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On Generalization of Some Integral Inequalities with the Help of AB-
Fractional Integral Operators and s-Convex Functions
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erhanset@yahoo.com
alikaraoglan@odu.edu.tr

ABSTRACT

One of the known methods in the literature to obtain different versions, generalizations and
extensions of inequalities is to use different classes of convex functions such that s-convexity,
m-convexity, harmonically convexity, r-convexity, quasi-convexity et al. Also, in recent
years, fractional integral operators have become a frequently used method to obtain new
versions, generalizations and extensions of classical integral inequalities. One of these
operators is AB-fractional integral operator defined by Atangana and Baleanu. In this study,
we use the AB-fractional integral operators to establish some new generalized integral
inequalities that are connected with the celebrated Hermite Hadamard integral inequality with
the help of s-convex functions in the second sense.

1. INTRODUCTION

Convex functions, which are of high importance for the theory of inequality in terms of wide
range of applications and features, are the focus of researchers in many applied fields such as
convex programming. Let’s start by remembering this useful function class.

Definition 1.1 The function f :[a,b]c R — R, is said to be convex if the following inequality
holds

f(X+(1-D)y) <A (X)+(1-2)f(y) (1.1)
forall x,ye[a,b] and 4 €[0,1]. We say that f is concave if (—f) is convex.

Definition 1.2 (see [3],[6]) Let 0<s<1. A function f :[0,0) >R, is said to be s-Breckner
convex or s-convex in the second sense, if for every X,y €[0,) and «, >0 with a+ =1,
we have

flax+py)<a’f(x)+ T (y). (1.2)
The set of all s-convex functions in the second sense is denoted by K?.

It can be easily seen that for s =1, s-convexity reduces to the ordinary convexity of functions
defined on [0,).

Proceedings Book of ICMRS 2022 1
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Hermite-Hadamard inequality, one of the first types of inequality in which convex functions
are used in inequality theory, is an aesthetic inequality whose lower and upper bounds can be
expressed in arithmetic mean. This famous inequality is expressed as follows.

Assume that f:1 cR—R is a convex mapping defined on the interval 1 of R where
a <b. The following statement;

f(%mjgrzif(x)dxsw (1.3)

holds and known as Hermite-Hadamard inequality.
In [5] Dragomir and Fitzpatrick proved a variant of Hadamard;;s inequality which holds for s-

convex functions in the second sense.
Theorem 1.1 Suppose that f :[0,00) — R is an s-convex function in the second sense, where

se(0,1),and let a,be[0,x), a<b.If f eL[a,b], then the following inequalities hold

2“f(a+bj_iif(x)dxsw.
2 b-as s+1

Definition 1.3 (see, [4],[9]) Let H'(a,b) be the Sobolev space of order 1 given as follows
H'(a,b)={ueL,(a,b):u eL,(a,b)}.

In this paper, we will denote normalization function as B(«) with B(0)=B(1)=1 and I'(.)
iIs Gamma function.

Left hand side of Atangana-Baleanu integral operator has been defined as follows.

Definition 1.4 [2] The fractional integral associate to the new fractional derivative with non-
local kernel of a function f € H'(a,b) as defined:

AB 1% t a-1
2l {f(t)}—mf() B(a)r(a)faf‘y)‘t‘y) dy

where b >a,a € (0,1].
In [1], the authors have given the right hand side of integral operator as following;
Q) f(t)+ f(y)(y—t)“dy.
{ } B(a) ) B(a )F( )I

The Gamma function I'(z) developed by Euler is usually defined as follow.

Proceedings Book of ICMRS 2022 2
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Definition 1.5 [8] Assume that R(z) >0, the Gamma function is denoted by I'(z) and

defined as follow.
I'(z) = j:e*ttzfldt.

Definition 1.6 [8] Assume that R(7) >0 and R(p) >0, the Beta function is denoted by
B(n, p) and defined as

Bl )= [ -ty ot

The main aim of this study is to obtain new Hermite-Hadamard type inequalities via
Atangana-Baleanu integral operators for s-convex functions in the second sense using
identity that provided by Set et al. in [7]. The main findings are supported by some reduced
results.

2. MAIN RESULTS
We will give the identity that provided by Set et al. to obtain main results as follow.

Lemma 2.1 [7] Let f :[a,b] >R be differentiable function on (a,b) with a<b. Then we
have the following identity for Atangana-Baleanu fractional integral operators

AB |« AB | a (=) f@+bm-t)“f(b) 2(1-a)f(t)
SO 1 O) B () 5]
_ (t _ a)a+l f : (a) N (t _ a)a+2
(a+1)B(x)(«) (+1)B(a)'(«x)
_ (b _ t)a+l f (b) N (b _t)a+2
(a+1)B(a)'(«x) (a+1)B(a)I'(«x)

[[@-K)= £ (kt+(1-K)a)dk

1 a+l g"
[kt (kb+(1-k)t)dk

where « € (0,1],t €[a,b], B(«) is normalization function and I'(.) is Gamma function.

Theorem 2.1 Let f:[a,b] >R be differentiable function on (a,b) with 0<a<b and

f eL[a,b]. If | f*| is a s-convex function in the second sense, we have the following
inequality for Atangana-Baleanu fractional integral operators

ol g ) OO

(t —a)* f (@) —(b—t)*™ f (b) _2(1-a)f (1) |
(a+1)B(a)'(«x) B(x)

(t _ a)a+2
~ (a+1)B(a)T ()

(2.1)

) f'(a)
Bls+1,a+2)|f (t)‘+ﬁ

Proceedings Book of ICMRS 2022 3



5" INTERNATIONAL CONFERENCE
ON MATHEMATICAL AND RELATED SCIENCES
ICMRS 2022

27-30 OCTOBER, 2022

(b—t)~'2 )

(@+1)B(a)(a) pls+la+2)f (t)‘+(a+s+2)

where te[a,b], ¢<(0,1], s(0,1], B(«) is normalization function, T'(.) is Gamma
function and f(.) is Beta function.

Proof. By using the identity that is given in Lemma 2.1, we can write

ol gl L0000

(t —a)“*f (a)-(b-t)** f (b) 2(1-a)f () |

(a+1)B(a)'(«x) B(a)
o (- il g
i DB@r@) [k £ (kt+ (1-k)a)dk
(b—t)"* ~
H DB jok f"(kb+ (1—k)t)dk |
(t_a)a+2

jol (1-k)**] £ (kt+ (1-k)a)| dk

(a+1)B(a) ()

(b_t)a+2 o ) )
DB T ke A-kyld

By using s -convexity in the second sense of | f~ |, we get

e e 1 () ) 1@ (B £ (b)

B(a)I'(a)
_t-a @ - (0) 22,
(a2 +1)B(a)I'(a) B(a)
(t_a)a+2 1 a+l "
S e DB b0 I (k+ (1-la) ok
(b_t)a+2 g a+l " .
+(a+1)8(a)r(a)jok | £ (kKb+(1-k)t)| dk
(t_a)a+2 1 a+iry, s| £" slen
< o DBl O I O] -k @k
(b_t)(”z 1 a+lry, s| £" _ slg”
(a+1)B(a)(«x) Iok k|t (b)‘—’_(l k)"|f (t)‘]dk
_(a+1)B(a)F(a) ﬂ(s+1,a+2)‘f (t)‘+(a+s+2)

Proceedings Book of ICMRS 2022 4



5" INTERNATIONAL CONFERENCE
ON MATHEMATICAL AND RELATED SCIENCES
ICMRS 2022

27-30 OCTOBER, 2022

. f"(b)
p(s+1,a+2)\f (t)\+ﬁ .

(b _t)a+2
(a+1)B(a)'(«x)

So, the proof is completed.

Remark 2.1 In Theorem 2.1, if we choose s =1, the inequality (2.1) reduces to the inequality
in Theorem 2.1 in [7].

Theorem 2.2 Let f:[a,b] >R be differentiable function on (a,b) with 0<a<b and

f eL[ab]. If | f | is a s-convex function in the second sense, we have the following
inequality for Atangana-Baleanu fractional integral operators

1ol gl O 00

(t —a)**f (a)—(b—t)*™ f (b) 2(1-a)f (1) |
(a+1)B(a)'(«x) B(a)

(t—a)=? ( 1 J @+t
(a+D)B(@) (o) ap+p+1 s+1

(2.2)

o=
o

o |-
Q|

L b 1 Ve[| o)
(a+1)B(a)'(x)\ ap+ p+1 s+1

where p*+q*=1, q>1, tela,b], se(0,1], a<(0,1], B(«) is normalization function,
['(.) is Gamma function and S(.) is Beta function.

Proof. By using Lemma 2.1, we have

R RIS CORICUEORID
(- a)*f'(a)—(b—t)*" f (b) 2(-a)f (1) |
(a+1)B(a)'(«x) B(x)
(t _ a)a+2
~(a+1)B(a) ()

E (1-k)**| " (kt+(1-k)a)| dk

(b_t)a+2 g a+l " _
e DB T ko akn)idk

By applying Holder inequality, we get

Proceedings Book of ICMRS 2022 5
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o i) SO0

(t —a)* f (@) —(b—t)*™* f (b) _2(1-a)f (1) |
(a+1)B(a)'(«x) B(x)

(t—a)? L e 1o (e r g pra® g )
S(0{+1)B(05)1“(05) Uo(l_k)( ) dkj Uo‘f (kt+ (1 k)aX dkj }

R

By using s -convexity in the second sense of | f* |, we obtain

ey (i) 81 £ ()1 L) (@) + (D=1 f (b)
SO P O) BT ()

(t —a)* f'(a)—(b-t)** f (b) _2(1-a)f (1) |

(a+1)B(a)'(«x) B(x)
< f;)‘B""()a ;(a) ( [la- k)‘“”)pdkjp( [l @) + -kt (a)\“]dk)q]

-0 | (o \of e
T @+DB(@)(a) Uok( )dk) Uo[k

_ (t-a)*? ( 1 ]; @[+t o |
" (@ +1)B(a)T () ap+ p+1 s+1

R G G S I C SN
(a+1)B(@) () ap+ p+1 s+1 '

So, the proof is completed.

£ () +(1-k)’

£ (t)\“]dkﬂ

Remark 2.2 In Theorem 2.2, if we choose s =1, the inequality (2.2) reduces to the inequality
in Theorem 2.2 in [7].

Theorem 2.3 Let f:[a,b] >R be differentiable function on (a,b) with 0<a<b and

f eL[ab]. If | f |* is a s-convex function in the second sense, we have the following
inequality for Atangana-Baleanu fractional integral operators

Proceedings Book of ICMRS 2022 6
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(o) gt ) LR D0 23)

(t —a)* f (@) —(b—t)*™* f (b) _2(1-a)f (1) |
(a+1)B(a)'(«x) B(x)

Qo -

(t-a)**’ 1 Y @)
_<a+1)B<a)r(a)(a+zj pls+la+2)f <t>\+‘ ‘J

Q|-

1

_t)e+2 o ) NOE

P Gl ( L j Bls+1a+2)f (t)\“+&
(a+1)B(a)(x)\ x +2 a+s+2

where t e[a,b], s€(0,1], « €(0,1], g>1, B(«) is normalization function, I'(.) is Gamma

function and () is Beta function.

Proof. By using Lemma 2.1, we get

AB| AB| (t-a)* f(a)+({-t)"f(b)
E RGO CORICLG
(- a)“f (a)—(b—t)*™f (b) _2(1-a)f(1) |
(a+1)B(a)'(«x) B(x)
(t _ a)a+2
(a+1)B(a)I ()

(-t A
* 2T DB j k*| £ (kb+ (1—k)t)| dk.

0

jol (1-K)**] £ (kt+ (1-k)a)| dk

By applying power mean inequality, we get

ol i) O 00

(t —a)**f (@)—(b—t)*™ f (b) _2(1-a)f(t) |
(a+1)B(a)'(«x) B(a)

(t_a)mz 1 a+l l% 1 a+l
= @+)B@)I(@) Uo(l_k) dk) Uo(l_k)

£ (kt+ (1— k)ajqdk)q]

1

" ff);t()o:zr(a) U:kmdk)l_q(ﬁkm

£ (kb+ (1 k)tjqdqu].
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By using s -convexity in the second sense of | f " |*, we get

o oy 1 £ @)+ f (B)
SO P O B ()

(t —a)**f (a)—(b—t)*™ f (b) _2(1-a)f(t) |
(a+1)B(a)'(«x) B(a)

(t-a)"2 e Y
" (@ +1)B(a)T(a) [Uo(l_k) dk)

1

o + @Kyt (a)\q]dk)q]

x( [(EEEE (S

(b—t)*
T a+)B@) (@) [Uok dk)

x( [k

I (B 1V Lo |F@ ‘
" (@+D)B@) () (a+2] [ﬂ(S”"”Z)‘f ®) +a+s+2j

£ ) +(1-k)’

0]k ")

(b—1)~* ( 1 jl‘*[‘f ©) +ﬂ(S+l,a+2)‘f"(t)‘qJ -

(a+1)B(ax)'(a) |\ ax+2 a+s+2

So, the proof is completed.

Remark 2.3 In Theorem 2.3, if we choose s =1, the inequality (2.3) reduces to the inequality
in Theorem 2.4 in [7].

Theorem 2.4 Let f:[a,b] >R be differentiable function on (a,b) with 0<a<b and

f eL[a,b]. If | f |*is a s-convex function in the second sense, we have the following
inequality for Atangana-Baleanu fractional integral operators

PR RN S SCE T

(t —a)* f (@) —(b—t)*™ f (b) _2(1-a)f (1) |
(a+1)B(a)'(«x) B(x)

(2.4)

Proceedings Book of ICMRS 2022 8
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(t—a)*? 1@l
~ (a+1)B(a)l(@) | p(ap+p+1) q(s+1)

P LG O]
(@+1)B(@)l(@)| plap+p+1)  q(s+1)

where te[a,b], se(0,1], a<(0,1], p*+q* =1, q>1, B(a) is normalization function,
I'(.) is Gamma function and £(.) is Beta function.

Proof. By using Lemma 2.1, we get

|A§Ia{f(t)}+ ABISz{f(t)}_ (t_a)a f (a)+(b_t)a f(b)

B(a)I'(a)
(- a)“* f (a)—(b—t)*™ f (b) _2(1-a)f (1) |
(a+1)B(a)'(«x) B(x)
(t _ a)a+2

jol (1-k)**] £ (kt+ (1-k)a)| dk

(a+1)B(a) ()

(b_t)a+2 Lo ) )
@@ T Kokl

By using the Young inequality as xy < 1xp +1 y9, we have
p q

a1l gl 000

(t —a)* f (@) —(b—t)*™ £ (b) _2(1-a)f (1) |
(a+1)B(a)'(«x) B(x)

(t—a)‘”z l L Ly(@)p i Ve _ a
_(a+1)B(a)F(a){pJ.°(l K) dk+qjo\f (kt+(1-K)a) dk}

(b—t)*" 1 @ 1. _ a
+(a+1)B(a)F(a){ka dk+qj0\f (Ko+ (1 K)t) dk}.

By using s -convexity in the second sense of | f " |*, we have

(t-a) f(@)+(b-t)* f(b)

SO P O) B@T(@)
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(t —a)*™f'(a)—(b-t)** f (b) _2(-a)f (1) |

(a+1)B(a)'(«x) B(x)
(t_a)a+2 _l 1 _ L\(e+)p 1 Ts| q RALIrE q
< 0BT p jo(l k) dk+q jo[k @) +@-k)°|f"(a) ]dk}
(b_t)a+2 _l 1 (a+1)p 1 1 s| 4 RAYIES 4
+(a+1)B(a)F(a)_p J'Ok dk+q jo[k o) +@-k)|f ) ]dk}
_ (- 1, @ +[f" @)
(@ +1)B(a)[(@)| p(ep+p+1) q(s+1)

(b—t)** 1 Fof+ref
(a+1)B(a)[ ()| p(ap+p+1) ais+1) |

So, the proof is completed.

Remark 2.4 In Theorem 2.4, if we choose s =1, the inequality (2.4) reduces to the inequality
in Theorem 2.3 in [7].
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ABSTRACT

This research is on the new versions of Bullen-type inequalities. These inequalities
established by means of convex mappings include conformable fractional integral
operators. Obtaining these inequalities, well-known Hélder inequality and power mean
inequality are also utilized. The resulting Bullen-type inequalities are a generalization of
some of the studies on this subject, including Riemann integrals and Riemann-Liouville
integrals. What’s more, new results are obtained through special choices.

1. INTRODUCTION

Convex theory is a subject that has been used in many fields of optimization theory, energy
systems, engineering applications, and physics and has guided many studies in the literature.
Also, the convex theory is an available way to solve many problems from different branches
of mathematics. Convexity theory has an important place in these branches of mathematics,
especially in inequalities. Hermite-Hadamard, Simpson, Newton, and Bullen-type inequalities
are the most well-known of these inequalities.

