONAL CONFERENCE  

ON MATHEMATICAL AND RELATED SCIENCES 

 ICMRS 2022 

27-30 OCTOBER, 2022 

 

Proceedings Book of ICMRS 2022 

 
76 

.
)()(2

2

)()(2

)1(2

)()(2

2

)()(2

)1(2

))(,())(,(
)()(2

2

))(,())(,(
)()(2

)1(2
)(

1

1

0

111

1111

SS
aaMaM

a

aaMaM

a

SS
aaMaM

a

aaMaM

a

dyySyAySyA
aaMaM

a

tStAtStA
aaMaM

a
tE

n

n

n

t

nn

nnn














































 







  (3.10) 

Using the same technique, we find 
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 (3.11) 

Thus, from the above five functions, we find 𝐸𝑖𝑛(𝑡) → 0, 𝑖 = 1,2, . .5 𝑎𝑠 𝑛 → ∞ 𝑓𝑜𝑟 𝛿 < 1, 

which completes the proof. 

In this part , we prove that our model has unique solution. 

Theorem 3.3. The Caputo-Fabrizio fractional model (3.2) has a  unique solution provided that 

the restrictions given by (3.11) hold true: 

(
2(1−𝑎)

2𝑀(𝑎)−𝑎𝑀(𝑎)
+

2𝑎

2𝑀(𝑎)−𝑀(𝑎)
) 𝛾𝑖 ≤ 1,   𝑖 = 1,2, … 5.         (3.11) 

Proof. We assume each equation has two solutions such as S(t), L(t), I(t), T(t), R(t) and 

�̃�(𝑡), �̃�(𝑡), 𝐼(𝑡), �̃�(𝑡), �̃�(𝑡). Then we can write, 
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Then, by using these equations and Theorem (3.1), we take the norm 

 

 

(3.13) 

 

Which implies 

    

        (3.14) 

 

by condition (3.11), the inequality (3.14) is true provided that ‖𝑆 − �̃�‖ = 0. Similarly, we use 

the same processes to prove that 𝐿(𝑡) = �̃�(𝑡), 𝐼(𝑡) = 𝐼(𝑡), 𝑇(𝑡) = �̃�(𝑡), 𝑅(𝑡) = �̃�(𝑡). Thus, 

the model has a unique solution. 
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ABSTRACT 

 
The primary driving force behind this study is to connect the topic of inequalities with 

fractional integral operators, which are drawing interest due to their characteristics and 

widespread use. A new version of the Hermite-Hadamard (HH-) inequality is obtained for s-

convex functions in the fourth sense for this purpose after certain fundamental notions are 

introduced. Numerous HH-type integral inequalities are found for the functions whose 

absolute values of the second derivatives are s-convex and s-concave using this integral 

equation that incorporates fractional integral operators with Mittag-Leffler kernel. The proof 

of the conclusions takes into consideration some well-known inequalities and hypothesis 

conditions, including Hölder’s inequality and Young’s inequality. 

 

INTRODUCTION 

 

With the help of researchers throughout many years, mathematics essentially began as a 

theoretical field with the goal of formulating events and occurrences in a variety of fields, 

such as physics, engineering, modeling, and mathematical biology, into a form that can be 

calculated. It has never been satisfied with this and is constantly searching for new and 

improved answers to issues. One of the key methods used by mathematics to solve problems 

in the real world is fractional analysis. Recent research has actually demonstrated that 

fractional analysis accomplishes this goal better than classical analysis. The fundamental tenet 

of fractional analysis is the introduction of novel fractional derivatives and integral operators, 

followed by an investigation of the benefits of each operator using examples from real-world 

problems, modeling studies, and comparisons. In an effort to advance fractional analysis and 

introduce the most efficient operators to the literature, new fractional derivatives and 

mailto:aocakakdemir@gmail.com
mailto:mervekosar92@hotmail.com
mailto:erhanset@yahoo.com
mailto:alperekinci@hotmail.com
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associated integral operators have been developed. Fractional operators differ in this dynamic 

process because of various characteristics of kernel structures, the time memory effect, and 

the need to obtain general forms. 

Definition 1 (see[1]) Let f ],[ 21 L . The Riemann-Liouville integrals fJ 
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 and fJ 

 
2

 of 

order 0>  with 0, 21   are defined by  
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Researchers in both mathematical analysis and applied mathematics have used the Riemann-

Liouville fractional integral operator to solve a variety of issues (see [2]-[4]).The most well-

known operators in fractional analysis for a long time were the Caputo and Caputo-Fabrizio 

derivatives and the Riemann-Liouville integrals. 

Definition 2 [9]. Let [0,1],,>),(0, 122

1  Hf then the definition of the new Caputo 

fractional derivative is  
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where )(M  is normalization function.  

Definition 3 [10] Let [0,1],,>),(0, 122

1  Hf  then the definition of the left and 

right side of Caputo-Fabrizio fractional integral is 
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I  (1.5) 

where )(B  is the normalization function.  

The authors’ definition of the Caputo-Fabrizio fractional integral operator is based on this 

intriguing fractional derivative operator. Despite being a highly functional operator by 

definition, the Caputo-Fabrizio fractional derivative, which is employed in dynamical 

systems, physical phenomena, disease models, and many other domains, has a weakness in 



5
th 

INTERNATIONAL CONFERENCE  

ON MATHEMATICAL AND RELATED SCIENCES 

 ICMRS 2022 

27-30 OCTOBER, 2022 

 

Proceedings Book of ICMRS 2022 

 
80 

that it does not satisfy the initial requirements in the exceptional case 1.=  The new 

derivative operator created by Atangana-Baleanu, which contains versions in the sense of 

Caputo and Riemann, has provided the improvement to remove this flaw. The normalization 

function will be denoted by B( ) in the follow-up to this study and share the same qualities 

as the M( ) defined by Caputo-Fabrizio. 

Definition 4 [11] Let [0,1],>),,( 1221

1  Hf , then the definition of the new 

fractional derivative is given:  
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Definition 5 Let [0,1],>),,( 1221

1  Hf , then the definition of the new fractional 

derivative is given: 
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The kernel of Atangana-Balenau derivatives seen above is nonlocal. In equation (1.7), when 

the function is constant, we get zero. 

After these definitions, Atangana Balenau also defined the fractional integral operator. 

Definition 6 [12] The fractional integral associate to the new fractional derivative with 

nonlocal kernel of a function ),( 21

1 Hf  as defined:  
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 where 
12 >   and [0,1] .  

In [13], the right-hand side of the Abdeljawad and Baleanu integral operator is calculated. The 

right fractional new integral with ML kernel of order [0,1]  is defined by  
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Gamma function )(  is used here. The fractional Atangana-Baleanu integral of a positive 

function is positive because B( 0>)  the so-called normalization function gives rise to this 

result. It should be observed that we regain the common integral when the order 1 . 