Today’s researchers use the derivative and integral as a tool to produce different solutions to
almost all of the problems that arise in each of the fields of basic science such as mathematics,
physics, chemistry, and engineering such as industry and electricity. Classical derivative,
classical integral, and differential concepts although it solves most of the problems that arise
in many areas of technology, these concepts are insufficient in solving many of them.
Fractional calculus has been the solution to these problems. Many authors began to deal with
the discrete versions of this fractional calculus benefiting from the theory of time scales. Two
basic approaches are used to do this fractional calculation. The first approach called the
Riemann-Liouville approach, in addition to repeating the integral operator n times, he made it
possible to convert it to an integral with the Cauchy formula where then n! is changed to the
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Gamma function, and hence the fractional integral operator of non-integer order is described.
These integers were then used to find the Riemann-Liouville and Caputo fractional
derivatives. The second approach is the Griinwald—Letnikov approach which is the aid of
iterating the derivative n times and then fractionalizing involving the Gamma function in the
binomial coefficients. In the results obtained with these approaches, the calculations seemed
complicated as the product rule and the chain rule properties were lost from the properties of
the derivative. That’s why the Conformable fractional approach was developed, which
depends on the fundamental definition of the derivative in [18]. In [2], the author proved that
the conformable approach in [18] cannot yield good results when compared to the Caputo
definition for specific functions. This flaw in the conformable definition was avoided by some
extensions of the conformable approach [12, 22]. Based on these approaches, Jarad obtained
the definitions of conformable fractional integrals in [15]. Inspired by all these studies,
fractional calculus attracts researchers every day.

In [3], Bullen introduced Bullen-type inequalities in 1978, which is named after him, and
which has guided many studies in the literature. Dragomir and Wang acquired a natural
generalization of Bullen’s inequality in [8]. Sarikaya et al. acquired generalized Bullen-type
inequalities in [20]. Erden and Sarikaya proved the generalized inequalities of Bullen-type
with the aid of the local fractional integrals on fractal sets in [10]. Du et al. utilized the
generalized fractional integrals to discover Bullen-type inequalities in [9]. Hwang et al. have
constructed some new Hermite-Hadamard-type, Bullen-type, and Simpson-type inequalities
in [11] with the aid of fractional integrals. Starting from the equality they obtained, /scan et
al. found some new Hermite-Hadamard and Bullen-type inequalities via functions whose
derivatives in modulus at certain power are convex in [13]. Tseng et al. acquired some
Hadamard-type and Bullen-type inequalities via Lipschitzian functions and give several
applications with help of the special means in [21]. With help of the some Euler-type
identities, Matic et al. presented a generalization of Bullen-Simpson’s inequality based on
(206)-convex mappings in [19]. Cakmak presented some new Bullen-type inequalities based
on differentiable mappings with the help of the s—convexity and Riemann-Liouville fractional
integral operators via Gauss hyper-geometric function in [4]. Also the author proved a new
identity based on differentiable mappings and established some new inequalities via
differentiable mappings with the aid of the h-convex mappings involving Bullen-type
inequalities in [5]. In [16], Kara et al. obtained the above and below bounds via
parameterized-type inequalities utilizing the Riemann—Liouville fractional integral operators
and limited second derivative functions. These presented some new Bullen-type inequalities
according to the specific choices of the parameter. Besides all this, Cakmak has done two
different studies in [6] and [7] on Bullen-type inequalities involving a different conformable
fractional integral operator.

With the help of the continuing research and mentioned papers above, we will acquire some
Bullen-type inequalities via differentiable convex mappings involving conformable fractional
integral operators. The entire form of study takes the form of four sections including the
introduction. In Section 2, the fundamentals definitions of Riemann-Liouville integral
operators and conformable integrals will be explained for building our main results. In
addition, recalls will be made about gamma, beta, and incompleted beta functions, which are
well-known in the literature. In Section 3, an identity will be present for the case of
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differentiable convex mappings involving the conformable fractional integral operators. By
utilizing this equality, we prove some Bullen-type inequalities via convex mappings with the
help of conformable fractional integrals. More precisely, Holder and power-mean inequalities,
which are well-known in the literature, will use in some of the proven inequalities.
Furthermore, we also present some corollaries and remarks. Finally, in Section 4, ideas that
will guide the researchers will be given. Interested researchers will be informed that new
versions of the inequalities we have acquired can be derived via different fractional integrals.

2. PRELIMINARIES

In order to create our main results, in this section, the gamma function, beta function,
incomplete beta function, the definition of Rieman-Liouville integrals, and the definition of
Conformable fractional integrals will be presented.

Definition 1. The gamma function, beta function, and incomplete beta function are defined by
r(x):= [ t* e tdt,

B(x,y):= f, 711~ )71,
and
B(x,y,r):= [; 7 (1 - )71,

respectively. Here, 0 < x,y < o and r € [0,1].
Riemann-Liouville integral operators are defined by as follows

Definition 2. [17] For f € L,][a, b], the Riemann-Liouville integrals of order g > 0 are
given by
1

Jof @) = 7= [{ = 0F T f(0dt, x>a 1)

and
1

mf:(t — x)P71f (t)dt, x <b. (2.2)

Jo-fx) =
The Riemann-Liouville integrals will be equal to classical integrals for the condition f = 1.
In [15], Jarad et al. gave the fractional conformable integral operators.

Definition 3. [15] For f € L,[a, b], the fractional conformable integral operator 8], f (x)
and BJ;_f(x) of order B € C, Re(B) > 0 and a € (0,1] are presented by

a ayB-1
x (x—a)*-(t-a) f®
fa ( a ) (t—a)l—a dt,

(2.3)

1
FEf () = 1 t>a

and
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—) 2 _(p—py\B~1
(b—x)*—(b-t) f®
PR = m f, (2 ) dt, t<b, (24)

a (b—t)l-a
respectively.

If we consider a = 1, then the fractional integral in (2.3) reduces to the Riemann-Liouville
fractional integral in (2.1). Furthermore, the fractional integral in (2.4) coincides with the
Riemann-Liouville fractional integral in (2.2) when a = 1. For some recent results connected
with fractional integral inequalities, see [1, 14] and the references cited therein.

3. MAIN RESULTS
In this section, we use conformable fractional integrals to construct Bullen-type inequalities
for differentiable convex mappings. First, let’s set up the following identity to establish
Bullen-type inequalities.

Lemma 1. Consider that f: [a, b] — R is a differentiable mapping on (a, b) such that
f' € Ly[a, b]. Then, the following equality holds:

2 (5 + 55 3.1)
_ zaﬁgcjz;l(g+1) ﬁ][‘;x_f (a+b) n B]a+f (a+b)]

_ (b—a)aB fl[ 1—(1—t)“)ﬁ 1
- 24P

x[f( a+0b) - f(Sta+ b)) dt.

Proof. Employing the integration by parts gives,

11=f;[<#>‘*—L][f'(%w%b)—f'(%ﬁ%b)]dt @2

2aB

1
_ 2 1—(1—t)“ 1+t
" b-a [( a Zaﬁ] I\ 2 b)

0

2 (e )B (1 -0 (Sra+20b)dt

1
2 1—(1—t)“ 1+t 1-t
+E[( a Zaﬁ]f +Tb)0

f (1 (1- t)“)ﬁ (1— )% 1f (1+t %b) dt

Y
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(Y ey (e )
() ey (e ) e

With the help of the change of variables in (3.2), then the equality (3.2) turns into the
following equality

o i (52) 4 2222) 03

-1

L+1 b—a\¥_ . a
_(sza)a e o <( 2) ~0-x) > O codx

rgp) °= a (b—x)t~¢
a p-1
aP+1rgen (42 (50 ~G-a) e
_(b a) r®) L* p roayia S ()dx

- bl () + 5]

—() e D e r (S2) + mer (2]

b—-a

If the expression (3.3) is multiplied by G a)“ , then the proof of Lemma 1 becomes clear.

Theorem 1. Suppose that f: [a, b] = R is a differentiable mapping on (a, b) such that
f' € Li[a,b] and |f’| is convex on [a, b]. Under these conditions, the following inequality is

derived:

|1 [f (ﬂ) + f(a);rf(b)] _ 20P-1aBr(g+1) [ Bra f (a+b) 1B, f (a+b)]| (3.4)

2 2 (b—a)“ﬁ

< &0y (@ A B+ If @I

a=% - (1- ) 5)

Here,

(e’ o

$1(a,B) = f

rlp Gper)-2m (21, 0))]

where beta function and incomplete beta function are denoted as B and B, respectively.
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Proof. If we take the absolute value of both sides of (3.1), then we obtain

| 1 [ f (ﬂ) + f(a);rf(b)] (3.6)

2 2

e g (22) 4 . (2]

- (b—z)aﬁ fol (1—(10‘4)“)’3 ~ 2 (Bra+ )| ae
_I_(b—z)aﬁ fol (1—(1a—t)“) zaﬁ |f (1” +%b)|dt.

It is known that |f'| is convex on [a, b]. It follows

Bl (22) 0]y () s (22

—-a)a 1|/1-(1-t)¢* B 1+
< &l (| (2G0T L (1t o) 4 22 () 4+ 24 ()] +
b)) de
_ -a)af 1|(1-a-%\B
= 820 () — P )] + I (@) 1t

Thus, the proof of Theorem 1 is finished.

Corollary 1. If we set « = 1 in Theorem 1, then we have

[l (557) + 2255 - 2552 s (59) +ster (5

o (LA DI+ I @I,

where

1
1 1

b:(1Lp) = f |tF =3 de = () + 75 -3 37)

Remark 1. Let us consider « = 1 and # = 1 in Theorem 1, then we acquire
b b b b— , ,
B[F (22) + LB — L 2 rayda| < 22157 (0)] + IF @)1,

which is given by Hwang et al. in [11, Remark 4.2].
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Theorem 2. Suppose that f: [a, b] = R is a differentiable mapping on (a, b), such that
f' € Li[a, b]. In addition, suppose that |f'|? is convex on [a, b] with g > 1. Then the
following inequality can be written

| 1 [ f (ﬂ) + f(a);rf(b)] (3.8)

2 2

- g (22) 4 . (2]

4 4

< (b-a)af o) +3lr' @]\ | (IF' @] 3] )] "\a
B a“(lpfﬁ())[c | |a|> i (Lersiron

[y
[~

(b a)a

< (4wi” (p)) [IF' @1 + 1 ()11

Here,1+l= 1 and
14 q »

dt.

PP ) = []() - L

a 2aB

Proof. If the properties of Holder’s inequality are used in (3.6), then we acquire

[ (557) + 2P - Ege R e () v (7))

1—(1—)\B 1+t ,\|4 %
(=) -l ) (5 (St 500)[ @)

S

(b-a)aP 1
<, < Js

1+t 1-t , \|4 q
a) (5 (tas )" )
Applying the convexity of |f'|? on [a, b], we have the following inequality

(o) ] et () g ()
e

1 1
y [(lf'<a)|":3|f'(b)|">q + (3|f'(a)|q4+|f’(b)|q)q]}
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1
_ (-a)af £+ @|\a (17 @] +3)r" )| T\a
- (00 ) [(| 3 |>  (Lealaprrtye)

The second inequality of Theorem 2 can be acquired immediately by letting @w; = 3|f""(a)|9,
p1 = f"D)9, @, = |f"(a)|?and p, = 3|f"(b)|? and applying the inequality:
Yi=1(@k + pi)® < Xjo1 @i + Xk Pr, 0=<s<L

Thus, the proof of Theorem 2 is completed.

Corollary 2. If Theorem 2 is evaluated as a = 1, the following result is obtained

B (52) ] g (59) (02
7 ("B( )) l('f (”)|q+43|f (a>|q> (lf'(a)l":slf’(b)l")%]

<=2 (42 ) 11 (@ + I B

Here,
14
@) = [, |t3 —%| dt.

Corollary 3. When we consider « = 1 and § = 1, we can write the Theorem 2 in the
following format

a+b f(a)+f(b) 1 b
1 (57) + 57 - L o
1
b—_a(;)% (lf’<b>|q+s|f'<a>lq)5 + (|f'<a>|q+s|f'<b>lq)5
8 p+1 4 4

<= (pH) [1f' (@) + I (b))

IA

[
e—

Theorem 3. Consider the existence of a differentiable mapping such that f: [a, b] = R on
(a,b) and ' € Ly[a, b]. Let’s also assume that the function |f'|? is convex on [a, b] with
q = 1. Then, the following inequality is established:

r (52) + 20 g (02 g (02

2 2
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<

(b- a)a ($:(a ﬁ)) ((¢1(aﬁ)+¢z(aﬁ)) IF'(B)]7 +

1

(¢1(a;ﬁ);¢2((x:ﬁ)) |f/(a) |q)q

2

N ((¢1(a.ﬁ)—¢z(a.ﬁ)) IF'(B)| + (¢1(a,ﬁ)42r¢z(a,ﬁ)) T a)lq)q]_

Here, ¢;(a, B) is described as in (3.5) and

bl ) = [t (FE2) -

=i (1-6)

ro[p G+ 1)-28 (L1 2))
—B(2,p+1)+2B <§ﬁ +1, (%)Eﬂ

where B and B denote the beta function and incomplete beta function, respectively.

Proof. With the help of the power-mean inequality, we have

A e B R ORI C )
< (b—z)aﬁ {(f: (1—(16{—t)¢1)ﬁ B MLB dt)l_%
' 1-t 1+t ,\|4 %
X[(fo f’(Ta+Tb)| dt)
.
%ﬁcééﬁiﬁﬂf@%+;@ﬂ@ﬂ'

Since |f'|? is convex on [a, b], we establish

—(1-\B
(=5 -~
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(529 0] g g () 0y ()]
< (b—z)aﬁ {(f; (1—(1a—t)“)ﬁ _20%3 -
gy -

)"E
+(f (A=Y _ (2 @y 4 o) dt)]}

QR

| (1 ®)1e+ 21 @) de

With this calculation, the proof ends.

Corollary 4. If @ = 1 in Theorem 3, the following inequality is obtained

|27 (2) 4 L0 _ ZLED 15 p(212) 4 58 (222)]|

r 1
(b—a) 1-2 [ (2. B +2:8) | (@] T\a
< 4a (4)1(1,3)) ? ( 1(6) | 2 2Ol )

1
+ <ﬂ1(.3)|f’(a)|q+ﬂz(ﬁ)|f'(b)|q)q]
2 )

where ¢, (1, B) is defined as in (3.7) and

2

_ B2 N\, 1 _1
¢2(1,8) = 2(ﬁ+2)( ) +B+2 4
Here,

2() = p1(1,5) + 62 (1.B)
@0+ 655 O radem
0.8) = $:1B) ~ 2(1, )

_ (B (1\F B-2 % 11
- (ﬁ'+1) (2) (2(ﬁ+2))( ) + (B+1)(B+2) 4

Corollary 5. If we take « = 1 and f = 1 in Theorem 3, we acquire

and
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(52 2222 3% o

< b—a

16

1 1
WHOESTHORY + HOETHOAY
12 12

]

4. CONCLUSION

In the current research, we derive the new Bullen-type inequalities by making use of
Conformable fractional integrals. Convexity of the function, Holder and power-mean
inequalities are used in these inequalities. Furthermore, special choices of the variables in the
theorems, generalizations of some articles, and new results were found. In the future, the
authors may derive new inequalities of different fractional types related to these Bullen-type
inequalities. Interested readers can also establish new inequalities using different kinds of
convexities. These inequalities created are new as far as we know and according to the
literature review. These inequalities will inspire new studies in various fields of mathematics.
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ABSTRACT

The main object of this paper is to present the Hermite-Hadamard inequalities for
superquadratics functions. We establish the midpoint inequalities with using a important
integral identity (see Lemma 4) for differentiable superquadratic mappings.

1. INTRODUCTION

The usefulness of inequalities involving convex functions is realized from the very beginning
and is now widely acknowledged as one of the prime driving forces behind the development
of several modern branches of mathematics and has been given considerable attention. Some
famous results for such estimations consist of Hermite-Hadamard, trapezoid, midpoint,
Simpson or Jensen inequalities ect.

Let f : 1<cR—>R beaconvex mapping defined on the interval | of real numbers and
a,b el with a<b. The following double inequality is well known in the literature as the
Hermite-Hadamard inequalities [9]:

f("%bjsé X f(x)dxsw. (L.1)

The most well-known inequalities related to the integral mean of a convex function are the
Hermite Hadamard inequalities. It gives an estimate from both sides of the mean value of a
convex function and also ensure the integrability of convex function. It is also a matter of
great interest and one has to note that some of the classical inequalities for means can be
obtained from Hadamard's inequality under the utility of peculiar convex functions f : These

inequalities for convex functions play a crucial role in analysis and as well as in other areas of
pure and applied mathematics. The absolute value of the difference of the second part of the
(1.1) inequalities is known as the trapezoidal inequality in the literature and was given by
Dragomir and Agarwal in 1998 [8]. Then, in 2004, the absolute value of the difference of the
first part of the (1.1) inequalities, known as the midpoint inequality by Kirmanci, was given
[10].

Recall that a convex function satisfies
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#y)—¢x)= Cx)(y—x)

forall x,y where C(x)=¢'(x) (or,if ¢ is not differentiable at x, any number between
the left and right derivatives atx). In [1], the authors introduced the class of superquadratic
functions, defined as follows. Superquadratic functions have been introduced as a
modification of convex functions in [1]. The definition of the superquadratic functions on
which the study will be built is as follows:

Definition 1. [1] A function ¢ : [0,00)— R is superquadratic provided that for all x>0
there exists a constant C, € R such that

#(y)=p(x)+C (y—x)+ ¢Qy - x|) (1.2)
forall y>0.

We say that ¢ is subquadratic if —¢ is a superquadratic function. It is shown that if ¢ isa
nonnegative superquadratic function, then ¢ is convex and ¢(0) =¢'(0)=0.

Remark 1. For ¢(x) = x?, equality holds in (1.2), with C(x) = 2x. Also, the definition, with
y = x, forces ¢(0) <0, from which it follows that one can always take C(0) to be 0. If ¢
is differentiable and satisfies ¢(0) =¢#'(0) =0, then one sees easily that the C(x) appearing
in the definition is necessarily ¢'(x) .

Some basic properties and examples of superquadratic functions can be found in [1].

Lemma 1. [1] Let ¢ be a superquadratic function with C, as in Definition Definition
Superquadratic.

(i) Then ¢(0)<0 .

(ii) If ¢(0)=¢'(0)=0 ,then C =¢'(x) whenever ¢ is differentiableat x>0 .

(iii) If ¢ >0 ,then ¢ isconvexand ¢(0)=¢'(0)=0.

Lemma 2. [2] Suppose that ¢ is superquadratic and non-negative. Then ¢ is convex and
increasing. Also, if C(x) isasin (1.2),then C(x)>0.

Proof. Convexity is shown in [2]. Together with ¢(0)=0 and ¢(x) >0 , this implies that
¢ is increasing. As mentioned already, we can take C(0)=0 .For x>0 and y<x , we
can rewrite (1.2) as

Cogs P09 +9x-Y) o
> Xy >
The next lemma (essentially Lemma 3.2 of [1]) gives a simple sufficient condition. We

include a sketch of the proof for completeness. The next result gives a sufficient condition
when convexity(concavity) implies super(sub)quaradicity.
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Lemma 3. [1] If ¢"is convex(concave) and ¢(0) =¢'(0) =0, then ¢ is super(sub)quadratic.
The converse of is not true.

Proof. First, since ¢’ is convex and ¢'(0)=0 , we have ¢'(x) <[x/(x+ y)l¢'(x+y) for
X,y >0, and hence

P()+¢'(y)<'(x+Y)
(thatis, ¢' issuperadditive). Now let y>x>0. Then

B(y) = #0) —#(y =)~ (y = X)¢'(x)
= [ [#'t+0-¢'O)-¢' (0t =0.

Similarly for the case x>y =>0.

Remark 2. Hence ¢(x)=x" issuperquadratic for p>2 and subquadratic for 1< p<2.

(It is also easily seen that ¢(x)=x" is subquadratic for 0< p<1 , with C(x)=0).
Subquadraticity does always not imply concavity; i.e.,there exists a subquadratic function
which is convex. For example, ¢(x) =x", x>0 and 1< p <2 is subquadratic and convex.

The following inequality is due to M. Petrovic [11].
Theorem 1. Let O<a<oo ,andlet f :[0,a)—> R be a continuous and convex function.
Then forevery ne N andevery x;,X,,...,X, €[0,a) suchthat x, +X,+,..+X, €[0,a) we
have

fx)+ F (%) + F(X) .t F(X,) < F (X + X, + X,) +(n=1) £ (0).

Banic and Varosanec in [6] gave an important result with characterizations of the
superquadratic functions, which are analogous to the well known characterizations of the
convex functions: For the function ¢ :[0,.0) — R the following conditions are equivalent:

A) ¢ isasuperquadratic function, i.e., there exists a constant C, such that

#(y)= p(x)+C,(y-x)+y-X)  vxy>0.
B) The inequality

Pt + A 1)%,) < t(x )+ Q- 1)p(x, )~ td(@ ), — x|)- A~ Dltx, —x]) (L.3)

holds forall x,,x,>0 and te<[0,1]
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C) Forall x,x,>0 and x, <x<x, we have

¢(X1) _¢(X) — ¢(X — X1) < ¢(X2) B ¢(X) _¢(X — Xz) )

X, — X X, — X

In 2008, Banic et al. [7] proved the following Hermite-Hadamard inequality for
superquadratic functions by using Jensen's inequality for superquadratic functions:

Theorem 2. Let ¢ :[0,0) - R be an integrable superquadratic function and 0<a<b .
Then

<1 Iqﬁ(x)dx (1.4)

< B I0) [ etia) (r-a)olo- )

In this paper, we firstly prove the Hermite-Hadamard inequalities using the definition of the
superquadratic function in (1.3). Then, we will investigate some inequalities connected with
the left part of the inequality (1.4). In order to achieve our goals, we have to establish a
important integral identity (see Lemma 4) for differentiable superquadratic mappings.

2. MIDPOINT INEQUALITIES

Now, let's start our main results with a new proof of the above Theorem 2:

Proof. For te[0,1], let x=ta+(@-t)b, y=(@-t)a+tbh. Since ¢ is a superquadratic
function, then

¢(a;bjs%¢(ta+(1—t)b)+%¢((1—t)a+tb)—¢(b_7a|l_2t|j- @)

Then integrating the resulting inequality with respect to t over [0,1], we obtain
a+b
&3
1 1 1
[#lta+ @ -t)b)dt+ > [#(@-t)a+tb)dt
0 0

¢ (b-a
- ! ¢(T|1—2t|)dt.

<

N
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With change of variable x=ta+(1-t)b, y=(1-t)a+tb and 1-2t=x-22% inthe above
integrals, we obtain

1 8 1 8 a+b
< b—a;[¢(x)dx_(b—a)2 T!¢UX_—

and the first inequality is proved.
To prove the other half of the inequality in (1.4), since ¢ is a superquadratic function, for

every t €[0,1], we have,

gta+ (L-t)b)+p((L—t)a+tb)

< f(a)+ f(b)-2tg(1-t)b—al)- 2(L—t)g(t - &)
Then integrating the resulting inequality with respect to t over [0,1], we obtain

1

j #(ta+(1—t)b)dt +j.¢((1—t)a+tb)dt

0

1

< f(a)+ f(b)-2] t¢((1—t)|b—a|)dt—2j(l—t)¢(t|b—a|)dt.

0

With change of variable x=ta+(1—-t)b, y=(1—-t)a+tb, 1-t=22 and t=2=% in the above
integrals, we get

leaf #x)dx< f(a)Z e (b . a) J, (b -x)g(x~a)+ (x-a)gb~x)}ax

and the second inequality is proved.

Lemma 4. Let ¢ :[0,0) — R be an integrable superquadratic function and 0<a<b, then
the following equality holds:

1

(b-a) jozt{¢'(bt+(1_t)a)+¢f(a%b_(bt+(1_t)a)j}dt

+(b_a)ﬁ(t_1){¢'(bt+(1_t)a)_¢'(bt+(1_t)a_a_;bj}dt+¢(o) 22)

) Jo

a+b 1 a+b
[ . j b_aa{¢() ¢G .
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Proof. It's easy to calculate the following equalities

1

| = jozt{¢r(bt+(1_t) )+¢(a7+b_(bt +l-t)a )}}dt
:L%t{qﬁ(bu(l_t)a)_;zﬁ(a?”’_(bt L )a)jHO
__j{ Aot +(L-t)a _¢(a+b (bt + (1 )a)j}dt

1
2

— -

LR
L 1{¢<bt+<1 ta)- o 250 o+ 1- >a>)}dt.

b_

and

trz

{ ¢'(bt+(1-t)a)- ¢(bt+(1 t)a—a—;bj}dt
[ #ot+(1-t)a)- ¢[bt+(1 t)a_aijH;

1 ﬁ{¢(bt+(1—t)) oorr-va-232

b-a’;

a5
L {¢(bt+(1 t)a)— ¢(bt+(1 t)a—a%bj}dt.

b_

(b-a)(l,+1,)
- [f252)-400) - jj{mt +a-t)a)-ffors 0-0a)- 272

If we add 1, and I, and multiply by (b—a), the proof is completed as below:
2
J} dx.

j}dt
- {zz{%”’j—qﬁ(o)}—r: :{¢(x)—¢ﬂx—‘%b

Theorem 3. Let ¢ :[0,.0) — R be an integrable superquadratic function and 0<a<b and
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a+b 1 b a+b
“”[T)‘m a{¢(x)‘¢ﬂx‘7

ool

4

vl 200, )

Proof. Taking absulate value of (2.2), we get

(5t
<(b_a) Et{ ¢’(a7+b—(bt+ (1—t)a)j

+o-a)[i@-t)lp'bt+ 1L -t)a)dt

2

o-a)f (1—t)‘¢’[bt+(1—t)a—a7+b)‘dt+¢(0).

¢'(bt+(@1-t)a)+

}dt
(2.3)

From Theorem 1 and Lemma 4 dueto |¢]>0, |¢'(t) is convex function, then by using
Petrovic inequality, we get

¢'(bt+(1-t)a)+

¢'(a7+b—(bt+(l—t)a)j
¢'(bt+(1—t)a+ a+b _(bt+(1_t)a)j

- ‘¢(a7+bj‘ +lp0),

<

+

g0) (24

and
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¢'(bt+(1-t)a)+ |

(bt +(1-t)a —a%b)‘

¢ bt+(1-t)a+bt+(1— t)a—aTm)‘+

IN

#(0)

= || 2bt+2(1- t)a—aTerj‘+

= ¢’ (2t—%jb+(g—2tjaj+
2-2 o)+ 3- 2 ta) o 0)

Considering (2.4) and (2.5) in (2.3), we get the following inequality

‘¢[a7+bJ | {¢(x)— ¢Ox - aT”’j} o
s@—a”?{ a+b‘|¢0%dt
s
{¢ }
+#0l-40

{ a+b‘ i ax S0l 2|¢'(o)|}+¢(0)

e o,
- (b;a el 20 +|¢'<ox}+¢<o>

and this is completed the proof.

#'(0) (2.5)

#(0)

IN

’(a)|+|¢'(0)|}dt+¢(0)

a+b‘

#(a)+lg'b)

2¢'(0)|}+¢(0)

Theorem 4. Let ¢ :[0,.0) — R be an integrable superquadratic function and 0<a<b and
|#|" be a superquadratic. Then, the following midpoint inequality holds:
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) -2

2 b-a
b oy - sstay oo +

(p+1)2°7

, (b-a) (
2" (p+1)

where r>1 ++1=1

IA

¢'(a)|’ﬂ

1

J +4(0)

o

Proof. From Lemma 4 , then by using Holder Inequality, we get
a+b 1 a+b

(EHR=NCR (2]

< (b-a) Et{kﬁ'(bt ~(-t)a)+lg [a_;b _(bt+ (1—t)a)j}dt

+(b-a) ﬁ(l—t){ (bt+(1 t)a_aT”’j‘}dw(o)

<(b- a)[ Etpdtjé( [ ot (1—t)a)rdtj
jtpdt]ll (a;b (bt+(1-t)a )jrdtI
jz(l t j U ¢'(bt+(L-t)a)’ dtJl

oo fefoeev-222) o] o

2

(bt+(1-t)a)+|¢

+(b-a

N’

+(b-a

N

+b-a

N

Since |¢/|' >0, is convex function in Lemma 1 and using Hermite-Hadamard inequality,

¢,I’

we have
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b b b
o(*5°) - gl fpeo-e(lx- 252 )}
1 i / r 1 b-a\|r +
Sm—?)m[(ﬁw%bnw(1—t>|¢’<a)|“)dt) +('¢ O +Jo' () ) J
(p+1)v277 | \°°
1 / r 1 b=a\|" +
+(b—f‘)p{<ﬁ(t|¢’<b)|f+(1—t>|¢'(a)|f>dt> +<|¢ or- )l > }

(p+1)»277

+9(0)
__G-a (|¢’<b>|f+3|¢’(a)|r>*+<'¢'(O>|r+|¢’(bz—a>|r)7
(p+1DP2% 8 ‘

/ r / r\ + ! r r(bay |’ T
(B o) +(WO)I 1) ) }W

(b-a) [(Id)’(b)lr +3p' @] )* N (3|¢’<b)|f +lp' @I )*

S peni2 8 5
OV o (Y [T\
+2('¢<°>l 1)l ) }M)
=B g @It + @O @I ]
(p+1)7220+H)
(b-a) / r (b= ry +
g prWers e (2z)[) +eo

and this completed the proof.
CONCLUSION

In this research, we have proved the Hermite-Hadamard inequalities for superquadratics
functions. We establish the midpoint inequalities with using a important integral identity for
differentiable superquadratic mappings. It is an interesting and new problem that the
upcoming researchers may use the techniques of this research and prove fractional
inequalities and similar inequalities or similiar our results can be obtained for superquadratics
functions.
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ABSTRACT

In this article, some trapezoid-type inequalities are obtained for s-convex functions by
means of conformable fractional integrals. These inequalities obtained are
generalizations of inequalities for Riemann-Liouville fractional integrals and Riemann
integrals.

1. INTRODUCTION AND PRELIMINARIES

The theory of convexity is an important study area of the literature. Research on convex
functions is used in pure and applied mathematics. A formal definition for convex function
may be stated as follows:

Definition 1. [6] Let I be convex set on R. The function f:1 — R is called convex on I, if it
satisfies the following inequality:

fax+A=my) <nfx)+A-nf®») (1.1)

forall (x,y) € I and n € 0,1]. The mapping f is a concave on [ if the inequality (1.1) holds
in reversed direction foralln € 0,1] and x,y € I.

Definition 2 [4]Let f: [0, 0] — R be a function and 0 < s < 1. Then we have

flux +vy) < w¥f(x) +v3f(y) (1.2)

for u + v = 1. The function f that provides this inequality is named the s -convex mapping in
the second sense.

Remark 1 If we take s = 1 in Definition 2, then Definition 2 reduce to Definition 1.

Proceedings Book of ICMRS 2022 34



5" INTERNATIONAL CONFERENCE
ON MATHEMATICAL AND RELATED SCIENCES
ICMRS 2022

27-30 OCTOBER, 2022

Convex functions are widely used in integral inequalities. The Hermite-Hadamard inequality
discovered by C. Hermite and J. Hadamard (see, e.g., [6], [17, p.137]) is one of the most well
established inequalities in the theory of convex functions with a geometrical interpretation
and many applications. This inequality states that if f:1 — R is a convex function on the
interval I of real numbers and a, b € I with a < b, then

f(22) <27 faydx < B0 (1.3)
Both inequalities hold in the reversed direction if f is concave. Hermite-Hadamard inequality

has been considered the most useful inequality in mathematical analysis. This inequality has
been extended in a number of ways. For example, Dragomir and Agarwal first obtained
trapezoid inequalities for convex functions in [5]. In [19], Sarikaya et al. generalized the
inequalities (1.3) for fractional integrals and the authors also proved some corresponding
trapezoid type inequalities.

Fractional integrals have been a focus of researchers in recent years. Before presenting some
fractional integral definitions, let’s give definitions of the gamma and the beta functions.

Definition 3. The gamma function and the beta function are defined by
r'(x):= fooo t*"le~t dt,

and
B(x,y):= [y 11— ) dt,

respectively. Here, 0 < x,y < oo.

In [15], Kilbas et al. gave fractional integrals, also namely Riemann-Liouville integral
operators as follows:

Definition 4. [15] For f € L,[a, b], the Riemann-Liouville integrals of order § > 0 are given
by

Jof @) = 7= [{ = 0F T f(0dt, x>a (14)
and
Jp-fG) = 55 [ ¢ = 0P f(yde, x <, (L5)

respectively. The Riemann-Liouville integrals will be equal to their classical integrals for the
condition g = 1.

The conformable fractional approach was developed, which depends on the fundamental
definition of the derivative in [16]. In [2], the author proved that the conformable approach in
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[16] cannot yield good results when compared to the Caputo definition for specific functions.
This flaw in the conformable definition was avoided by some extensions of the conformable
approach [8, 20]. Based on these approaches, Jarad et al. obtained the definitions of
conformable fractional integrals in [11].

Definition 5. [11] For f € L,[a, b], the fractional conformable integral operator #J%, f and
BI2_f of order B > 0 and a € (0,1] are presented by

Aoy B—1
(x—a)*—(t-a) f(t)
BIe, f(x) = r(ﬁ) N ( . ) Lozdt, t>a (1.6)
and
a a\ f-1
Bra _ (b—x)*—(b-t) f(t)

respectively.

If we consider a = 1, then the fractional integral in (1.6) reduces to the Riemann-Liouville
fractional integral in (1.4). Furthermore, the fractional integral in (1.7) coincides with the
Riemann-Liouville fractional integral in (1.5) when a = 1. For some recent results connected
with fractional integral inequalities, see [1, 10] and the references cited therein.

Hyder et al. obtained the following equality that we will use in our principal outcomes.