Additionally, whenever the fractional order 0 , the original function is restored. 

Following a brief introduction to fractional analysis, we will go over some fundamental ideas 

related to convex functions and inequalities. Let’s review the s-convex function in the second 

sense, the s-convex function in the fourth sense, and the HH inequality to refresh our 

memories. 
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Definition 7 [6]. The function R)[0,:f  is said to be s convex in the second sense if 

for every )0,, yx  and 0,1]t  and for some fixed (0,1]s  we have:  

 ).()(1)())(1( yftxftyttxf ss   

 The class of s convex functions in the second sense is usually denoted by 2

sK .  

If we choose 1=s  , it can be easily seen that s convexity of functions defined on 

)0,, yx . If 
2(0,1), sKfs   implies )[0,))([0, f , i.e., this has been proven for all 

functions from (0,1),2 sK s , are nonnegative. 

Definition 8 [8] Let nU R  be a convex set and let (0,1]s  and fUf .: R  is said to be 

s convex function in the fourth sense if  

 )()(1)())(1(

11

yftxftyttxf ss   

 for all Uyx ,  and [0,1]t .  

The class of s convex functions in the fourth sense is denoted by .4

sK  

With its various modifications, refinements, and iterations, the well-known HH-inequality, 

which is based on convex functions, generates lower and upper limits for the mean value in 

the Cauchy sense and is presented as follows: 

Assume that RR If :  is a convex mapping on RI , where I21, , with .< 21   

The HH-inequality for convex mappings can be presented as follows (see [14]): 
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Dragomir and Fitzpatrick have carried out a novel HH-inequality for s-convex maps in the 

second sense in [16]. 

Theorem 1 (see [24]). Assume that )[0,)[0,: f  is a s-convex function in the fourth 

sense, where (0,1)s , and let .<),[0,, 2121    If ],[ 21 Lf  , then one has the 

following:  
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 Here, we must note that 
1

=
s

s
k  is the best possible constant in (1.11).  

We recommend reading the works ([14]-[22]) for more information on the various convex 

functions and generalizations, novel variations, and various manifestations of this significant 

double inequality. 
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The structure of this study is as follows. Prior to anything else, the fundamental ideas that 

would be applied in the study were determined, and the infrastructure needed to support 

science was built. In the second sense, Atangana-Baleanu integral operators for s-convex in 

the second sense were shown in [23]. Atangana-Baleanu integral operators for s-convex 

functions in the fourth sense are discovered, leading to a new generalization of the HH-

inequality in the main findings section. 

RESULTS 

 

We begin this part by presenting the following inequalities, which use novel fractional 

integral operators developed by Atangana and Baleanu to represent variations of the HH-

inequality for s-convex maps in the fourth sense. The functions 0>)(),(  B , and x  are 

referred to as the gamma function, normalization function, and incomplete beta function, 

respectively, throughout the study.  

Theorem 2 Let  RR:f  be an s-convex function in the fourth sense, (0,1]s , and 
Rba,  with .< ba  If ],[ baLf  , the inequalities for Atangana-Baleanu integral operators 

for all (0,1]  are obtained as follows: 
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 Proof. As f  is an s-convex function in the fourth sense, we can write  
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 for all [0,1]t . Multiplying the above inequality with 
1t  and then integrating the obtained 

inequality on [0,1], we have  
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If we multiply both sides of the last inequality by 
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By making use of the change of variable ybtta =)(1 , we have 
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and similary we get 
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If we take into account the disparities in (2.2) and (2.3), we see that the second inequality in 

(2.1). 

We employ the fact that, for all Rvu,  in order to derive the first inequality in (2.1), we 

have 
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Now, let bttau )(1=   and tbatv  )(1=  with [0,1]t . Then we get by (2.4) that 
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Multiplying the above inequality with 
1t  and then integrating this inequality on [0,1], we 

have 
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 The change of variables ybtta =)(1  and zattb =)(1  gives us 
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 (2.5) 

If we multiply both sides of (2.5) by 
)(

1

ab 
, we get the first inequality in (2.1). 

As we move on in this part, we present an equality for integral operators for Atangana-

Baleanu that has second order derivatives. 

Lemma 1  Let 0,,< Ibaba   and RR If :  be a differentiable function on 0I . If 

],[ baf  , the identity for Atangana- Baleanu integral operators in equation (2.6) is valid 

for all (0,1] :  
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where 
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 and also )(  is a gamma function and 0.>)(B   

The proof for the aforementioned lemma may be found in [23].  

Now, using the new integral equation and the s-convexity identity, we will create 

generalizations of the HH-type inequalities for Atangana-Baleanu fractional integral 

operators. The following terms are indicated with a F throughout the study:  
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Theorem 3  Let 0,,< Ibaba   and R )[0,: If  be a differentiable function on 0I  and 

).,( baLf   If || f   is an s-convex function in the fourth sense on ],[ ba  for some fixed 

(0,1]s , we obtain the following inequality for Atangana-Baleanu integral operators: 
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 (2.7) 

where (0,1].   
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Proof. By using the equality in (2.6) and the s-convexity of || f  , we have  
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Then, after obtaining the calculations required, we finish the inequality’s proof in (2.7).  

Corollary 1 In Theorem 3, if we choose 1,=s  we have the following inequality:  
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Corollary 2 In Theorem 3, if Mf  ||  on 0,>,0 MI  we have the following inequality:  

 .1)
1

2,(

2
1

2

1

)()(1)(

)(2
||

2

1

2
1

1

































s

s

B

abM
F

s









 

Theorem 4  Let 0,,< Ibaba   and R )[0,: If  be a differentiable mapping on 0I  and 

].,[ baLf   If qf ||   is an s-convex function in the fourth sense on ],[ ba  for some fixed 

(0,1]s , we obtain the following inequality for Atangana-Baleanu integral operators: 
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where 1,>(0,1],q  and 1.=
11

qp
   

Proof. By using the equality in (2.6) and Hölder’s inequality, we get 

 

.|))(1(||))(1(|

|)(|
)()(1)2(

)(

|]))(1(||))(1([||)(|

)()(1)2(

)(
||

1
1

0

1
1

0

1
1

0

1

1

0

1



















 





 





























qqqq

pp

dtattbfdtbttaf

dttm
B

ab

dtattbfbttaftm

B

ab
F












 

We apply the fourth meaning of the s-convexity on ],[ ba  to arrive at the result, and we then 

make use of the fact that 
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So, we obtained the inequality (2.8). The proof is completed.  