Lemma 1. [3] Consider that f:[a,b] — R is a differentiable function on (a,b) and f’ €
L[a, b]. Then, for B > 0 and a € (0,1], we obtain the following equality

f(a);rf(b) _ zaﬁgig;)aﬁ [ﬁYaf (a+b) ag (a+b)]

=aﬁ’(b—a) [fl 1—(1—t)“)ﬁf (1 —t +ﬂb) gt

a

—f (1 (1- t)“)ﬁf (1+t +—b) dt].

Hyder et al. acquired some new trapezoid-type inequalities using conformable fractional
integrals in [3]. Inspired by all the studies mentioned, we will esatblish some new trapezoid-
type inequalities via s -convex functions based on conformable fractional integrals.

2. PRINCIPAL OUTCOMES

This section presents trapezoid-type inequalities type via differentiable s -convex functions.

Theorem 1. Let f:[a, b] — R be a differentiable mapping on (a, b). If |f'| is s -convex on
[a, b], then we get the following inequality
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L) e g (120 oy ()]

<22 (2B (B + 1) + W@ p.9) I @] + 11 B)]]

where
W(a,B,5):=f, 1—(1-0DFA+1t)%de (2.1)

and B(-,-) refers to the beta function.

Proof. By taking modulus of Lemma 1, we acquire

e z“ﬁ;ig;)a’* [ Bver (S2) +vgr (<2)] (2.2)

< “B(b_a) [f1 —1_(1_t)a) |f’ (ua + 1;tb)| dt

+f01 (1 (1- t)“) |f (1+t 12tb)|dt]

With help of the s -convexity of |f’|, we acquire

HOH®) Z“B;ri’;;)aﬁ | fver (552) +Avar (9]

< PO P (Y (4 el @)+ (1 01 )l
1-(1- B
b (e [(1—t)slf’(b)l+(1+t)slf’(a)l]l-

By using the fact that

i [a-@a-09P)a-6)%dt =<8 @+1ﬁ% (2.3)

we have

HOH®) Z“B;f i’;:;)aﬁ [ fver (52) +Avar (59)]

<t ><( B(6+12) +¥@h,9)If @]+ (¥(@p,5) +

425

1B(p+12) If’(b)l>
= L0 (18 (p+1,22) + ¥(0,8,9)) I @I + I )]

which completes the proof.

Corollary 1. If we choose @« = 1 in Theorem 1, then we have
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f(a);f(b) B Zﬁ(_blrc(zl)g;l) []a+f (a+b) +]5 (a_-l-b)”

< Zm (BB +1Ls+ 1D +PE9))If (@] +If' B)]].

Remark 2. If we take « = 1 and f = 1 in Theorem 1, then we have

f@+f®) 1 (b
2 b—a fa f(x)dx|

(s + ) [IF @1+ 1 B

= 2(s+1)(s+2)

which is given by Kirmaci et al. in [14].
Remark 3. In Theorem 1, if we choose s = 1, then Theorem 1 reduce to [3, Theorem 5].

Theorem 2. Consider that f:[a, b] — R is a differentiable function on (a,b). If [f'|?is s -
convex on [a, b] for g > 1, then we establish the following inequality

o0 _ e 10y (e2) e 22

2 (b—a)%B
—af1 1\\r
< (—B pB+1,- )
(2o e13) |
o |( @+ -l @]\ | (EH-ylr @[+ el
s+1 s+1

1 1
where- =1 — -
p q

Proof. By using the Holder’s inequality, we obtain
(1-0* 1+t
(= f'(5ta+=b)|dt (2.4)
0 ( ) | ( B )|

1 [1-(1—-1)% ﬁp P 1+t %
<(y (55 a) (1) [ (5ra+ )| ar).

From the s -convexity of |f'|4, we get

) | (a2 e

S—

IA

(5 (1—(1—t>“)Pﬂdt)% B IEY 1@+ (25 1@l ae)”
))% (If'(a)l"+(zs+1—1)|f’<b>lq)%_

S+1

RIr

( (pﬁ +1,

Zq aﬁ
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Similarly, we can write

fol (1 (1- t)a) |f (1+t +?b)|dt N
Z 1
st e

On substituting the inequalities (2.5) and (2.6) in (2.2), then the proof is accomplished.

Corollary 2. If we choose @ = 1 in Theorem 2, then we have

[@+7 () _ 257 rg+1) Ut r(52) +a8r (52)]
- 2

2 (b—-a)B
1
b-a ( pB \p
<
42q( B+1) ) )
o | (@l +@ Dl o)l a+ -1l @)+ ®)| T\
s+1 s+1 '

Corollary 3. Ifwe take « = 1 and f = 1 in Theorem 2, then we have

f@+f®) 1 (b
2 b-a fa f(x) dx|

1
= (5)
- p+1

4-24

1 1
x [(|f’(a)|q+(25+1—1)|f'(b)|q)q + ((25+1—1)|f'(a)|q+|f'(b)|q)q]

s+1 s+1

Remark 4. If we allow s =1 in Theorem 2, then Theorem 2 and [3, Theorem 6] are
identical.

Theorem 3. Let us note that f: [a, b] — R is a differentiable function on (a, b). If |f'[?is s -
convex function on [a, b] for some g > 1, then we have the inequality

HOH®) Z“B;f i’;:;)aﬁ [ fver (52) +Avar (59)]

<22 (ta(p+12)

24

CB(B+12)1f (@17 + 'P(a,ﬁ,s)lf’(b)l")é

X

+ (@ p I @I+ (28 (5 +1.2)) |f'(b)|q)5].
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Here ¥ (a, B, s) is defined as in (2.1).

Proof. By using power mean inequality, we get

B | (s )

< 1 |/1-( t)“ ‘d)
< (fo (— l
x <f01 (1 (- t)a | |f ﬂb)rz dt)q.
Because of s -convexity of |f'|4, we acquire
B (e ) @)
1 1_5
<—= (a (8+1, ))

x(f; =@ =0DP[A - O°If @I + @+ 0)°|f' (B)|9]de )"

L (2p(p1d)”

aﬁzq

(( (ﬁ +1 ﬂ) lf' (@9 +¥(a,B,9)|f’ (b)|q))

1

Similarly, we get

B (e ) &
1=
: aBlzq (0‘ (ﬁ L ))

x (@ gl @I+ (28 (8 +1.22)) IF 119"
By considering (2.7) and (2.8) in (2.2), we obtain the required result.

Corollary 4. If we choose a = 1 in Theorem 3, then we have

f(a);f(b) B Zﬁ(blrc(f);;l) []a+f (a+b) +]5 (ﬂ)”

<2 (L) U + L5+ DIF @I+ AP

+(PW B I @I+ (BB + 1,5+ 1))|f’(b)|q)5].
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Corollary 5. If we take « = 1 and § = 1 in Theorem 3, then we have

f@+f(®) 1 (b
2 b—a fa f(X) dx|

1
< 22 ()" i @1 + (B - 222 i o)’

S
Z+2
249

T (( 2@+ |f'(b>|q)5 .

s+1 S+2 (s+1)(s+2)

Remark 5. If we set s = 1 in Theorem 3, then the Theorem 3 turns into [3, Theorem 7].

3. CONCLUSION

In this research, we acquired some inequality of trapezoid type for s-convex functions by
means of conformable fractional integrals. In the future studies, researchers can obtain some
new inequalities with the aid of the different kinds of convex mappings or other types of
fractional integral operators.
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ABSTRACT

In the current research, some midpoint-type inequalities are acquired via s -convex
mappings with the aid of conformable fractional integrals. Some studies in the literature
have been generalized using the well-known Hoélder and power-mean inequalities and s
-convex mappings. Some results including Riemann-Liouville integrals and Riemann
integrals established based on s -convex mappings by special choices of variables
within functions are obtained

1. INTRODUCTION

Convex theory is a research area that has been utilized in many fields of optimization theory,
energy systems, engineering applications, and physics and has guided many regions of the
literature. Moreover, the convex theory is an available way to solve many problems from
different branches of mathematics. Convexity theory is important in these branches of
mathematics, especially in inequalities. Hermite-Hadamard, midpoint type, and trapezoid type
inequalities are the most well-known of these inequalities.

These inequalities, described by C. Hermite and J. Hadamard, express that if f:1 - R is a
convex mapping on the interval I of real numbers and a, b € I with a < b, then

() < 27 Fde < 9O (1.1)
If f is concave, both of the inequalities hold in the opposite direction. See, please more
references [7, 17]. The left side of the Hermite-Hadamard inequality, namely the midpoint
inequality, has been the focus of many studies. Kirmac first, obtained midpoint inequalities
for convex functions in [14]. Moreover in [18], Qaisar and Hussain presented several
generalized midpoint type inequalities. Sarikaya et al. and Igbal et al. proved some fractional

Proceedings Book of ICMRS 2022 43


mailto:mkiris@gmail.com
mailto:hasan64kara@gmail.com

5" INTERNATIONAL CONFERENCE
ON MATHEMATICAL AND RELATED SCIENCES
ICMRS 2022

27-30 OCTOBER, 2022

trapezoid and midpoint type inequalities for convex functions in [19] and [11], respectively.In
[4] and [5], researchers established some generalized midpoint type inequalities for Riemann-
Liouville fractional integrals.

Fractional calculus is an effective tool to explain physical phenomena and also real-world
problems. The concept of fractional order derivatives and integrals that will shed light on
some unknown points about differential equations and solutions of some fractional order
differential equations, which proved to be useless for their solution, is a novelty in applied
sciences as well as mathematics. New derivatives and integrals contribute to the solution of
differential equations that are expressed and solved in classical analysis, as well as fractional
order derivatives and integrals. Moreover, it has increased its contribution to the literature
with its applications in areas such as engineering, biostatistics, and mathematical biology.
Fractional derivative and integral operators not only differed from each other in terms of
singularity, locality, and kernels but also brought innovations to fractional analysis in terms of
their usage areas and spaces.

The Conformable fractional approach was developed, which depends on the fundamental
definition of the derivative in [16]. In [2], the author proved that the conformable approach in
[16] cannot yield good results when compared to the Caputo definition for specific functions.
This flaw in the conformable definition was avoided by some extensions of the conformable
approach [10, 20]. Based on these approaches, Jarad obtained the definitions of conformable
fractional integrals in [13]. Inspired by all these studies, fractional calculus attracts
researchers every day.

Igbal et al. obtained some new midpoint-type inequalities in [11] with the help of Riemann-
Liouville fractional integrals. Hyder et al obtained some new midpoint-type inequalities using
conformable fractional integrals in [3]. Inspired by all the studies mentioned, we will obtain
some new midpoint-type inequalities for s -convex functions with the aid of conformable
fractional integrals.

2. PRELIMINARIES

In order to create our main results, in this section, we give the fundamental definitions and an
identity.

Definition 1. The gamma function and beta function are defined
rx):= fooo t*le~tdt,
B(x,y):= [ t*"1(1—t)?dt,
respectively. Here, 0 < x,y < oo.

Definition 2. [6]Let f: [0, ] — R be a function and 0 < s < 1. Then we have
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fAx +yy) < A3f () +v*f(y) (2.1)

for A +y = 1. The function f that provides this inequality is called the s -convex function in
the second sense.

Remark 1. If we take s = 1 in Definition 2, then Definition 2 reduce to deinition of classical
convexity.

In [15], Kilbas et al. presented fractional integrals, also namely Riemann-Liouville integral
operators as follows:

Definition 3. [15] For f € L,[a, b], the Riemann-Liouville integrals of order § > 0 are
given by

1

%f;‘ (x —t)F71f(t)dt, x>a (2.2)

JEf(x) =
and
1

Jp-f@) =55 J, (€ =0Ffdt, x<b, (23)

respectively. The Riemann-Liouville integrals will be equal to their classical integrals for the
condition g = 1.

In paper [13], Jarad et al. gave the fractional conformable integral operators.

Definition 4. [13] For f € L,[a, b], the fractional conformable integral operator 8], f (x)
and BJ§_f (x) of order 8 > 0 and a € (0,1] are presented by

1 x ((x-a)®—(t-a)*\P71 f(o)
Flacf ) = 155 Ja (x — ) ol t>a (2:4)
and
p-1
g ra 1 b (=)= £(6)
I5-f) =55 ), ( e ) et t<b (2:5)

respectively.

If we consider a = 1, then the fractional integral in (2.4) reduces to the Riemann-Liouville
fractional integral in (2.2). Furthermore, the fractional integral in (2.5) coincides with the
Riemann-Liouville fractional integral in (2.3) when a = 1. For some recent results connected
with fractional integral inequalities, see [1, 12] and the references cited therein.
Hyder et al. obtained the following identity that we will use in our main results.

Lemma 1. [3] Let f:[a,b] = R be a differentiable mapping on (a,b) and f' € L[a, b].
Then, for § > 0 and a € (0,1], the identity below is valid.

e e () i (59)] - () @9

Proceedings Book of ICMRS 2022 45



5" INTERNATIONAL CONFERENCE
ON MATHEMATICAL AND RELATED SCIENCES

ICMRS 2022
aPB(b- a)[ 1 (1 t)“ ] 1 t 1+t
= [ f! +—b)d

1 (1 t)“ 1+t

3. MAIN RESULTS

This section provides numerous inequalities of the midpoint type for differentiable s -convex
functions in the second sense.

Theorem 1. Let f:[a, b] — R be a differentiable mapping on (a, b). If |f'| is s -convex on
[a, b], then we get the inequality below.

ot e (22) v (52)] - (22 o
<2t (2:11 —2B(B+10) - v(ap, s)> [If (@)1 + 1 (B)I]
where
W(a,B,5):=f, (1—(1-0DFA+1t)%de (3.2)

and B(-,-) refers to the Euler Beta function.

Proof. By taking modulus of Lemma 1, we acquire
e ey (2 vy ()] - (£2)
< L [f (1 C=07) ||f ‘a+ ) dt
+f01 (1 (1 t)“ ||f 1+t 12tb)|dt]

With help of the s -convexity of |f’|, we have

zaBE;rig:;)aﬁ [ﬂY“f (a+b) n ﬁY (a+b)] f (a+b)|

(3.3)

_“Bf;“) [ [ - (F22Y | 1@ - o017 @1+ @+ ol o)l
+f 7 (% ”) |1 =01 ®)l +a+ o0l (aml
(f [1- (-1 -09F)A -0 + @+ 0Ddt) [If (@] +

JHGIE

By using the facts that
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! [1—(1—(1—t)“)ﬁ](1—t)5dt_———B(ﬁ+1 E) (3.4)
and
o[- (1 — (1= )9F](1 + t)5dt (3.5)
_ 2+1 _ m — [} Q-1 -9 +0)dt
_ _2s+1o B 'P(a ’3 S)
we have

et e (22) s i (22)] -1 (22)

b—a [ 25t ( s+1

“ip(p+1,2) - w(a,ﬁ,s)> (1@ + £/ B)]]

T 25t2\ s+1 a

which completes the proof.

Corollary 1 If we choose @ = 1 in Theorem 1, then we have

|2ﬁ(;ri/)3;1) []a+f (a+b) +]b (a+b)] f (a+b)| (3.6)
<= (2—— B(B+1,5+1)—¥(1,8 s)) [f @]+ If (B)I].

Remark 2. If we take s = 1 in Corollary 1, then we have

S () 1 ()] 1 () o7
<22 () I @I+ 1 o)l

which is given by Ertugral et al. in [9, Corollary 4.7].

Remark 3. Let us consider « = 1 and § = 1 in Theorem 1, then we have

a+b b—-a
=) f@dx — f (52| < i (1 - 5m) UF @1 + £ )11,
which is given by Du et al. in [8, Theorem 2.1 (for m=k=1 and t=0)].
Remark 4. In Theorem 1, if we choose s = 1, then Theorem 1 reduce to [3, Theorem 2].

Theorem 2 Consider that f: [a, b] = R is a differentiable function on (a, b). If |[f'|?is s -
convex on [a, b] for g > 1, then we establish the following inequality
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29B-1r(B+1)al [ Brrg a+b a+b a+b
EH vy (42) v (5] - £ (422) (38)

42q<1——B( 3+1,§))_ | |
| (@i + o) + (i@ + 2 ey

| |

where 2 =1 -2,
p a
Proof. By using the equality (3.3) and Holder’s inequality, we obtain

g e (57) + ovir (5] -1 ()] 9

aP(b-a) 1
<<l (g,

+<f01

G- (Y[ ) () | (o 20)] af

5o (L) (¢ | (s o)l )

Because of s -convexity of |f'[4, we get
1

(fol - (=) | dt> s (%a+%b)|th)% (3.10)
<l -a-a- )“)’f)”dt)%

<(z] 1 () @i If’(b)lql ozt)a

—(f, (-a-a- t>“>ﬂp)dt) (Z 1@

(128 1. G

Here, we used the fact that

)%

an

)

<
anB

(w—o0) <@/ —d/, (3.11)

foranyw >0 >0andj > 1.
Similarly, we can write
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1 1

w0 e e e

1

(s (e 1) (5 Liron).

On substituting the inequalities (3.10) and (3.12) in (3.9), then the proof is accomplished.