Corollary 3 In Theorem 4, if we choose 1=s , we have following inequality:  
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 Corollary 4 In Theorem 4, if Mf  ||  on 0>,0 MI ,we have the following inequality:  
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 Theorem 5  According to Theorem 4’s assumptions, the inequality in (2.9) results:  
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Proof. When we use Hölder inequality from a different point of view, we can write  
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If we apply the s-convexity of qf ||   and calculate the above integrals, we get the desired.  

Corollary 5 In Theorem 5, if we choose 1=s , we have the following inequality:  
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Corollary 6 In Theorem 5, if Mf  ||  on 0>,0 MI , we have the following inequality:  
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 Theorem 6  Let 0,,< Ibaba   and R )[0,: If  be a differentiable function on 0I  and 

].,[ baLf   If qf ||   is an s-convex function in the fourth sense on ],[ ba  for some fixed 

(0,1]s , we obtain the following inequality in (2.10) for Atangana-Baleanu integral 

operators: 
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 (2.10) 

 where 1.>(0,1], pq    

Proof. By using Hölder’s inequality in a different way, we can write 

 

}.|))(1(||)(|

|)(|

|)(1||)(|

|)(|{
)()(1)2(

)(
||

1
1

0

1
1

1
1

0

1
1

0

1
1

1
1

0

1

qqp

q
q

pq

qqp

q
q

pq

dtattbftm

dttm

dtbttatm

dttm
B

ab
F






 





















 



















































 

If we use the s-convexity of qf ||   above, we have 
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By making the necessary integral calculations, the proof is completed.  

Corollary 7 In Theorem 6, if we choose 1=s , we have the following inequality:  
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 (2.11) 

 Corollary 8 In Theorem 6, if Mf  ||  on 0,>,0 MI  we have the following inequality:  
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Theorem 7  Let 0,,< Ibaba   and R )[0,: If  be a differentiable function on 0I  and 

].,[ baLf   If qf ||   is an s-convex function in the fourth sense on ],[ ba  for some fixed 

(0,1]s , we obtain the following inequality in (2.12) for Atangana-Baleanu integral 

operators: 
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 where 1.>(0,1],q   

Proof. By using Lemma 1, we have 
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By using Young’s inequality as qp y
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 By using the s-convexity of qf ||   and by simple calculations, we provide the result.  

Corollary 9 In Theorem 7, if we choose 1=s , we have the following inequality:  
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Corollary 10 In Theorem 7, if Mf  ||  on 0>,0 MI , we have the following inequality:  
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 Theorem 8 Let 0,,< Ibaba   and R )[0,: If  be a differentiable function on 0I  and 

].,[ baLf   If qf ||   is an s-concave function in the fourth sense on ],[ ba  for some fixed 

(0,1]s , we obtain the following inequality in (2.13) for Atangana-Baleanu integral 

operators: 
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 (2.13) 

 where 1.=
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1,>(0,1],
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Proof. If we apply Hölder’s inequality, we have 

 

.|))(1(||))(1(|

|)(|
)()(1)2(

)(
||

1
1

0

1
1

0

1
1

0

1



















 





 


















qqqq

pp

dtbttbfdtbttaf

dttm
B

ab
F 




 

Considering the variation of the HH-inequality for s-concave functions, we can state the 

findings below because qf ||   is s-concave on ],[ ba : 
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 We finish the proof by applying these findings to the aforementioned disparity.  
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ABSTRACT 

 

In this note, we defined a new class that is called exponentially P-functions which has a 

potential to produce novel estimations of Hadamard-type on the co-ordinates. Then, we have 

established some new Hermite-Hadamard type integral inequalities via exponentially P-

functions on the coordinates.  

 

INTRODUCTION 

 

We will start by expressing an important inequality proved for convex functions. This 

inequality is presented on the basis of averages and give bounds for the mean value of a 

convex function. 

Assume that RR If :  is a convex mapping defined on the interval I  of R  where 

.< ba  The following statement;  
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holds and known as Hermite-Hadamard inequality. Both inequalities hold in the reversed 

direction if f  is concave. 

In [1], Dragomir mentions an expansion of the concept of convex function, which is used in 

many inequalities in the field of inequality theory and has applications in different fields of 

mathematics, especially convex programming. 

 

Definition 1 Let us consider the bidimensional interval ],],[= dcba   in 2R  with ,< ba  

.< dc  A function R:f  will be called convex on the co-ordinates if the partial mappings 

,],[: Rbaf y  ),(=)( yufuf y  and ,],[: Rdcf x  ),(=)( vxfvf x  are convex where defined 

for all 𝑦 ∈ [𝑐, 𝑑] and 𝑥 ∈ [𝑎, 𝑏] Recall that the mapping R:f  is convex on   if the 

following inequality holds,  
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 ),()(1),())(1,)(1( wzfyxfwyzxf    

 

 for all ),(),,( wzyx  and 0,1].   

 

Expressing convex functions in coordinates brought up the question that it is possible for 

Hermite-Hadamard inequality to expand into coordinates. The answer to this motivating 

question has been found in Dragomir’s paper (see [1]) and has taken its place in the literature 

as the expansion of Hermite-Hadamard inequality to a rectangle from the plane .2R  stated 

below. 

 

Theorem 1 Suppose that R ],],[=: dcbaf  is convex on the co-ordinates on  . Then 

one has the inequalities;  
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 The above inequalities are sharp.  

Numerous variants of this inequality were obtained for convexity and other types of convex 

functions in coordinates (See the papers [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 16]). 

In [12], Sarıkaya et al. proved some Hadamard-type inequalities for co-ordinated convex 

functions as followings: 

 

Theorem 2 Let RR  2:f  be a partially differentiable mapping on ],],[:= dcba   in 

2R  with ba <  and .< dc  If 
st

f
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 is a convex function on the co-ordinates on ,  then one 

has the inequalities:  
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Theorem 3 Let RR  2:f  be a partially differentiable mapping on ],],[:= dcba   in 

2R  with ba <  and .< dc  If ,
2

q

st

f




 1,>q  is a convex function on the co-ordinates on ,  

then one has the inequalities:  
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Theorem 4 Let RR  2:f  be a partially differentiable mapping on ],],[:= dcba   in 

2R  with ba <  and .< dc  If ,
2

q
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f




 1,q  is a convex function on the co-ordinates on ,  

then one has the inequalities:  
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 where ,A  J  are as in Theorem 2.  