<

anﬁ

Corollary 2. If we choose @ = 1 in Theorem 2, then we have

|2B(;r((1[)3;1) []a+f (a+b) +]b (a+b)] f (a+b)| (3.13)
< b= a( pB )
 4q PEHL

<[ )+ (s

Corollary 3. If we choose @ = 1 and f = 1 in Theorem 2, then we have

=l f ()dx ~ f (=) (3.14)

: —(—” y
4.24 p+1

[(—|f()|q+ If(b)l") (Z1f @+ 22 If(b)lq)l

s+1

Remark 5. If we allow s =1 in Theorem 2, then Theorem 2 and [3, Theorem 3] are
identical.

Theorem 3 Let us note that f: [a, b] — R is a differentiable function on (a, b). If [f'|? is s -
convex on [a, b] for some q = 1, then the inequality below is fulfilled.

ey (42) 40 157 (<2)] - (32)

1L
<22(1-2s(p+13) °

24

y (———

+ (2 ¥ (ap, s)) @1+ (=8 (8 + 1.2 1 (b)'q>q |

If (b)lq

s+1
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Here ¥ (a, B, s) is defined as in (3.2).

Proof. With help of the equality (3.3) and by using power mean inequality,
e oy (22) v (23] - (22 019
< om0 [(fol 1 _ (1o | dt)

(0 |- 2 (st s o) )

(0 e (e |a)

(1 - (2 et

Taking into account the s -convexity of |f'|4, then we acquire

1
1 1-(1— t)“
- (== | dt) (3.16)

(5
(5 e () [ Gt ) )

S
< (2 (1= (1= (A= 99~ D @I + (1 + 01 )]’
aﬁzq<1—;B(ﬁ+1 )) ‘
)lf (b)|q>

x(i——B(/Hlﬂ)lf( )|q+<

s+1

and similarly, we have

1
<f01 ai/? (1 (1- t)“ |dt) (3.17)
x <f01 a_1B (1 (1- t)“ | |f 1+t %b)r dt)él

1__

< 15(1—§B(/3+1,§)> ’

abB2a
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x ((T L w(a,B, s)) r@ie+ (5-28(p+1.22)) If’(b)l">-

By considering (3.16) and (3.17) in (3.15), we obtain the desired result.

Corollary 4 If we choose @ = 1 in Theorem 3, then we have

|25(;I"‘(1[)3;-1) []a+f (a+b) +]b (a+b)] f (a+b)|

<2 (L)

249

X

1
<?—B(,3+ 1Ls+ 1)) If' ()]

————

1
q

2$+1_1 'Pl ,b ¢
<71~ (1,8,8) |If (b)]

1

N ((25:1—1 _w(1,p s)> If"(@)]? + (S% -B(B+1,s+ 1)) |f’(b)|q)q

Corollary 5. If we take « = 1 and § = 1 in Theorem 3, then we have
a+b
rade FOdx = £ ()|

- 1-+
S bs a (_) q
~+2 \2

249

((m) @i+ (B2 -2 1 w)7)

H(ER -2 @i+ () o) |

Remark 6. If we set s = 1 in Theorem 3, then Theorem 3 turns into [3, Theorem 4].

CONCLUSION
In this study, some conformable fractional midpoint type inequalities in the case of s -convex

functions are presented. Moreover, it is investigated several inequalities for Riemann-
Liouville fractional integrals and Riemann integrals by choosing special cases of our main
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results. In future papers, improvement or generalization of our results can be investigated by
using different kinds of convex function classes or other types fractional integral operators.
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ABSTRACT

In the current paper, two new improvements for Hermite-Hadamard type inequalities are
acquired with the help of the Conformable fractional integrals for convex functions. In
achieving these improvements, two different functions are defined. More precisely, the
convexity and increasing of the function are used. These improvements generalize some of
the research in the literature.

1. INTRODUCTION

Fractional calculus has many applications in several different fields such as physics,
chemistry, engineering, and mathematics. In terms of achieving more practical results in
solving many problems, the application of arithmetic carried out in classical analysis in the
fractional analysis is very significant. By using non-integer order dynamic models based on
fractional computation, many practical dynamical systems are better characterized. Although
integer orders in the classical analysis are a model that is not appropriate for nature, fractional
computation in which arbitrary orders are studied helps us to obtain more practical
approaches.

Fractional integral operators in a variety of scientific disciplines have been investigated
widely. Using the derivative’s fundamental limit formulation, a newly well-behaved
straightforward fractional derivative known as the conformable derivative is improved in
paper [11]. Some significant requirements that cannot be fulfilled by the Riemann-Liouville
and Caputo definitions are fulfilled by the conformable derivative. However, in paper [2] the
author proved that the conformable approach in [11] cannot yield good results when
compared to the Caputo definition for specific functions. This flaw in the conformable
definition was avoided by some extensions of the conformable approach [5, 17]. Based on
these approaches, Jarad et al. obtained the definitions of conformable fractional integrals in
[9]. Inspired by all these studies, fractional calculus attracts researchers every day.

The Hermite-Hadamard inequality is one of the most famous inequalities for convex functions
in the literature. Some refinements of the Hermite—Hadamard inequality via convex mappings
have been extensively obtained by a number researchers (see, [3, 12]). In [4], Dragomir
presented an improvement for the first inequality of Hermite—Hadamard inequality. In [15],
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Yang and Hong obtained an improvement for the second inequality of the Hermite—Hadamard
inequality. Sar kaya et al. acquired Hermite—Hadamard inequality involving Riemann-
Liouville fractional integrals in [13]. By using an identity for both sides of this inequality
obtained by Sar kaya et al., Xiang proved a new extension of this inequality in [14]. Set et al.
offered a new Hermite—Hadamard inequality including conformable fractional integrals in [8].
In this investigation, we will present a new improvement for the first inequality of this
expression obtained by Set et al., with the help of Jensen’s inequality. We acquire a new
extension for the second inequality of the Hermite—Hadamard type inequality based on
conformable fractional integrals using the identity obtained by Xiang.

2. PRELIMINARIES

In order to create our main results, in this section, we present gamma function, beta function,
definitions of Rieman-Liouville fractional integrals, and definitions of conformable fractional
integrals.

Definition 1. The gamma function and beta function are defined by

r'(x):= fooo t*" e tdt,
and
B(x,y):= [y 71 (1 - )7,

respectivelly. Here, 0 < x,y < oo.

In [10], Kilbas et al. gave fractional integrals, also namely Riemann-Liouville fractional
integral operators as follows:

Definition 2. [10] For f € L;[a, b], the Riemann-Liouville integrals of order 8 > 0 are
given by

1

Jof @) = 7= [{ = 0F T f(0dt, x>a 1)

and
1

5 L& =P f(Hydt, x<b, (2.2)

JEfx) =

respectively. The Riemann-Liouville integrals will be equal to their classical integrals for the
condition g = 1.

In [9], Jarad et al. gave the following fractional conformable integral operators.

Definition 3. [9] For f € Ly[a, b], the fractional conformable integral operator #J%, f(x)
and BJ5_f(x) of orderg € C, Re(B) > 0 and a € (0,1] are presented by

& yayB—1
[ ((" @) —(t-a) ) 'O_ 4t t>a (2.3)

a (t—a)l-«

PIaf @) =15
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and

a a\ B-1
Bra __1 b(B—0)"—(b-t) i)
]b—f(‘x) F(ﬁ) fx ( a ) (b—t)l_“ dtl t < bl (24)

respectively.
Remark 1. If we consider ¢ = 1 in Definition 3, then Definition 3 reduces to Definition 2.

For some recent results connected with fractional integral inequalities, see [1, 7] and the
references cited therein.

Set et al. achieved a new Hermite—-Hadamard inequality with the help of the conformable
fractional integral operators.

Theorem 1. [8]Note that f is a convex function on [a, b]. Then the following inequality is
satisfied.

F(52) < 2B Mg @) + s )] < L @9

Here, 8 > 0, a € (0,1] and I" is gamma function.

Theorem 2 (Weighted Jensen Inequality (WJI)). [6] Let f: [a, b] = R be a convex function
and let also w: [a,b] - R* and ¢: [a, b] — [a, b] be two integrable functions. Then we have

f( : f: w(x) ¢>(x)dx> < f: @(x) f(p(x))dx.

f: @ (x)dx f; w(x)dx

Xiang obtained the following equality that we will use in our main result.

Lemma 1. [16][14] Consider f: [a, b] — R is a convex mapping and r be described by

1 a+b u a+b u
ra =;|f ((T) - 5) +f ((T) + 5)]-
Then r is convex, increasing on [0,b — a] and for all u € [0,b — a],
() < v < 2222

3. MAIN RESULTS

In this section, we use conformable fractional integrals to obtain refinements of Hermite-
Hadamard type inequalities.
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Theorem 3. Let f:[a,b] - R be a convex function and let WB:[0,1] —» R be a function
described by

WB(t) =

2(b- a)“ﬁf f (tx +(1-1) a—+b) ¥(x)dx.

Here, @ € [0,1], B > 0, and

_NA_ (Yo B—1 _Na_ (P11
P(x) = [(—“’ S N L (e L P L |

a
Then we have
1. WB is a convex mapping on [0,1].

2. We have the following inequality:

b Brg+1)
f(52) swB® < LD FIEf(@ + £1gf(b)] (3.1)
3. WB is monotonically increasing on [0,1].
Proof. 1. Let t;,t, € [0,1] and A,y € [0,1] with A + y = 1. Then we have

WB(At; + yt,)

B b
- Z(ba_‘gaﬁ J, ((Atl +yt)x + (1 — (Aty +vty)) “T”’) FP(x)dx

- z(ba—ﬁcgaﬁ I f ( (tlx +(1-t) ﬂ) ty (tzx +@1- tz)ﬂ’)) ¥ (x)dx.

With the help of the convexity of f, we obtain

WB(At1 + yt,)
aﬁﬁ a+b

Z(b a)aﬁf [Af (tlx + (1 - tl) a_+b) + )/f (tzx + (1 - tz) —)] W(X)dx
= AWB(t,) + YWB(t,)
from wich we have WB is convex on [0,1].

2. Before employing the WJI, let’s denote the following expressions

w(x)

afp b-a)*—(x-a)* p-1 _1 (b—a)*—(b—x)* B-1
= 20-0)%F [( « ) (x =)™ + ( . ) G

x)a—l
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__afp
= o0 ¥(x)

and

a+b

¢(x) = tx+(1—t)—

With the help of the change of variables j=(b—a)* —(x—a)* and k= (b —a)* —
(b — x)%, then we can write,

b b—a)* .p_ . b—a)* -

e de=f"" jF1dj+ [, kP1ak] (3.2)
_2(b-a)*F

—

Thus, we obtain

f; w(x)dx = 1.
In addition, we have

f: x¥(x) dx (3.3)
= f;(x —a+a) (—(b_a)a_(x_a)a)ﬁ_l (x —a)* tdx

a

— ) (h—x)\B—1
+ f:(x —b+b) (—(b 2 a(b ) ) (b —x)* tdx

_ b (b-a)?—(x—-a)*\P~1 (b-a)?P

_f(x—a“(—a ) dx +a e
—a)%—(h— B-1

+p = a) _J' (b — (M) dx

a
(b a)B

(a +b).

Using the equalities (3.2) and (3.3), we can arrive at the following equality

fb¢(x) w(x)dx
B
- 2(ba (gaﬁf (tx +(1-1) ﬂ) Y(x)dx
k B
= s [ W ()dx + T [P (0 dx
_ atb
=&
By using WJI, we have
WB(t) = oL [ f (b + (1 - 0 22) w()da
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= [P w(x) f(p(x))dx
>f w(x) dx - f(
_f(a+b)

which completes the proof of first inequality of (3.1).

= [} @(x) ¢>(X)dx>

For the proof of the second inequality in (3.1), by using convexity of f, we get

WB(t) =

20~ wf V(e + @ -07)vax
Z(b a)aﬁf tf ()P (x)dx+ (1 —-0)f (a+b)

taPr(g+1)

=W[B]b f(a)‘l‘ ﬁ]a+f(b)]+(1—t)f(a+b)
1= Y(b).

Taking the derivative of the function Y,

a F(,B+1)

Y'(0) = SXED f1 fa) + Ef )] - (42)

It is also seen from the inequality (2.5) that Y'(t) = 0. So the function Y is increasing, such
that

a F(ﬁ+1)

~er L IS f(@+P g f (D).

WB() <Y(®) <Y(1) =

Thus completes the proof of (3.1).
3. Since WB is convex on [0,1], for t,,t, € [0,1] with t, > t;, we obtain

WB(t2)-WB(ty)  WB(t1)-WB(0) _ WB(t1)- f(a+b)
ty—t1 - ti—0 ty )

By first inequality in (3.1), we have WB(t;) = f( ) S0 we get

WB(t2)-WB(t1)
tr—ty

= 0.
That is, WB(t,) = W(t,). This gives that WB is monotonically increasing on [0,1].
So, the proof is accomplished.

Theorem 4. Let f be described as in Theorem 3 and let WK:[0,1] — R is a function defined
by
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WK (t)
= 20— a)“ﬁf [ (1+t - )~1(x) + f( a+ ﬂx) =2 (x)] dx
where
2 - (2t )’“ (o2 [T ey

a f-1

s = (S s e )

1. WK is a convex function on [0,1].

Then we have

2. WK is monotonically increasing on [0,1].

3. We have the following inequality

L(p+1a” (@)+F(b)
B Bls f(@) + P F)] < WK(r) < L2 D

Proof. 1. Let t;,t, € [0,1] and A,y € [0,1] with A + y = 1. Then we have

WK (At1 + yt,)

1+)Lt1+yt2 1 At1—yt, ),.
= 20— a)“ﬁf [ ( 2 x ) &1 (x)

-1 )l

= Wf:f <A ((1’;t1) a+ (1_;1) x) +y ((1?2) a+ (1 tz) )) [Z1(x)
; f< ((52) -+ (222) )y ((5522) a + (22 x)) :, <x>] dx

By using the convexity of f, then we have

WK (At1 + yt,)

<t o (0 ((52) a4 (59 ) + 07 (59 0+ (59) ) a0
# (5 e+ (52 )+ ((52) e + (559 1) 22}

= AWK (t,) + YWK(t,).

Hence, WK is convex on [0,1].

2. By elemantary calculus, we have
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WK(t)
I (e 52 m00ax 7 (a5t syas]

W{fb “f(a +—X)

((b —-a)%-— b—x+2a > x+2a -1
X
- (f)“
[T ]
(b)“f“
NI CEEE )[ :
a_ sz a—1
+[(b o l dx

~ 20— a)aﬁfb a[ a+17 ) (b—%x)]%(x)dx,

where

It follows from Lemma 1 that r(t) = %[f ((ﬂ) - —) +f ((a+b) %)] and p(t) =b—a—

2
(1 —t)x are increasing on [0,b—a] and [0,1], respectively. Hence r(p(t)) =f(a+

(%) x) +f (b - (%) x) is increasing on [0,1]. Since Z5(x) is nonegative, it follows that
WK is monotically increasing on [0,1].

3. Since WK is monatically increasing on [0,1], we get

LD [ hJ5 f (@) + PJEf )]
=WK(0) < WK(t) < WK(1)
_ f(@+r ()

)

So, the proof is completed.

4. CONCLUSION
In this current research, we present an extension of the Hermite-Hadamard inequality for the
conformable fractional integrals. In the future, researchers can obtain new improvements of
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Hermite-Hadamard inequality for different types of fractional integrals by utilizing the
methods and techniques used in this paper. What’s more, researchers can acquire new
extensions of some inequalities obtained for different kinds of convexity, interval-valued
functions, and quantum integrals. We hope that the ideas and techniques of this paper will
inspire interested readers working in this field.
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ABSTRACT

In this study, we first introduce two mappings depending quantum integrals. Then we show
that these functions are convex and monotonically increasing. We also prove some
refinements of the left-hand sides of the q,-Hermite-Hadamard inequality and q°-
Hermite-Hadamard inequality.

1. INTRODUCTION

The Hermite-Hadamard inequality was proved by Hermite and Hadamard. It's one of the most
recognized inequalities in the theory of convex functional analysis, which is stated as follows:
Let f :[a,b] = R beaconvex mapping on [a,b]. Then

f(52) <= 00 Foo) de < 0, (1)

If f is concave, both inequalities hold in the reverse direction. Finding many studies in
inequality theory, the quantum integral has gone through various searches by researchers to
establish the quantum version of the famous Hermite-Hadamard inequality above. For the
sake of brevity, let g € (0,1) and we use the following notation (see, [7]):

1—q"

[n], = oo lta+ q*+...+q" L.

Definition 1. [12] The left quantum derivative or q, -derivative of f : [a,b] > R at
x € [a, b] is expressed as:

_ f—-f(gx+(1-q)a)
aDof ) = ===

,X # a.

Definition 2. [3] The right quantum derivative or g” -derivative of f : [a,b] > R at
x € [a, b] is expressed as:

b _ flgx+(1-q)b)—f(x)
Dqf(x) = ) ,X * b.