In [17], Sarıkaya et al. have proved a new integral identity and several new inequalities as 

followings;  
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Lemma 1 Let RRf  2:  be a partial differentiable mapping on    dcba ,,:=   in 2R  

with ba <  and .< dc If  ,
2





L

st

f
 then the following equality:  

 

 
       

  
 dxdyyxf

cdab

dbfcbfdafcaf d

c

b

a
,

1

4

,,,,





 

           













  dyybfyaf

cd
dxdxfcxf

ab

d

c

b

a
,,

1
,,

1

2

1
 

 
  

        .1,12121
4

=
2

1

0

1

0
dtdsdsscbtta

st

f
st

cdab








  

  

Theorem 5  Let     R dcbaf ,,=:  be a partially differentiable mapping on 

   .,,= dcba   If 
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f
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 is a convex function on the co-ordinates on ,  then the following 

inequality holds;  
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Theorem 6  Let     R dcbaf ,,=:  be a partially differentiable mapping on 

   .,,= dcba   If ,
2

q

st

f




 1,>q  is a convex function on the co-ordinates on ,  then the 

following inequality holds;  

 

 
  

  pp

cdab
C

2

14 


  (1.6) 



5
th 

INTERNATIONAL CONFERENCE  

ON MATHEMATICAL AND RELATED SCIENCES 

 ICMRS 2022 

27-30 OCTOBER, 2022 

 

Proceedings Book of ICMRS 2022 

 
98 

 

       
.

4

,,,,

1

2222 qqqqq

db
st

f
da

st

f
cb

st

f
ca

st

f








































  

 where  

 






 

2
,

2
=

dcba
fC  

 
   

dx
dc

xf
ab

dyy
ba

f
cd

b

a

d

c







 










 


  2

,
1

,
2

1
 

 
  

  .,
1

dydxyxf
cdab

d

c

b

a 
  

  

Theorem 7  Let     R dcbaf ,,=:  be a partially differentiable mapping on 

   .,,= dcba   If ,
2

q
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f




 1,q  is a convex function on the co-ordinates on ,  then the 

following inequality holds;  
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The concept of exponentially convex function in coordinates and the associated results are 

presented in the following form. 

 

Definition 2 (See [18]) Let us consider the interval such as ],],[= 4321    in 2R  with 

,< 21   .< 43   The function R :  is exponentially convex on   if  
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An equivalent definition of the exponentially convex function definition in coordinates can be 

done as follows: 

 

Definition 3 (See [18]) The mapping R :  is exponentially convex function on the co-
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for all         R  ,,,,,,,, 42324131  and  .0,1,    

  

EXPONENTIALLY P FUNCTIONS ON THE CO-ORDINATES 

 

Definition 4 Let us consider the bidimensional interval ],],[= dcba   in 2R  with ba <  and 

.< dc  The mapping Rf :  is exponential P function on the co-ordinates on  , if the 

following inequality holds  
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An equivalent definition of the exponential P convex function definition in co-ordinates can 

be done as follows: 

 

Definition 5 The mapping Rf :  is exponential P convex on the co-ordinates on  , if 

the following inequality holds,  
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 for all         Rdbcbdaca  ,,,,,,,,  and  0,1, st   

 

Lemma 2 A function Rf :  will be called exponential P  function on the co-ordinates 

on  , if the partial mappings Rbaf y ],[:  , ),(=)( yufeuf y

y

  and Rdcf x ],[:  , 

),(=)( vxfevf x

x


 are exponential P function on the co-ordinates on  , where defined for 

all 𝑦 ∈ [𝑐, 𝑑] and 𝑥 ∈ [𝑎, 𝑏]. 



5
th 

INTERNATIONAL CONFERENCE  

ON MATHEMATICAL AND RELATED SCIENCES 

 ICMRS 2022 

27-30 OCTOBER, 2022 

 

Proceedings Book of ICMRS 2022 

 
100 

 

Proof. From the definition of partial mapping ,xf we can write  
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Proof is completed.  

 

Theorem 8 Let Rdcbaf  ],],[=:  be partial differentiable mapping on ],],[= dcba   

and ),( Lf  .R  If f  is exponential P function on the co-ordinates on  , then the 

following inequality holds;  
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Proof. By the definition of the exponential P function on the co-ordinates on  , we can 

write  
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 By integrating both sides of the above inequality with respect to st,  on ,[0,1]2  we have  
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 By computing the above integrals, we obtain the desired result.  

 

Theorem 9 Let Rdcbaf  ],],[=:  be partial differentiable mapping on ],],[= dcba   

and ),( Lf  .R  If f  is exponential P function on the co-ordinates on  ,then the 

following inequality holds;  
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The absolute value property is used in integral and by integrating both sides of the above 
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By the triangle inequality for integrals  
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If we apply the Hölder’s inequality to the right-hand side of the inequality, we get 

 

 
  

dxdyyxf
cdab

d

c

b

a
),(

1


 

 
qq

ca

p
dtds

e

caf
dtds

1

)(

1

0

1

0

1
1

0

1

0

),(





















 
 



5
th 

INTERNATIONAL CONFERENCE  

ON MATHEMATICAL AND RELATED SCIENCES 

 ICMRS 2022 

27-30 OCTOBER, 2022 

 

Proceedings Book of ICMRS 2022 

 
102 

 
qq

da

p
dtds

e

daf
dtds

1

)(

1

0

1

0

1
1

0

1

0

),(





















 
 

 
qq

cb

p
dtds

e

cbf
dtds

1

)(

1

0

1

0

1
1

0

1

0

),(





















 
 

 
qq

db

p
dtds

e

dbf
dtds

1

)(

1

0

1

0

1
1

0

1

0

),(





















 
 

By computing the above integrals, we obtain the desired result.  

 

Theorem 10 Let Rdcbaf  ],],[=:  be partial differentiable mapping on 

],],[= dcba   and ),( Lf  .R  If f  is exponential P function on the co-ordinates 

on  , 1,=
11
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qp  then the following inequality holds;  
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Proof. By the definition of the exponential P function on the co-ordinates on  , we can 

write  
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By the triangle inequality for integrals  
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If we apply the Young’s inequality to the right-hand side of the inequality, we get  
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 By computing the above integrals, we obtain the desired result.  

 

Proposition 1 If Rgf :,  are two exponential P function on the co-ordinates on  , 

then gf   are exponential P convex functions on the co-ordinates on .   
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 Therefore (f+g) is exponential p-function on the co-ordinates on  .  

 

Proposition 2 If Rf :  is exponential p-function on the co-ordinates on   and 0k  

then kf  is exponential P function on the co-ordinates on .   
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Proof. By the definition of the exponential P function on the co-ordinates on  , we can 
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RELATED RESULTS FOR EXPONENTIALLY P-FUNCTIONS ON THE CO-

ORDINATES 
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Proof. From Lemma 2, we have  
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By calculating the integral in above inequality, we have  

 E  

 
  

 

 

 

 

 

 

 

  .

,,,,

16

2222












































 dbcbdaca e

db
st

f

e

cb
st

f

e

da
st

f

e

ca
st

f

cdab


 

  

Theorem 12 Let RRf  2:  be a partial differentiable mapping on    dcba ,,:=   in 

2R  with ba <  and .< dc If 
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Proof. From Lemma 2, we have  
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If we apply the Hölder’s inequality to the right-hand side of the inequality, we get  
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f  is co-ordinated exponentially P-function on   , then one has:  
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Theorem 13 Let RRf  2:  be a partial differentiable mapping on    dcba ,,:=   in 

2R  with ba <  and .< dc If 
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 is a exponentially P-function on the co-ordinates on 
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qp   then one has the inequalities:  
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ABSTRACT 

 

In the present note, several novel estimations of Simpson’s type have been presented by using 

an integral identity that includes Atangana-Baleanu fractional integral operators for quasi-

convex functions. We have used the basic definitions, some classical inequalities and 

elementary analysis methods.  

 

INTRODUCTION 

Suppose R],[: baf  is a four times continuously differentiable mapping on ),( ba  and 

.<)(sup= (4)(4) 


xff  The following inequality 
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is well known in the literature as Simpson’s inequality. 

For some recent results related to Simpson’s inequality see [1]-[5] and [7]. 

The function   ,,: Rbaf  is said to be convex, if we have 

 

         yftxtfyttxf  11  

 

for all  bayx ,,   and  .0,1t  
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Convex functions play an important role in many branches of mathematics and the other sciences as 

engineering, economics and optimization theory. Several extensions, generalizations and refinements 

have been presented by researchers. 

 

Definition 1. ([6]) A function )(0,][0,: bf  is said to be m logarithmically convex if the 

inequality 

 

           tmt
yfxfytmtxf




1
1  (1.1) 

 

holds for all ]0,[, byx  , (0,1]m , and 0,1]t .  

Obviously, if we set 1=m  in Definition 1, then f  is just the ordinary logarithmically convex 

function on  b0, . 

 

Definition 2. ([6]) A function )(0,][0,: bf  is said to be  m, logarithmically convex if 
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holds for all ]0,, byx  ,      ,0,10,1, m  and 0,1]t .  

 

Clearly, when taking 1=  in Definition 2, then f  becomes the standard m logarithmically convex 

function on  b0, . 

 

Definition 3. (Atangana-Baleanu Fractional Derivative)   1 ,f L   ,   ,  0,1  , 

then the fractional derivative can be defined as 
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where    is normalization function and   0  ,    0 1 1     (Abdeljawad & Baleanu, 

2017). 

Definition 4. (Atangana-Baleunu Fractional Integral Operator)   1 ,f L   ,   , 

 0,1  , the associated fractional integral operator can be given as: 
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where    is normalization function and   0  ,    0 1 1     (Abdeljawad & Baleanu, 

2017).    

 

NEW RESULTS 
 

Lemma 1. Let  be a differentiable function on  with  and  

Then, we have the following identity for Atangana-Baleanu fractional integral operators: 

 

 

 
 

where 𝜉 ∈ (0,1], 𝑡 ∈ [0,1], 𝐵(𝜉) is the normalization function. 

 

Proof. Integration by parts, we have  
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By adding  and  and multiplying the both sides  , we get desired results. 

 

Theorem 1. Let  be a differentiable function on  with  and  

If  is a convex function, we have the following inequality for Atangana-Baleanu fractional integral 

operators: 

 

 

 
where 𝜉 ∈ (0,1], 𝐵(𝜉) is the normalization function. 

 

Proof. From the integral identity given in Lemma 1 and by using the properties of modulus, we have 

 

 
 

By using convexity of , we get 
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By computing the above integral, we obtain 

 

 
 

Theorem 2. Let  be a differentiable function on  with  and  

If  is a convex function, we have the following inequality for Atangana-Baleanu fractional 

integral operators: 
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where , 𝜉 ∈ (0,1], 𝑞 > 1 and  is the normalization function. 

  

Proof. By using the identity that is given Lemma 1, we have 

 

 
 

By applying Hölder inequality, we have 

 

 
 

By using convexity of , we obtain 

 

 
 

Now using the fact that  
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By calculating the integrals that is in the above inequalities, we get desired result. 

 

Theorem 3. Let  be a differentiable function on  with  and  

If  is a convex function, we have the following inequality for Atangana-Baleanu fractional 

integral operators: 

 

 
and 

 
 

 
 

where 𝜉 ∈ (0,1], 𝑞 ≥ 1 and  is the normalization function. 

 

Proof. By Lemma 1, we get 
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By applying power mean inequality, we get 

 

 
 

By using convexity  of , we obtain  

 

 
 

By computing the above integrals, the proof is completed. 

 

Theorem 4. Let  be a differentiable function on  with  and  

If  is a convex function, we have the following inequality for Atangana-Baleanu fractional 

integral operators: 
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where , 𝜉 ∈ (0,1], 𝑞 > 1 and  is the normalization function. 

 

Proof. By using identity that is given in Lemma 1, we get 

 

 

 
 

By using the Young inequality, we obtain 

 

 
 

By using convexity  of , we have 

 

 
 

Now using the fact that  
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By a simple computation, we have the desired result.  
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ABSTRACT 

 

In this presentation, we recalled the notion of quasi-convex functions which have become a 

very popular topic in recent years and have been studied by many mathematicians. First, we 

have given the definiton of exponentially quasi-convex functions on the co-ordinates as a new 

concept. Then, we have proved some new Hermite-Hadamard type integral inequalities via 

exponentially quasi-convex functions on the coordinates.  

INTRODUCTION 

In [1], Dragomir mentions an expansion of the concept of convex function, which is used in 

many inequalities in the field of inequality theory and has applications in different fields of 

mathematics, especially convex programming. 

 

Definition 1 Let us consider the bidimensional interval ],],[= dcba   in 2R  with ,< ba  

.< dc  A function R:f  will be called convex on the co-ordinates if the partial mappings 

,],[: Rbaf y  ),(=)( yufuf y  and ,],[: Rdcf x  ),(=)( vxfvf x  are convex where defined 

for all 𝑦 ∈ [𝑐, 𝑑] and 𝑥 ∈ [𝑎, 𝑏] Recall that the mapping R:f  is convex on   if the 

following inequality holds,  

 ),()(1),())(1,)(1( wzfyxfwyzxf    

 

 for all ),(),,( wzyx  and 0,1].   