Definition 3. [12] The left quantum integral or g, -integral of f : [a,b] > R at x €
[a, b] is defined as:
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[ f®adgt=A - )b - a) 20 q" f("x + (1 - ¢Ma).

Definition 4. [3] The right quantum integral or g” -integral of f : [a,b] > R at x €
[a, b] is defined as:

b 0o
J, f@®Pdgt =1 -q)(b—-a)Xnoq" f(q"x+ (1—q™)b).
In [2,3], Alp et al. and Bermudo et al. derive two different versions of g -Hermite-Hadamard
inequalities and some estimates with the help of the g -derivatives and integrals. The q -
Hermite-Hadamard inequalities are stated as:

Theorem 1. [2,3] For a convex mapping f: [a, b] = R, the following inequalities hold:

qa+b 1 b qf(a)+f(b)
F32) < L IV G0 adgr < LT (12)
a+qb 1 b b f(a)+qf (D)
f( = ) <TI0 F) Pdgx < LI (1.3)

Remark 1. It is very easy to observe that by adding (1.2) and (1.3), we have following q-
Hermite-Hadamard inequality (see, [3]):

F(E) < o[£ () adg+ [ FG) Pdgx] < L@, 14)

Hereabout, Ali et al. [1] and Sitthiwirattham et al. [11] utilized calculates to present the
following two different and new versions of Hermite-Hadamard type inequalities:

Theorem 2. [8,9] For a convex mapping f : [a, b] = R, the following inequalities hold:

a+b

=== a+b
FOE) < 5 [ 700 Fdgr i f () asndgx| < LD, 15)

a+b

F(5D) <5 [0 G adgx + fibo ) Pdgx| < KO, (16)

Remark 2. If we allow limitas g — 17 in (1.2)-(1.6), then the inequalities (1.2)-(1.6) reduce
to classical Hermite-Hadamard inequality (1.1).

A lot of research has been done on g-integral inequalities with the help of different
convexities. For instance, in [4], some new midpoint and trapezoidal type inequalities for g-
integrals and g -differentiable convex functions were established. For more recent
inequalities in g-calculus, one can consult [5, 8-10, 12, 13].

The main goal of the paper is to define two functions including quantum integrals. Then we
prove the convexity and monotony of these functions. With the help of the newly presented
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functions, we also acquire some improvement of the left-hand sides of the inequalities of q,-
Hermite-Hadamard type and inequality of q?-Hermite-Hadamard type.

2. MAIN RESULTS

In this section, we will define two functions including quantum integrals. We will prove how
these functions are functions that improve the Hermite-Hadamard inequalities (1.5) and (1.6).

Theorem 3. Let f : [a,b] = R be aconvex function and let ¥ : [0,1] - R be a function
defined by

lp(t) _ _fa+bf (tx + (1 _ t) (1+2q)a+b> adqx

a+(1+2q)b
+E aTH,f (tx +(1-1) 0, ) dgx

Then we have;
1) Wisconvexon [0,1].
2) We have the following inequality:

FED) <w® <217 £ adgx + Jein f) P x] 2.1)

3) W is monotonically increasing on [0,1].

Proof 1). Let t,s € [0,1] and a,f € [0,1] with @ + 8 = 1. Then we have

W(at+s) ==|/,* =y ((at + Bs)x + (1 = (at + fs)) “*2‘”“”’) odqx
b
+ jaﬂ,f ((at +Bs)x+ (1= (at + Bs)) 2 (21[;5 2q)b> bdqx]
2 a

fa+bf< (tx—i—(l—t)W) +B (sx+(1—5)w)> adqX

2[2]q 2[2]q
1 b . a+(1+2q)b . a+(1+2q)b b
to— aT+bf (a <tx +(1-1¢) o, ) +f (sx +(1-5) o, )) dgx.

By using the convexity of f, we derive

a+b

‘I/(at+,85)<—f af(tx+(1—t)w>+ﬁf(sx+(1— )w)] dgx

2[2],
1 .y a+(1+29)b _ yat@+29b\| p
+b_afaT+b [af (tx+(1 t)—z[z]q )+ﬁf (sx+(1 S)—z[z]q )] dgx
a+b
_a _ (1+2q)a+b _a_ b _ a+(1+2q)b\ p
=2 f(tx+(1 e ) adgx +b_afaT+bf(tx+(1 D=5, ) dqx
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a+b
(1+2q)a+b i b . a+(1+2q)b\ p
f f <sx +(1- )—Z[Z]q ) adgX +7— fawa (sx +(1-5) ), ) dgx
= a‘l’(t) + B¥(s).
Hence, ¥ is convex on [0,1].

2). By Definition of g,-integral and gP-integral, we have

a+b
Wt)y=-=[*f (tx +(1-1) “”‘”“”’) adgx
1 a+(1+2q)b
+EfaT+bf(tx + (1 - t)—z[z]q ) dgx

=Ziye, q"f( (" 2+ 1 —gMa) + (1 -1 —(“2‘1;‘””)
+1_qu;;o=0 qnf (t( n a+b (1 q")b) + (1 _ t) a+(1+2q)b).

2[2]q

Since Yo—o(1 — q)q™ = 1, by using Jensen inequality, we establish

Y(t) == f (Zn ol —q)q™ ( ( + M) +(1- )_(1+22[2a+b>>
+2 f (Zn o(l—qq" ( ( + M) +(1-10) a+(1+2q)b>>

[2]q
_1 b (1+2q)a (1+2q)a+b a (1+2q)b _
= f( (ztz TP )+(1 D20, >+ f( ( 201, T 202l )+(1
a+(1+2q)b
D8, )

_1 ((1+2q)a+b) (a+(1+2q)b)
T2 2[2],
a+b
>/ (%)
which proves first inequality in (2.1). For the proof of second inequality, by using convexity
of f, we get

a+b
wty=—"/7 f(tx+(1 )%) adgx
+b1 fa+bf<tx+ (1—t)w) b, x
q
a+b
< ﬁ = ereo + a-of ((”2‘”“”’)] dyx

fm [tf(x) +(1-0f (“*“*2‘””)] b, x
( fm FGO) adgx + fm f(x) bd x) 41 [f (w) + f(M)]

(214 2[24
= w(D).
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By applying the inequalities (1.2) and (1.3) for the intervals [a —] and [a+b ]

respectively, we have the inequalities

a+b
f((1+22[¢£:+b> 2 af FGO) adyx 2.2)
and
f (%) <L faw f(x) Pdgx. (2.3)
2

It is clear from the inequalities (2.2) and (2.3) that w is monotonically increasing on [0,1].
Therefore we have

a+b

YO <w® swD) =17 FG) adgx + ﬁf’zi, [0 bdqx].

a

This finishes the proof of (2.1).

3). Since ¥ isconvex on [0,1], for t,,t, € [0,1] with t, > t;, we obtain

GG lp(cl)—z/((n 1 (lI’(tl) _ —[f ((1+2q)a+b) +f <a+(1+ZQ)b>]) > tl('zu(tﬂ _
— 1

ty—tg ty
7)) 24

The last inequality in (2.4) is clear from the convexity of f. By first inequality in (2.1), we
have ¥(t,) = f( ) S0 we get

Y(t2)—P(t1) >0

ty—tg -
That is W(t,) = W(t,) . This gives that ¥ monotonically increasing on [0,1].

Theorem 4. Let f :[a,b] - R be aconvex function and let Y :[0,1] - R be a mapping
defined by

atb
(2+q)a+qb) &L
Y(t)——f f(tx+(1 )T> 2 dqx
qa+(2+q)b
+E aT+bf<tx + (1 - t)T> aTq-bdqx

Then we have;
1) Y isconvexon [0,1].
2) We have the following inequality:

F(B2) <Y = 5 100 P @9
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3) Y is monotonically increasing on [0,1].
Proof 1). Let us consider t,s € [0,1] and a,f € [0,1] with « + 8 = 1. Then we get

+b

Y(at + Bs) = —fa+bf ((at +Bs)x + (1 — (at + Bs)) (2+q)a+qb> aqux
= <(‘“ +B)x + (1 - (at + Bs)) —qaiiﬂq)b> vy

a+b a+b
(2+q)a+qgb (2+q)a+qgb o0z
(-0 ) ey i) 2

2[2]4 2[2]q
+— fab+bf <a (tx +(1-1) M) +f (sx +(1-5) M) atbdgX.
-a —= Z[Z]q Z[Z]q -

Since f isconvex on [a,b], we can write

a+b wtb

Y(at + ,85) < —f af (tx +(1-1) (Z“L:[)%‘”’) +Bf (sx +(1- )(2+Q)a+qb) T x
+— L farp [af <tx +(1-1) M) +Bf (Sx +(1-5) qa+(2+q)b) windyx

2 2

2[2]q 2[2]q
= aY(t) + BY(s).

Therefore, Y is convex on [0,1].

2). Since Yo_o(1 —q)q™ = 1, by using Jensen inequality, we establish

a+b
2+q)a+qb\ &tb
YO =) f(tx+(1 )#‘qq) T dyx
1 _ qa+(2+q)b
+ — faT+bf (tx +(1-1¢t) T ) atbdgX

=85 g f(e(qma+ (1 - g =) 4 (1 Graerad)
+ 05z g f (¢ (a7h + (1 - g0 ) + (1 - 1)
z§f<z;':;o<1—q)qn (5 a+2520) + (1 - 2aeeer))
+%f (2;?20(1 _ q)qn( ( +q" b + "a) +(1- )Qa+(2+q)b>>

_ %f (t ((2+q)a+qb) + (1 _ )(2+q)a+qb) 41 (t ((2+q)b+qa> + (1 )qa+(2+q)b)
q

2[2]q4 2[2] 2[2]
[f ((2+2q[)2a+qb) n f ((2+q)b+qa>]
q
> f(a+q)

This proves first inequality in (2.5). Since f is convex on [a, b], we have
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a+b a+b
YO =-=[*f (tx +(1—-10) (2+q)a+qb> 2 dgx
qa+(2+q)b
+Efa_+bf<tx + (1 - t)w) aT-q-bdqx

atb a+b

<l |+ a-or (BRee)| S x

+—fa+b [tf(x)+(1 Of (“"”(2*‘”")] aspdgx

Sl 70 Farrr ar) st () ()
= g(t)

It is clear from the inequality (1.2) and (1.3) that g is monotonically increasing on [0,1].
Therefore we have

Y(t)<g(t)<gQ) = — fa+ f(x) 2 d x+fa+bf(x) a+bd x]
This finishes the proof of (2.5).

3). Since Y is convex on [0,1], for t,,t, € [0,1] with t, > t;, we obtain

a+qb
Y(te)=¥(E) o YY) _ TS (T )

t,—t; t;-0 t1

a+qb

By the first inequality in (2.5), we have Y(t;) = f( ) , SO we get

q

Y(t2)-Y(t1) >0

ta—ty -
That is, Y(t,) = Y(t,). This gives that Y is monotonically increasing on [0,1].
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ABSTRACT

The public health is at risk due to the bacillus Mycobacterium tuberculosis infection that
causes tuberculosis (TB). TB-infected individuals typically spread the disease through the air
when they speak, sneeze, cough, or spit. This illness affects the human body's lungs the most
frequently, but it can also spread to other organs like the brain, spine, kidneys, and central
nervous system. In this context, the analysis of the TB mathematical model will be made
through fractional derivative operators. The solution of the existence of the model to be
extended to the fractional derivative operator will be examined. Then, the uniqueness of the
solution of the mathematical model will be investigated.

1. INTRODUCTION

Diseases that spread quickly across large geographic areas are known as epidemics. For
thousands of years, these diseases have been a significant issue for humanity. To examine
how these diseases arise, mathematical models have been developed. This can give
information on the disease's pace of spread, its contagiousness, the total number of cases, and
the estimated total number of fatalities brought on by the sickness.

A contagious illness called tuberculosis can infect your lungs or other tissues. The organs
most frequently affected by it are the lungs, but it can also harm your spine, brain, or kidneys.
The Latin root of the word "tuberculosis" means "nodule” or "anything that stands out." A
second name for tuberculosis is TB. Not everyone who contracts TB becomes ill, but if you
do, you need to get treated. If you have the bacterium but no symptoms, you have latent
tuberculosis, also known as dormant tuberculosis (also called latent TB). Although it may
appear that TB has disappeared, it is actually dormant (sleeping) inside your body. You have
active tuberculosis or tuberculosis if you are infected, experience symptoms, and are
spreadable.

In this study, we will analyze the tuberculosis mathematical model using the fractional
derivative operator. First, we will extend the mathematical model to the fractional derivative
operator. We will then examine the existence and uniqueness of the solution of the model.
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2. PRELIMINARIES

Descriptions and theorems regarding the non-singular fractional Caputo-Fabrizio
operator are presented in this part. Please see [1,2,3] articles for more detailed information.

Definition 2.1. The well-known fractional order Caputo derivative is defined as follows [1],
let f € H'(a,b)
A

cnh —
DI =TG5 ), T @)

wheren —1<p <n€N.

Definition 2.2. Let f € H'(a, b),0 < p < 1. The new Caputo fractional derivative is defined
as follows [2],

pM(p) (*df (x) x—t

CFDP —
oDy f (1) 1-p ) “dx

exp [p ] d, 2.2)

Here M(p) is a normalization constant. Also M(0) and M (1) are equal to 1. Further it can be
written below, if the £ does not belong to H'(a, b).

GOLF(D) = B2 [(f(©) — f))exp [p 1] dx. (2.3)

Definition 2.3. Let f € H'(a,b), 0 < p < 1.The Caputo-Fabrizio fractional derivative of
order f is as follows [3],

1t -
“DIF) = T j ' ()exp [p%] dx. (2.4)

Definition 2.4. Let 0 < p < 1. The fractional integral order p of a function f is defined by
[3],
2(1—p)

P _
IO =G pue)

u(t) + u(s)ds

2p ft
2-p)Mp) J, (2.5)

3. MAIN RESULTS

The original normalized TB virus model can be described by the following equations [4]:
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ds £SI
222 s
at TN~
dL _ psI
K—T—(,u+g)L(1—77)éT (3.1)
%=€L+776T—(,u+7/+o-1)|
LA —(ur S+ o+ OT
dR
R o R
at ST — 4

We present the proposed fractional model to describe the dynamics of TB infection. To
develop the model, total human population is divided into five epidemiological sub-
compartments denoted by susceptible S(t), Exposed L(t), TB active I(t), under treatment T (t
), and recovered individuals after treatment R(t).

Equations could be written as in the form of Caputo Fabrizio fractional derivative:

. I
CTDOS(t)ZA—ﬂST—,uS

TDSL® = £l — (i + ) LA— ST

CEDEI () = el +720T — (e + y + o)} (32)

FDETM) =A —(u+S+o, +ET
CTDIR(t) = &T — 4R
In this section we will give the existence and uniqueness of the solutions [5]. Now applying

the fractional integral in equation (3.2), and let initial values are So(0) = S(0), Lo(0) = L(0),
10(0) = 1(0), To(0) = T (0), Ro(0) = R(0). now we obtain the following,

S -850 = 5 22 (- PO s ) +
2M (a)z_aaM (@ E(A - ﬂS()l/\)ll 2~ s (yndy
L® -~ LO) = 5 s (RO — v L@ msT o) +
(@ an (a)Iﬂs(y,j' W) _ (i + £)L(y)@—7)ST (y)dly
1O = 1(0) = 5 EE= A (o () 4 7T (O = (a4 7+ o)1) +
TGy L L + 7T () = (a1 )y
TO-TO@ = o S S AD — (5 4o+ HTM) + (3:3)
i @y | N~ s 0 T ()
R(D) ~R(0) = 5 202 S (€T (0 — 4R(O) +
2a

>M (a) — aM (a) _([(:fr(y) — R(y))dy
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For simplicity, we define function A; and some constantsy; i=1,...,5

A S) = A— O s

A L) = 2O i Lma-met ©
3.4
At 1) = () + 78T (1) — (u+ 7 + 03D 1 () G4

AGT) =A@ —(u+S+0o, +5)T (D)
As(t,R) = ST (1) — 4R (1)

1= % +H
Y, =(u+e)A—1)os, (3.5

Vs =H+)y+o,
Vo= st SO, +E

Vs = H

For proving our results for the following continuous functions  F:S(t), S,(t), L(t), L,(t),
1(t), (), T(t), Ty (t), R(t) and R,(t), such that, [IS@)l < &1 IILOI < &, [T <
ST < ey and [|R(O| < &5 .

Theorem 3.1. The kernels A4; ;- s are satisfying the Lipschitz condition if the contractions
providedy; < 1,i=1,..,5.

Proof. First, we prove that A;(t,S) satisfies Lipschitz condition. For S(t) and S;(t) using
equation (3.4) we have,

(A—ﬂf’l'—ﬂS)—(A—ﬂZ”—ﬂsl)

At S) - A(t,S)] =

- H(S - sl)(ﬂN' + m“

/T\,%W)IIS -S| (3.6)

= 71”5 - Sl”

<(

Second, we show that A4, (¢, L) satisfies Lipschitz condition. For L(t)and L,(t) using equation
(3.4), we obtain

||A2(t,L>—A2(t,L1)||=H(ﬂfl'—(u+e)L(1—n>6r>—(ﬂfl'—(u+e)L1(1—n)6r)H

sBs -y (3.7)
=ralL-L
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If we do exact same thing for Az, A4, As they also satisfied the Lipschitz condition. And they
are contractions with y; < 1,1 =1, ...,5. This completes the proof.