 

Expressing convex functions in coordinates brought up the question that it is possible for 

Hermite-Hadamard inequality to expand into coordinates. The answer to this motivating 

question has been found in Dragomir’s paper (see [1]) and has taken its place in the literature 

as the expansion of Hermite-Hadamard inequality to a rectangle from the plane .2R  stated 

below. 
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Theorem 1 Suppose that R ],],[=: dcbaf  is convex on the co-ordinates on  . Then 

one has the inequalities;  
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 The above inequalities are sharp.  

Numerous variants of this inequality were obtained for convexity and other types of convex 

functions in coordinates (See the papers [2-11]). 

EXPONENTIALLY QUASI-CONVEX FUNCTIONS ON THE CO-ORDINATES 

 

Definition 2 Let us consider the bidimensional interval ],],[= dcba   in 2R  with ba <  and 

dc < . The mapping Rf :  is exponential Quasi-convex function on the co-ordinates on 

 , if the following inequality holds,  
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for all Rwzyx  ,),(),,(  and  .0,1t   

An equivalent definition of the exponential Quasi-convex function definition in co-ordinates 

can be done as follows: 

Definition 3 The mapping Rf :  is exponential Quasi-convex on the co-ordinates on  , 

if the following inequality holds,  
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Lemma 1 A function Rf :  will be called exponential Quasi-convex function on the co-

ordinates on  , if the partial mappings Rbaf y ],[:  , ),(=)( yufeuf y

y

  and 

Rdcf x ],[:  , ),(=)( vxfevf x

x

  are exponential Quasi-convex function on the co-

ordinates on  , where defined for all ],dcy  and ].,bax   

Proof. From the definition of partial mapping ,xf we can write  

     )1,(=)1( 2121 vttvxfevttvf x
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Proof is completed.  

Theorem 2 Let Rdcbaf  ],],[=:  be partial differentiable mapping on ],],[= dcba   

and ),( Lf  .R  If f  is exponential Quasi-convex function on the co-ordinates on ,

then the following inequality holds;  
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Proof. By the definition of the exponential Quasi-convex functions on the co-ordinates on  , 

we can write  
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By integrating both sides of the above inequality with respect to st,  on ,[0,1]2  we have  
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By computing the above integrals, we obtain the desired result.  

Theorem 3 Let Rdcbaf  ],],[=:  be partial differentiable mapping on ],],[= dcba   

and .),( RLf   If f  is exponential Quasi-convex function on the co-ordinates on  , 
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Proof. By the definition of the exponential Quasi-convex functions on the co-ordinates on  , 

we can write  

  dsscbttaf )(1,)(1   

 .
),(

,
),(

,
),(

,
),(

max
)()()()(









 dbcbdaca e

dbf

e

cbf

e

daf

e

caf


 

If the absolute value property is used in integral and by integrating both sides of the above 

inequality with respect to st,  on 2[0,1]  , we can write  
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If we apply the Young’s inequality to the right-hand side of the inequality, we get  
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By computing the above integrals, we obtain the desired result.  

Proposition 1 If Rf :  is exponential Quasi-convex functions on the co-ordinates on   

and 0k  then kf  is exponential Quasi-convex functions on the co-ordinates on .   

Proof. By the definition of the exponential Quasi-convex functions on the co-ordinates on  , 

we can write  
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If both sides are multiplied by k, we have,  
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Therefore )(kf  is exponential Quasi-convex functions on the co-ordinates on .  
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ABSTRACT 

 

In this paper, we establish some new Hermite-Hadamard-type inequalities for s-convex 

functions in the second sense via the proportional Caputo-hybrid operators. Hölder and 

Young’s inequalities were used to prove the new results obtained. In addition, it is seen that 

the results obtained are reduced to the results obtained previously in the literature. 

 

1.  INTRODUCTION 

 

In this section, we present the preliminaries and definitions. 

 

Definition 1 [1] A function ,)[0,: Rf  is said to be s -convex in the second sense if  

 

     )(1)()(1 bftaftbttaf
ss   

 

for all )[0,, ba , 0,1]t  and for some fixed (0,1]s .  

 

Besides, the concept of convex function has many useful properties, it also forms the basis of 

the Hermite-Hadamard (HH) inequality, one of the well-known fundamental and famous 

inequalities in the literature. The HH inequality, which has the potential to produce lower and 

upper bounds to the mean value of a convex function in the Cauchy sense, has inspired many 

researchers in mathematical analysis with its applications. The statement of this inequality is 

as follows. 

If a mapping RR If :  is a convex function on I  and Iba , , ba < , then  
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We recommend that readers refer to papers [2, 3, 4, 5, 6] for versions of the HH inequality for 

different kinds of convex functions, its modification to co-ordinates, and its expansions with 

the help of various new fractional integral operators. 

 

The proportional Caputo hybrid operator, which was put forward as a non-local and singular 

operator containing both derivative and integral operator parts in its definition, and which is a 

simple linear combination of the Riemann-Liouville integral and the Caputo derivative 

operators, is defined as follows (see [7]). 

 

Definition 3 Let RR  If :  be a differentiable function on I . Also let f , 'f ∈ 𝐿1 are 

functions on I. Then, the proportional Caputo-hybrid operator may be defined as  
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where  0,1  and 0K  and 
1K  are functions satisfying  
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Remark 1 (See [7])We originally wrote this paper using the specific case  
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0 =, ttK  

   ttK )(1=,1   

 

which is afforded special attention in [8].  

 

In [9], Gürbüz et al. established following identity for convex functions:  

 

Lemma 1 Let RR  If :  be a twice differentiable function on I . Also let f  and 'f  

are 1L  functions on I . Then, the following equality holds:  

 

          dtxttaftKdtxttaftK '''  

 11 1

1

0

0

1

1

0

1

   

          dtbttxftKdtbttxftK '''  

 11 1

1

0

0

1

1

0

1

   

 
               

xb

xfKxfK

ax

afKafK ''











 0101=  

  
 

 
 

  
















 








22

2
xb

bfD

ax

xfD b

CPC

xx

CPC

a  



5
th 

INTERNATIONAL CONFERENCE  

ON MATHEMATICAL AND RELATED SCIENCES 

 ICMRS 2022 

27-30 OCTOBER, 2022 

 

Proceedings Book of ICMRS 2022 

 
128 

where  ,0,1  bxa <<  and 0K  and 
1K  are functions satisfing the conditions (1.1) and 

(1.2).  

The main purpose of this article is to prove new integral inequalities for the class of s-convex 

functions that are differentiable with the help of proportional-Caputo hybrid operators and the 

identity in [9] found in the literature. 

 

2.  MAIN RESULTS 

 

Theorem 1  Let RR  If :  be a twice differentiable function on I . Also let f , 'f ∈ 𝐿1  

are  functions on I . If 'f  and ''f  are s -convex in the second sense on ,I  then the following 

inequality holds:  

 

 
               

xb

xfKxfK

ax

afKafK ''











 0101  

  
 

 
 

  
















 








22

2
xb

bfD

ax

xfD b

CPC

xx

CPC

a  

 
       










s

afKafK '''

2

01
 

          














s
sbfKbfK '''

2

1
1),(201  

          1),(201  sxfKxfK '''   

 

where  ,0,1  (0,1]s  bxa <<  and 0K  and 
1K  are functions satisfying the conditions 

(1.1) and (1.2).  

 

Proof. From Lemma 1 and using properties of absolute value, we have  
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      .11

1

0

0 dtbttxftK ''  


  (2.1) 

As 'f  and ''f  are s -convex functions on I , we can write  
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The proof is completed by making the necessary calculations.  

 

Theorem 2  Let RR  If :  be a twice differentiable function on I . Also let f , 'f ∈ 𝐿1  

are  functions on I . If 
q

'f  and 
q

''f  are s -convex in the second sense on ,I  then the 

following inequality holds:  
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where  ,0,1  (0,1]s , bxa << , 1>,qp  with 1=
11

qp
  and 0K  and 

1K  are functions 

satisfying the conditions (1.1) and (1.2).  

 

Proof. By applying Hölder’s inequality to (2.1), we get 
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 Using s -convexity of 
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With simple calculations, we get 
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which is the desired result.  

 

Theorem 3  Let RR  If :  be a twice differentiable function on I . Also let f , 'f ∈ 𝐿1  

are functions on I . If 
q

'f  and 
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''f  are s -convex in the second sense on ,I  then the 

following inequality holds:  
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where  ,0,1  (0,1]s , bxa << , 1q  and 0K  and 
1K  are functions satisfying the 

conditions (1.1) and (1.2).  

 

Proof. By applying power mean inequality to (2.1), we get 
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 Using s -convexity of 
q

'f  and 
q

''f , we have 
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 Making necessary calculations, we get 

 

 
               

xb

xfKxfK

ax

afKafK ''











 0101  

  
 

 
 

  
















 








22

2
xb

bfD

ax

xfD b

CPC

xx

CPC

a  

  
 

 









































 q

q
'

q
'

q

sxf
s

af
K

1

1

1
1

1),(2
22

1






 

  
 

 
q

q
''

q
''

sxf
s

af
K

1

0 1),(2
2 



















 


  

  
 

 
q

q
'

q
'

sbf
s

xf
K

1

1 1),(2
2 



















 


  



5
th 

INTERNATIONAL CONFERENCE  

ON MATHEMATICAL AND RELATED SCIENCES 

 ICMRS 2022 

27-30 OCTOBER, 2022 

 

Proceedings Book of ICMRS 2022 

 
134 

  
 

  .1),(2
2

1

0































q

q
''

q
''

sbf
s

xf
K 


  

So, the proof is completed.  

 

Theorem 4  Let RR  If :  be a twice differentiable function on I . Also let f , 'f ∈ 𝐿1  

are functions on I . If 
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'f  and 
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''f  are s -convex in the second sense on ,I  then the 

following inequality holds:  
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where  ,0,1 (0,1]s , bxa << , 1=
11
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 , 1>q  and 0K  and 

1K  are functions 

satisfying (1.1) and (1.2).  

Proof. Taking into account the Young inequality as 
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  in (2.1), we get 
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 Using s convexity of 
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By making necessary computations, we get 

 

 
               

xb

xfKxfK

ax

afKafK ''











 0101  

  
 

 
 

  
















 








22

2
xb

bfD

ax

xfD b

CPC

xx

CPC

a  

  
 

   























qs

xfaf

pp
K

q
'

q
'

1)(1

1
21


  

  
 

   























qs

xfaf

pp
K

q
''

q
''

1)(1

1
20


  

  
 

   























qs

bfxf

pp
K

q
'

q
'

1)(1

1
21


  

  
 

   























qs

bfxf

pp
K

q
''

q
''

1)(1

1
20


  



5
th 

INTERNATIONAL CONFERENCE  

ON MATHEMATICAL AND RELATED SCIENCES 

 ICMRS 2022 

27-30 OCTOBER, 2022 

 

Proceedings Book of ICMRS 2022 

 
136 

which completes the proof.  

 

Remark 2 Now, let us briefly consider some special case of the main results. In Theorem 1 

Theorem 2, Theorem 3 and Theorem 4, if we choose 1=s , then the main results are reduced 

to Theorem 1, Theorem 2, Theorem 3 and Theorem 4 by Gürbüz et al. [9].  

 

Remark 3 Several special cases can be considered by choosing the functions  0K  and 

 1K  as in Remark 1.  
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ABSTRACT 

 

In the paper, we establish some new inequalities for differentiable convex functions, which 

are connected with Hermite-Hadamard-Fejer integral inequalities, and we present new 

generalized inequalities of trapezoidal type which cover the previously puplished results. 

 
1.  INTRODUCTION 

 

Fractional calculus has been appealing to many researchers over the last decades ([4,7]). 

Some researchers have found that different fractional derivatives with different singular or 

nonsingular kernels need to be identified by real-world problems in different fields of 

engineering and science ([8,9]). These different fractional operators are also used in integral 

inequalities ([1,5,6]). Thus, fractional calculus plays an important role in the development of 

inequality theory. One of the fractional operators obtained in the last years is so-called 

Caputo-hybrid operator is given in the following: 

 

Definition 1 (see [2]) Let RR  If :  be a differentiable function on I . Also let f  and 
'f  are 1L  functions on I . Then, the proportional Caputo-hybrid operator may be defined as 
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where  0,1  and 0K  and 
1K  are functions satisfing 
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KKK  (1.2) 

 

Gürbüz (et. al) obtained the following lemma which we will use to prove some of our results:  

 

Lemma 1 (see [5]) Let f : RI  be a twice differentiable function on I . Also let f  and 'f  

are 1L  functions on I . Then the following equality holds: 
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where  0,1 , bxa <<  and 0K  and 
1K  are functions satisfying (1.1) and (1.2).  

 

In this paper some new inequalities are obtained by using the proportional Caputo-hybrid 

operator and the lemma given above. 