By using kernels A; and taking all initial values equal zero we rewrite the system given by
equation (3.3). Then we define recursive formulas of this new system. Furthermore, we
consider the differences and by taking the norm both sides of difference equations, we have,

21—a)
2M (a) —aM (a)
2a
2M (a)—aM(a) s
2(1—a)
2M (a) —aM (a)
2a
2M (a)—aM(a)
2(1—a)
2M (a) —aM(a)
2a
2M (a)—aM(a) s
21—-a)
2M (a) —aM (a)
i) ey A T O - ATy
2(1—a) (3.8)
(R = ROOI= 57 “am @ 1A ¢ R ) - AR O)
2a
2M (a)—aM(a)

[(Sha =S =

IA S, (1) = AL, S, ()

IHA(y Sa(Y)— A (Y, S, (¥))|dy

(Lo = LD® =

1A, (&, Ly () = At L, (D))

[1A. (. L) — A0y, L ()dy

10 = 1O = At 1, () = At 1, )

TIAC 1,0 = Ay 1L ()dy

(T =T O] = 1A (. T, () = AT, . (D)

IHAS(y Ra(Y)) = As(y, Ry (y))|dy

Theorem 3.2. If ¢ satisfies the condition down below then there is a solution.

sl =max{y;} <1, i=1.2,..,5 (3.9)
Proof. We define the functions
Eln (t) = Sn+1(t) - S(t)!
E2n (t) = Ln+1(t) - L(t),
ESn (t) = In+1(t) -1 (t)!
E4n (t) = Tn+1 (t) =T (t)’
E5n (t) = Rn+l(t) - R(t)

Then, for E,,(t), we get
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2(1-a)

zM(@_aM()Hﬂﬂﬁxoy—Aasmmom

|E, @) <

t oM@ aM()ﬂMwy ()= Ay, S, ()]dy

S(ZM 20-a) 2a Jh”SH_S”
(a)-aM(a) 2M(a)—-aM(a)

g( W-a) 2 jgws_sj
2M(a)—aM(a) 2M(a)—aM(a)

(3.10)

Using the same technique, we find
2(1-a) N 2a
2M(a)—aM(a) 2M(a)—aM(a)

2(1-a) N 2a
2M(a)—aM(a) 2M(a)—aM(a)

&"L - L],

n

5n”| - |1||’

|E,. )] <

||E3n (t)” <
(3.11)

20-a) 2a n5"|ff 1
2M(a)—aM(a) 2M(a)-aM(a) He

2(1-a) 2a
2M(a)—aM(a) 2M(a)—aM(a)

|E. @) <

n

5n”R - Rl”'

||E5n (t)” <

Thus, from the above five functions, we find E;,(t) = 0, i =1,2,..5asn - o for § <1,
which completes the proof.

In this part , we prove that our model has unique solution.

Theorem 3.3. The Caputo-Fabrizio fractional model (3.2) has a unique solution provided that
the restrictions given by (3.11) hold true:

2(1-a) 2a .
(ZM(a)—aM(a) + ZM(a)—M(a)) Vi =< 1’ L= 1;2; e D (311)

Proof. We assume each equation has two solutions such as S(t), L(t), I(t), T(t), R(t) and
S(),L(t),I(t), T(t), R(t). Then we can write,
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S0= 17wy ACSO @] [ A, S0y,
O - o s A L0 B TG Ty
(0 e S ACTO B ATy, (12
0= AT O 2 (a)jA4(y,f (y)dy.
R0 g o s AR B T Ry
Then, by using these equations and Theorem (3.1), we take the norm
[50-50]< 51 0~ |ACSO) - ACS O
) @) [JAGson-AvSoy G
2|\/|(il()1 :K/I(a) HS_§H+2|v|(asziyeluvl(a)us_S~H'
Which implies
(ZM(i()l __zﬁﬂ (a)"* 2M(a§a—y;M(a)_1JHS_§HZO (3.14)

by condition (3.11), the inequality (3.14) is true provided that ||S — S|| = 0. Similarly, we use
the same processes to prove that L(t) = L(t), 1(t) = I(t), T(t) = T(t), R(t) = R(t). Thus,
the model has a unique solution.
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ABSTRACT

The primary driving force behind this study is to connect the topic of inequalities with
fractional integral operators, which are drawing interest due to their characteristics and
widespread use. A new version of the Hermite-Hadamard (HH-) inequality is obtained for s-
convex functions in the fourth sense for this purpose after certain fundamental notions are
introduced. Numerous HH-type integral inequalities are found for the functions whose
absolute values of the second derivatives are s-convex and s-concave using this integral
equation that incorporates fractional integral operators with Mittag-Leffler kernel. The proof
of the conclusions takes into consideration some well-known inequalities and hypothesis
conditions, including Holder’s inequality and Young’s inequality.

INTRODUCTION

With the help of researchers throughout many years, mathematics essentially began as a
theoretical field with the goal of formulating events and occurrences in a variety of fields,
such as physics, engineering, modeling, and mathematical biology, into a form that can be
calculated. It has never been satisfied with this and is constantly searching for new and
improved answers to issues. One of the key methods used by mathematics to solve problems
in the real world is fractional analysis. Recent research has actually demonstrated that
fractional analysis accomplishes this goal better than classical analysis. The fundamental tenet
of fractional analysis is the introduction of novel fractional derivatives and integral operators,
followed by an investigation of the benefits of each operator using examples from real-world
problems, modeling studies, and comparisons. In an effort to advance fractional analysis and
introduce the most efficient operators to the literature, new fractional derivatives and
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associated integral operators have been developed. Fractional operators differ in this dynamic
process because of various characteristics of kernel structures, the time memory effect, and
the need to obtain general forms.

Definition 1 (see[1]) Let f eL[e,,&,]. The Riemann-Liouville integrals J°, f and J° f of
a £

order £>0 with g,&, >0 are defined by
J‘f)f )< f (t)dt; > g, 11
(35 )f= PTCRUIRICLNE 1)
and

(3 juw—ﬁgja YO y<e, (12)

respectively, where I'(.) is the gamma function and (Jﬁ jf (y)= (J °_jf (y)=f(y).
‘1 £

Researchers in both mathematical analysis and applied mathematics have used the Riemann-
Liouville fractional integral operator to solve a variety of issues (see [2]-[4]).The most well-
known operators in fractional analysis for a long time were the Caputo and Caputo-Fabrizio
derivatives and the Riemann-Liouville integrals.

Definition 2 [9]. Let f eH'(0,0,),0, >®,,a €[0,1], then the definition of the new Caputo
fractional derivative is

CFDf(E):Mff'(s)exp— Y _(=-s)lds, (1.3)
l-a K -a)

where M («) is normalization function.

Definition 3 [10] Let f e H'(0,0,),0, >®,,a [0,1], then the definition of the left and
right side of Caputo-Fabrizio fractional integral is

CF |« l-a =
( )(~)— M (@) f(E)+ M (@ )j f(y)dy, (1.4)
and
CFa = 1
( '@2)(~) M (o ) ary ( ) 2 (y)dy, (1.5)

where B(«) is the normalization function.

The authors’ definition of the Caputo-Fabrizio fractional integral operator is based on this
intriguing fractional derivative operator. Despite being a highly functional operator by
definition, the Caputo-Fabrizio fractional derivative, which is employed in dynamical
systems, physical phenomena, disease models, and many other domains, has a weakness in
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that it does not satisfy the initial requirements in the exceptional case « =1. The new
derivative operator created by Atangana-Baleanu, which contains versions in the sense of
Caputo and Riemann, has provided the improvement to remove this flaw. The normalization
function will be denoted by B(« ) in the follow-up to this study and share the same qualities
as the M(« ) defined by Caputo-Fabrizio.

Definition 4 [11] Let f eH'(0©,,0,),0,>0,,a <[0,1], then the definition of the new
fractional derivative is given:

ABC £ (=1 = B(X) [ ¢, E-x)°

o DE[f(_)]_mL)lf ()E, | —a=— " ldx (1.6)
Definition 5 Let f e H(0,,0,),0, >0,,a €[0,1], then the definition of the new fractional
derivative is given:

ngRDg[f(E)]—Mdd_ f(X)E, { (1:’2“}1)( (L.7)

The kernel of Atangana-Balenau derivatives seen above is nonlocal. In equation (1.7), when
the function is constant, we get zero.

After these definitions, Atangana Balenau also defined the fractional integral operator.

Definition 6 [12] The fractional integral associate to the new fractional derivative with
nonlocal kernel of a function f e H*(®,,0,) as defined:

ol f{f(u)}—m 5 )F( 3 j F(YE-y)" dy, (1.8)

where ©, >0, and a €[0,1].

In [13], the right-hand side of the Abdeljawad and Baleanu integral operator is calculated. The
right fractional new integral with ML kernel of order « €[0,1] is defined by

(AB 3 kf(u)} F(E)+ f(y)(y-E)""dy. (1.9)

B(a) ) B(a )F( )I
Gamma function I'(e) is used here. The fractional Atangana-Baleanu integral of a positive
function is positive because B(«) >0 the so-called normalization function gives rise to this

result. It should be observed that we regain the common integral when the order o —1.
Additionally, whenever the fractional order « — 0, the original function is restored.

Following a brief introduction to fractional analysis, we will go over some fundamental ideas
related to convex functions and inequalities. Let’s review the s-convex function in the second
sense, the s-convex function in the fourth sense, and the HH inequality to refresh our
memories.
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Definition 7 [6]. The function f :[0,00) >R is said to be s— convex in the second sense if
for every x,y €0,0) and t € 0,1] and for some fixed s € (0,1] we have:

f(tx+(1-t)y) <t*f(x)+(1-1)° f (y).
The class of s— convex functions in the second sense is usually denoted by K.
If we choose s=1 , it can be easily seen that s-convexity of functions defined on
X,y€0,0). If s€(0,1), f eK’ implies f([0,0))<[0,), i.e., this has been proven for all
functions from KZ,s € (0,1) , are nonnegative.
Definition 8 [8] Let U —R" be a convex set and let s (0,1] and f :U - R.f is said to be

s — convex function in the fourth sense if

f(tx+(1-1t)y) st% f(x)+ (1—t)% f(y)
forall x,yeU and t<[0,1].

The class of s— convex functions in the fourth sense is denoted by K.

With its various modifications, refinements, and iterations, the well-known HH-inequality,
which is based on convex functions, generates lower and upper limits for the mean value in
the Cauchy sense and is presented as follows:

Assume that f:1 cR —R is a convex mapping on | —R, where ¢,¢, e, with g <&,.
The HH-inequality for convex mappings can be presented as follows (see [14]):

f(‘%;‘%js ! fzf(t)dtsw. (1.10)

&, —& 1

Dragomir and Fitzpatrick have carried out a novel HH-inequality for s-convex maps in the
second sense in [16].

Theorem 1 (see [24]). Assume that f :[0,0) —[0,0) is a s-convex function in the fourth
sense, where s<(0,1), and let g,&, €[0,0),¢, <¢&,. If fellg,&,], then one has the
following:

Zilf(€1+82j£ 1 rzf(t)dtﬁi[f(gl)"' f(s,)]. (1.11)
2 &,—& s+1

a
s . : .
Here, we must note that k = 71 is the best possible constant in (1.11).
+

We recommend reading the works ([14]-[22]) for more information on the various convex
functions and generalizations, novel variations, and various manifestations of this significant
double inequality.
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The structure of this study is as follows. Prior to anything else, the fundamental ideas that
would be applied in the study were determined, and the infrastructure needed to support
science was built. In the second sense, Atangana-Baleanu integral operators for s-convex in
the second sense were shown in [23]. Atangana-Baleanu integral operators for s-convex
functions in the fourth sense are discovered, leading to a new generalization of the HH-
inequality in the main findings section.

RESULTS

We begin this part by presenting the following inequalities, which use novel fractional
integral operators developed by Atangana and Baleanu to represent variations of the HH-
inequality for s-convex maps in the fourth sense. The functions I'(«),B(e) >0, and g, are

referred to as the gamma function, normalization function, and incomplete beta function,
respectively, throughout the study.

Theorem 2 Let f:R" —R" be an s-convex function in the fourth sense, s<(0,1], and

a,beR" with a<b. If f eL[a,b], the inequalities for Atangana-Baleanu integral operators
for all « €(0,1] are obtained as follows:

f(aﬂ
2§ 2 ), 1-a [f(a)+f(b)}

B(@)[(a) (b-a)*| B(a)
1
< 2B 9L f (D) }+7° 194 f
e RUCI R UCH on

1
S{f(a)+f(b)} « | 1-a +“ﬁ(“’1+g)_
B(a) F(a)(a+:sl) (b-a)* I'(a)

Proof. As f is an s-convex function in the fourth sense, we can write

1 1

f (ta+ (1-t)b) <ts f(a)+(1—t)° f (b)

for all t €[0,1]. Multiplying the above inequality with t“™ and then integrating the obtained
inequality on [0,1], we have

j:ta-lf (ta+ (1—t)b)dt

< [ f(a) jolt“*i‘ldt +(b) th“‘l(l—t)idt}.
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If we multiply both sides of the last inequality by ———*—, and then if we add the term
B(a)I'(«)
l-«o
—— f(b), we get
B(a)
ab-a)* i, l-«o
t“f(ta+ (1-t)b)dt+——f (b
B(a)r(a)j (ta+(1-b)dt+ o £ (0)
a(b—a)a a-1
< ———— tsdtfbtltdt
st | @ [t dt+ f o) [t (1) }

By making use of the change of variable ta+ (1-t)b =y, we have

S {f (0)}
a(b—a)” ,B(a,i+l)

< £ (b) l-« a(b—a)” f(a). (2.2)
Ble)  Blalia) BN (@)@ +)
S
and similary we get
Plo{f(a)}
L1
BN +“(b‘a) Bla, +1) ab-a) o 2.3)
o |B@ B@r@ | per@)erh)
S

If we take into account the disparities in (2.2) and (2.3), we see that the second inequality in
(2.2).

We employ the fact that, for all u,veR"™ in order to derive the first inequality in (2.1), we
have

f(u;v)g f(u)+lf(v)' 2.4)
2s
Now, let u =ta+ (1-t)b and v=(1-t)a+tb with t €[0,1]. Then we get by (2.4) that

f[a+bJ< f(ta+(1-t)b)+ f ((1-t)a+tb)
2 ) ! '
25
Multiplying the above inequality with t“* and then integrating this inequality on [0,1], we
have

Proceedings Book of ICMRS 2022 83



5" INTERNATIONAL CONFERENCE
ON MATHEMATICAL AND RELATED SCIENCES
ICMRS 2022

27-30 OCTOBER, 2022

Lot L a1
< jot“ f (ta+ (1-t)b)dt + Lt" f ((1-t)a-+tb)dt.

a(b—a)*
B(a)[(a)

If we multiply both sides of the last inequality and then if we add the term

1_—Ol[f (a)+ f (b)] to two sides of the resulting inequality, we get

B(x)

: (b-a)* (a+b) l-a
? B(a)r(a)f( 2 j+8(a)[f(a)”(b)]

a(b-a)* . ~
< BaT@ jot f (ta+ (1—t)b)dt
a(b-2a)" (La1g
* BT jot f ((1-t)a +tb)dt
+

l-«a
Bl @+ O

The change of variables ta+ (1-t)b =y and tb+ (1-t)a =z gives us

2 (0-a)" f(a+bj+l_a[f(a)+f(b)]
B(afr(a) 2 B(a)
<[t O3+ 154 @) (2.5)

we get the first inequality in (2.1).

If we multiply both sides of (2.5) by ,
(b-a)”

As we move on in this part, we present an equality for integral operators for Atangana-
Baleanu that has second order derivatives.

Lemma 1 Let a<b,a,bel® and f:lcR—>R be a differentiable function on 1°. If
f" e[a,b], the identity for Atangana- Baleanu integral operators in equation (2.6) is valid

for all a €(0,1]:
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%a{(m.;:b @, lb“{f(b)}}

b
l-a
—m[f(a)Jrf(b)]
(- f[a+bj (2.6)
2°'B(a)T () 2
(b_a)aurl
" 2(a+1)B(a)[(@)

x j:m“(t)[f "(ta+ (1-t)b) + f"(tb+ (1-t)a)]

where

1
t“, tel0,2),
m(t) = 12
(1-t)“*, te[E,l],

and also T'(«) is a gamma function and B(«) > 0.

The proof for the aforementioned lemma may be found in [23].