 

2.  SOME RESULTS OBTAINED BY USING A KERNEL 

 

Theorem 1 Let f : RI  be a three times differentiable function on I . Also let f , 'f , ''f  

and '''f  are 1L  functions on I . If 
''f  and 

'''f  are convex on I , then the following 

inequality holds: 
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where  0,1 , Iba , , bxa << , 0K  and 
1K  are functions satisfying (1.1) and (1.2).  

 

Proof. Using Lemma 1 and integrating by parts we get 
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which yields 
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With the help of properties of modulus we have 
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By using convexity of 
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With simple calculations we get 
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which completes the proof.  

 

Corollary 1 Under the conditions of Theorem 1, if we choose 
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Theorem 2 Let f : RI  be a three times differentiable function on I . Also let f , 'f , ''f  

and '''f  are 1L  functions on I . If 
q

''f  and 
q

'''f  are convex on I , then the following 

inequality holds: 
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functions satisfying (1.1) and (1.2).  

 

Proof. Using (2.1) and Hölder’s inequality we get 
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Using convexity of 
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By making necessary computations, we get 
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which completes proof.  

 

Theorem 3 Let f : RI  be a three times differentiable function on I . Also let f , 'f , ''f  

and '''f  are 1L  functions on I . If 
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functions satisfying (1.1) and (1.2).  
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Proof. Using (2.1) and Young’s inequality we get 
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Using convexity of 
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''f  and 
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By making necessary computations, we get 
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which completes the proof.  

 

3. SOME RESULTS OBTAINED FOR BOUNDED FUNCTIONS 

 

Theorem 4 Let RR  If :  be a differentiable function on I . Also let f , 'f , 
1g  and 

2g  are 1L  functions on I  such that  
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where  0,1  with 0K  and 
1K  are functions satisfing the conditions (1.1) and (1.2).  
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Proof. From (3.1) for all 0x , 0y  we have 
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Integrating with respect to x  from 0  to u  

 

 
        

 
   dxxuxg

yfKyfK u
'





 





 2
0

01

1
 

     ufDyg u

CPC 

01  



5
th 

INTERNATIONAL CONFERENCE  

ON MATHEMATICAL AND RELATED SCIENCES 

 ICMRS 2022 

27-30 OCTOBER, 2022 

 

Proceedings Book of ICMRS 2022 

 
148 

 
      

 
   dxxuxg

KKyg u 



 





  2

0

011

1
 

 
   
 

   dxxuxf
yfK u 



 



 0

1

1
 

 
   
 

   .
1 0

0 dxxuxf
yfK '

u
'





 



   (3.7) 

 

Multiplying (3.7) by   
 yu  and integrating with respect to y  from 0  to u  
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By rearranging (3.8) we get 
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So the proof is completed.  

 

Corollary 2 Under the conditions of Theorem 4 if we choose 
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Theorem 5 Let RR  If :  be a differentiable function on I . Also let f , 'f , h , 
'h , 

1g

, 
2g , 

1v  and 
2v  are 1L  functions on I  satisfying  
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where  0,1  with 0K  and 
1K  are functions satisfing the conditions (1.1) and (1.2).  

 

Proof. From (3.1) and (3.10) for all 0x , 0y  we have 
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inequalities we get 
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Integrating with respect to x  from 0  to u  
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Multiplying (3.15) by   
 yu  and integrating with respect to y  from 0  to u  
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which completes the proof.  
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ABSTRACT 

In this paper we obtained some new fractional inequalities for different kinds of convex 

functions using the proportional Caputo-hybrid operator with fairly elementary analysis. 

Since the proportional Caputo-hybrid operator is important in that its special cases gives a 

linear combination of Riemann–Liouville integral and a Caputo derivative, it was deemed 

appropriate to be used in this study.  

1.  INTRODUCTION 

 Fractional calculus was first suggested for consideration by Leibnitz in his letter to 

L’Hospital which dealt with derivatives of order 
2

1
=  (see [1]). Hereupon, this theory has 

been used in many fields of  science such as economics, biology, engineering, physics and 

mathematics for sure. Many types of fractional derivatives and integrals were studied by 

Hadamard, Caputo, Riemann-Liouville, Grönwald- Letnikov, etc. Various properties of these 

operators have been summarized in [9]. For the last decades, this theory has been used in 

inequality theory frequently because it enables scientists to obtain integral inequalities for also 

non-integer orders. One of the most famous inequality is Ostrowski’s which has lead to gain 

many practical inequalities with fractional calculus as well. 

 

Fractional calculus has been appealing to many researchers over the last decades ([4], 

[6]).Some researchers have found that different fractional derivatives with different singular 

or nonsingular kernels need to be identified by real-world problems in different fields of 

engineering and science ([8], [7]). These different fractional operators are also used in integral 

inequalities ([5]). Thus, fractional calculus plays an important role in the development of 

inequality theory. One of the fractional operators obtained in the last years is so-called 

Caputo-hybrid operator is given in the following: 

 

Definition 1 (see [2]) Let RR  If :  be a differentiable function on I . Also let f  and 
'f  are 1L  functions on I . Then, the proportional Caputo-hybrid operator may be defined as 

mailto:csknylcnky@gmail.com
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Erdelyi et. al deeply involved in hypergeometric functions which Whittaker discovered in 

1904 and gave the definition of iti in [9] as: 
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In this paper some new inequalities for different kinds of convex functions are obtained by 

using the proportional Caputo-hybrid operator. 

2.  SOME RESULTS FOR DIFFERENT KINDS OF CONVEX FUNCTIONS 

Theorem 1 Let RR  If :  be a differentiable function on I . Also let f  and 'f  are 1L  

functions on I . If f  and 'f  are convex on I , then the following inequality holds 
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where  0,1  with 0K  and 
1K  are functions satisfing the conditions (1.1) and (1.2).  

 

Proof. By using definition of the proportional Caputo-hybrid operator, properties of modulus 

and changing variables as  bttax  1=  we get 
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Using convexity of f  and 'f  we get 
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By simple calculation we have 
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which is the desired result.  

 

Theorem 2 Let RR  If :  be a differentiable function on I . Also let f  and 'f  are 1L  

functions on I . If f  and 'f  are s convex (in the second sense) on I , then the following 

inequality holds 
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where  0,1s ,  0,1  with 0K  and 
1K  are functions satisfing the conditions (1.1) and 

(1.2).  

 

Proof. Using 2.1 and s convexity of f  and 'f  we get 
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Theorem 3 Let RR  If :  be a differentiable function on I . Also let f  and 'f  are 1L  

functions on I . If f  and 'f  are m convex on I , then the following inequality holds 
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where    20,1, m  with 0K  and 
1K  are functions satisfing the conditions (1.1) and (1.2).  

Proof. Using 2.1 and m convexity of f  and 'f  we get 
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