Now, using the new integral equation and the s-convexity identity, we will create
generalizations of the HH-type inequalities for Atangana-Baleanu fractional integral
operators. The following terms are indicated with a F throughout the study:

F= L|:(AB e {f (a)}+:Eb I {f (b)}}

b— 2
(- a+b
(b— )B( L@ )] 2“-1B(a)r(a)f( 2 j

Theorem 3 Let a<b,a,bel®and f:l c[0,0) >R be a differentiable function on 1° and
f"eL(a,b). If | "] is an s-convex function in the fourth sense on [a,b] for some fixed
s € (0,1], we obtain the following inequality for Atangana-Baleanu integral operators:

1 a+1+2
o-ay” | Q) L e e £
|F < @ DB @ | 1 +2+,B;(a+2,s+1) (| f"(@)]+| f"(b)]), (2.7)
S

where « € (0,1].
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Proof. By using the equality in (2.6) and the s-convexity of | f"|, we have
(b _ a)a+l
- 2(a+1)B(a)I ()
x jol| me () || f"(ta+(1-t)b) |+ f"(tb+(1-t)a) Jdt

|F

(b—a)** S| s | g IS
_2(0:+1)B(a)1“(a){jot {t | £7(@)[+(1-1)* | £"(b) th

+ ﬁ(l—t)““[ti (@) | +(1-1)° | £ (b) th

+ j}t“*{ti | £7(b) [ +(1-1)° | £"(a) @dt

+ ﬁ(l—t)“”{ts | £(b) | +(1-1)° | f"(a) th}.

Then, after obtaining the calculations required, we finish the inequality’s proof in (2.7).

Corollary 1 In Theorem 3, if we choose s =1, we have the following inequality:

1 a+3

Fle L8 12 L5 e22)(1 7@+ ().
a+3

~ (a+1)B(a)T ()

Corollary 2 In Theorem 3, if | f”|<M on 1°,M > 0, we have the following inequality:

la+1+2
|F|S 2M(b—a)a+l E 1 +ﬂ1(a+2,1+1) i
(a+1)B(a)I (@) a+t4+2 2 S

S

Theorem 4 Let a<b,a,bel®and f:l <[0,00) >R be a differentiable mapping on 1° and
f"elL[a,b]. If | f"]* is an s-convex function in the fourth sense on [a,b] for some fixed
s € (0,1], we obtain the following inequality for Atangana-Baleanu integral operators:

1
a+l (7)0!P+P
(b—a) 2 1 " "
FI< f f"(h) ), 2.8
IFis (a+1)B(a)(a)| ap+p+1 (imi (H@RTED &9
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1 1
where @ €(0,1],9>1, and —+—==1.
P q

Proof. By using the equality in (2.6) and Holder’s inequality, we get

(b_a)a+1
- 2(ax+1)B(a)T ()
xj:| me(t)|[ f"(ta+(1-t)b)|+]| f"(tb+(1-t)a)[]dt

b=a)" (o Ve
- 2(a+1)B(a)T () (-[Olm O] dt)

x[( [[1t"(a+(@-tb)[ dt): +( [[1 17+ a-va)[ dtﬂ.

|F

We apply the fourth meaning of the s-convexity on [a,b] to arrive at the result, and we then
make use of the fact that

Zn:(uk +v, )" < Zn:uli“ +Zn:v|f‘
k=1 k=1 k=1

for 0<m<1,u,u,,...,u, 20,v,v,,...,v, 20.

So, we obtained the inequality (2.8). The proof is completed.

Corollary 3 In Theorem 4, if we choose s =1, we have following inequality:

p

%(I f @) +] £"(b) ).

2q

)
| F |< (b _ a)a+l 2
" (a+1)B(@)(a)| ap+p+1

Corollary 4 In Theorem 4, if | f”|<M on 1°,M > 0,we have the following inequality:

dyos V
IF I 2M (b—a)** 2 1
(a+1)B(@) ()| ap+ p+1

-
(1)
S

Theorem 5 According to Theorem 4’s assumptions, the inequality in (2.9) results:
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| | (b _ a)a+l 1
" (a+1)B(a) (&) 2 (a +2)

(2.9)

1 a+§+2
(E) 1 " q " q%
X| =S+ Aula+2,+1) 1 (7@ +] T7(R) )T,
a+g+2 2 S

where « €(0,1],q >1,£+1 =1.
P q

Proof. When we use Holder inequality from a different point of view, we can write
(b _ a)a+l
- 2(a+1)B(a)T ()
x j:| m* ()| f"(ta+(1-t)b)|+] f"(tb+(1-t)a) [Jdt
1

(b-a)* L e tp g )P
= 2a+1)B(@)(a) Uolm Ol dt)

x[( [[1"a+(@1-np) dt)+( {17+ (1) dtJ;].

|F|

If we apply the s-convexity of | f"|* and calculate the above integrals, we get the desired.

Corollary 5 In Theorem 5, if we choose s =1, we have the following inequality:

| F |< (b _ a)a+l 1
" (a+1)B(a) () \ 2“M (a +2)

qa

1 a+3

(E) L
x +B(a+22)| (IT"@)1F +] (b)),

a+3

2

Corollary 6 In Theorem 5, if | f”|<M on 1°,M >0, we have the following inequality:
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1

= 1

q _ a+l ™

F 29M (b—a) ( 1 Jp
1
q

" (a+1)B(a) () 2 (a +2)
1 a+ii2
(5) * 1
x| E———+f, (a+2,-+1)
1 > s
a+g+2 2

Theorem 6 Let a<b,a,bel®and f:l1 c[0,0) >R be a differentiable function on 1° and
f"el[a,b]. If | f"|* is an s-convex function in the fourth sense on [a,b] for some fixed
se(0,1], we obtain the following inequality in (2.10) for Atangana-Baleanu integral
operators:

1 (e D) =
il ) T (@-1) 1
(b-a) 2 ") [d 17(RY 1914
P (@+1)B(x)[(@)| (¢+1)@-p)+q-1 (T @F=TOD
(2.10)
(;) (a+1) p+g+1 .
X + 0, ((a+1)p+l,g+l) ,

(a+1)p+g+1 2

where a € (0,1],9> p >1.

Proof. By using Holder’s inequality in a different way, we can write

(b _ a)a+l 1 " % 1_5
IFis 2(a+l)B(a)F(a)(£IO|m ®] dt}

XUOH M () [P[ta-+ (1-t)b [ dt)“
+(Lll () dtJ X

x( [Im @] t(to+ (1-va)[ dt)q}.

If we use the s-convexity of | |7 above, we have
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O-2" [ ]
IFis 2(a+1)B(a)I'() {L m*(®)] dtJ
XU:I MO [ @) +1-07 | 1) |‘*1dt]q

(b_a)a+1 1 " E l_E
2(a+1)B(a)(a) Uo |m* O dt}

1
q

X(E Ime @1 [t= | £@) " +(1-t)* | f"(b) Iq]dtJ

By making the necessary integral calculations, the proof is completed.

Corollary 7 In Theorem 6, if we choose s =1, we have the following inequality:

1
1-=
a+1)(3=P) q

1, @ e
Fi (b—a)“* (E) (q-1)
(a+1)B(o)I'(@)| (¢ +1)@-p)+q-1

(2.11)

1 (1)(0&1) p+2

X " q " q a 2
(F@I O 2o+ hi@rDp+12)

Corollary 8 In Theorem 6, if | f”|<M on 1°,M > 0, we have the following inequality:
11
: &M g-y |
a _ a+l — q_
IF < 2M(b-a) 2
(a+1)B(a)I(@)| (@+1)(@-p)+q-1

a-p
1))

1 (a+1)p+1+1
R .
X +B (@+1)p+1,=+1) |,
(¢+1)p+=+1 =2 S
S

Proceedings Book of ICMRS 2022 90



5" INTERNATIONAL CONFERENCE
ON MATHEMATICAL AND RELATED SCIENCES
ICMRS 2022

27-30 OCTOBER, 2022

Theorem 7 Let a<b,a,bel®and f:l1 c[0,00) >R be a differentiable function on 1° and
f"elL[a,b]. If | f"|* is an s-convex function in the fourth sense on [a,b] for some fixed
se(0,1], we obtain the following inequality in (2.12) for Atangana-Baleanu integral
operators:

E (a+l)p
)

IF I (b-a)™ @+ O

_ | 2.12)
(@+1)B(@)(@)| (@+1)p+1)p 1)
S

where a € (0,1],g > 1.

Proof. By using Lemma 1, we have
a+l
Fle 0%
2(ax+1)B(a)I'(«x)
xE| m*@t)[[] f"(ta+(1-t)b)|+]| f"(tb+(1-t)a)[]dt.

. . . 1 1
By using Young’s inequality as Xy < —x” + =y, we get
q

| F |< (b _ a)a+l
- 2(a+1)B(a)T ()

x{lﬁ m” (t) " dt+1f| f"(ta+(1-t)b) [ dt
p g

2L me@ P dt+= [ £t + (1-t)a) ' ot
p q%

By using the s-convexity of | f"|* and by simple calculations, we provide the result.

Corollary 9 In Theorem 7, if we choose s =1, we have the following inequality:

1 (a+1)p
( 2)

IF < (b-a)* +If”(c':l)l“+|f”(b)|q
" (a+1)B(@) ()| ((+1)p+1)p 2q '

Corollary 10 In Theorem 7, if | f”|<M on 1°,M >0, we have the following inequality:

1 (a+l)p
Fe (-2 ) IM

" (a+1)B(@)(a)| ((@+1)p+1)p ! (E+1)q |
S
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Theorem 8 Let a<b,a,be1® and f:1 <[0,:0) =R be a differentiable function on 1° and
f"”elL[a,b]. If | f”|" is an s-concave function in the fourth sense on [a,b] for some fixed
se(0,1], we obtain the following inequality in (2.13) for Atangana-Baleanu integral
operators:

1 (a+l)p
)

| F |< (b _ a)a+l
(a+1)B(a)(a)| (@+1)p+1)

f (a—”’j‘ (2.13)

where a €(0,1],9 >1,£+1 =1.
p q

Proof. If we apply Holder’s inequality, we have

(b=a)" (i i)
IFls 2(x+1)B(a)'(@) UO Im* O dt)

x[( [[1t"(a+(@-tb)[ dtj; +( [[1£7@b+(1-tb) [ dt)‘l‘].

Considering the variation of the HH-inequality for s-concave functions, we can state the
findings below because | f"|* is s-concave on [a,b]:
f,,(a+bj
2
q

f,,(a+bj |
2

We finish the proof by applying these findings to the aforementioned disparity.
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ABSTRACT

In this note, we defined a new class that is called exponentially P-functions which has a
potential to produce novel estimations of Hadamard-type on the co-ordinates. Then, we have
established some new Hermite-Hadamard type integral inequalities via exponentially P-
functions on the coordinates.

INTRODUCTION

We will start by expressing an important inequality proved for convex functions. This
inequality is presented on the basis of averages and give bounds for the mean value of a
convex function.

Assume that f:l cR—>R is a convex mapping defined on the interval | of R where

a <b. The following statement;

a+b 1

" f(a)+ f(b)
f(TJgﬁlf(x)dxsT

holds and known as Hermite-Hadamard inequality. Both inequalities hold in the reversed
direction if f is concave.

In [1], Dragomir mentions an expansion of the concept of convex function, which is used in
many inequalities in the field of inequality theory and has applications in different fields of
mathematics, especially convex programming.

Definition 1 Let us consider the bidimensional interval A=[a,b]xc,d] in R* with a<b,
c <d. Afunction f:A — R will be called convex on the co-ordinates if the partial mappings
f,:[ab] >R, f (u)=f(u,y) and f,:[c,d] >R, f,(v)=f(x,v) are convex where defined
for all y € [c,d] and x € [a, b] Recall that the mapping f:A —R is convex on A if the
following inequality holds,
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F(AX+(Q-A)z, y+ (L-A)W) < Af (X, ¥)+ (1-2) f (z,w)
forall (x,y),(z,w)e A and 1€0,1].

Expressing convex functions in coordinates brought up the question that it is possible for
Hermite-Hadamard inequality to expand into coordinates. The answer to this motivating
question has been found in Dragomir’s paper (see [1]) and has taken its place in the literature

as the expansion of Hermite-Hadamard inequality to a rectangle from the plane R?. stated
below.

Theorem 1 Suppose that f : A =[a,b]xc,d]— R is convex on the co-ordinates on A. Then
one has the inequalities;

a+b c+d
f(T’Tj (L1)

1{ 1 b c+d 1 d_(a+b
<= f dx+ f v ld
{b a ( 2 JX i ok ( 2 yjy}

j j f (x, y)dxdy

(b a)(d c)a

1 1 1 b
s-[— f(x,c)dx+(b_a)Lf(x,d)dx

(b-a)
1 d
G- [( wW+w_QLuuww}

< f(a,c)+ f(a,d)+ f(b,c)+ f(b,d)
4
The above inequalities are sharp.
Numerous variants of this inequality were obtained for convexity and other types of convex
functions in coordinates (See the papers [2, 3, 4,5, 6, 7, 8, 9, 10, 11, 13, 14, 16]).
In [12], Sarikaya et al. proved some Hadamard-type inequalities for co-ordinated convex
functions as followings:

Theorem 2 Let f:AcR?* —R be a partially differentiable mapping on A:=[a,b]xc,d] in

2

R? with a<b and c<d. If is a convex function on the co-ordinates on A, then one

otos
has the inequalities:
g == (1.2)
16
o* f o f o* f o* f
a,c a,d b,c b, d
><8t63( )+6tas( )+6tas( )+6tas( )
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where

J

_f(a,c)+ f(ad)+ f(b,c)+ f (b d) 1 b o

= + f(x, y)dxdy—A

4 boa@—o bl TN

and

A

- 1{L :[f(x,c)+ £ (x,d)Jdx+ e !

" 2| (b-a) iy [Tt @ y)dy+f (b, y)]dy}

Theorem 3 Let f:AcR? —R be a partially differentiable mapping on A:=[a,b]xc,d] in
q

, o° f
R with a<b and c<d. If
otos

, 9>1, is a convex function on the co-ordinates on A,

then one has the inequalities:

9|20 (1.3)
4(p+1)p
_ -1
0% f " 0% f [ o f " o f [ ‘
a,c)+ a,d)+ b,c)+ b,d
y otos @c) otos (a.d) otos (b.c) otos (b,d)
4
] . 1 1 )
where A, J areasin Theorem2and —+—=1.
P q
Theorem 4 Let f:AcR? —R be a partially differentiable mapping on A:=[a,b]xc,d] in

, 0% f [
R with a<b and c<d. If
otos

, 9>1, is a convex function on the co-ordinates on A,

then one has the inequalities:

b-a)(d-c
|\]|S$ (1.4)
_ 1
o2 o2f | a2t a2t ‘
a,c a,d b,c b,d
y otos ( )+6tas ( )+at63 ( )+6tas (b.d)
4

where A, J are as in Theorem 2.

In [17], Sarikaya et al. have proved a new integral identity and several new inequalities as
followings;
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Lemmallet f:AcR?—R be a partial differentiable mapping on A:=[a,b]x[c,d] in R?
2

with a<b and c<d.If 2 ¢ L(A), then the following equality:

f(a,c)+f(a,d)zf(b,c)+f(b,d) = a)l(d C)f’jf(x y)dxdy
_%[Lf’[f(x,cﬁ f(x,d)]dx+—CL [f(a,y)+ f (b, y)]dy}

M; [a-20- Zs)gafs(taJr(l Db, s+ (1—s)d dtds

Theorem 5 Let f:A=[ab]x[c,d] >R be a partially differentiable mapping on

o° f
=l|a,blx|c,d} If |—
abbelect) 1

is a convex function on the co-ordinates on A, then the following

inequality holds;

a+b c+d
HT’TJ (15)

_(dic)ff(a;b,y]dy—ﬁﬁf(x,%)dx
WIJ X,y dyd{

s(b a)d-c)
64
2 2
xaf(a,c+ af(b,d.
otos otos
Theorem 6  Let f'A—[a,b]x[c,d]—>R be a partially differentiable mapping on
02t [*

A=[a,b]x[c,d] If s

2
0 f(b,c)1+

otos

2
o f(a,d +
otos

, g>1, is a convex function on the co-ordinates on A, then the

following inequality holds;

C|< % (1.6)
p+
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where
C = f[a+b c+dj
2 2
1 d (a+b 1 c+d
‘<d—<:>I & ’yjdy‘_aa—‘)faf(‘—z Jo
—(b 2Yd CJ._[ (x, y)dydx

Theorem 7 Let f:A=[ab]x[c,d] >R be a partially differentiable mapping on

o’ f|°
If
A =[a,b]x[c,d] s

, 0=1, is a convex function on the co-ordinates on A, then the

following inequality holds;

|C|£(b_a)(d_c) w7
16
_ -1
2 4 2 4 2 4 2 9 |q
af(ac){ af(bc){ af(ad){ +af(b,d)1
y otos otos otos otos
4
where ) )
C = f[a+b c+dj
2 2
1 d (a+b 1 c+d
- f Jy ldy———| f| x,—— |d
(d—c)I ( 2 yjy o) ( 2 j
—(b 2)d o) I_[ X, y )dydx

The concept of exponentially convex function in coordinates and the associated results are
presented in the following form.

Definition 2 (See [18]) Let us consider the interval such as A =[g,,&,]x&;,&,] in R® with
g <&, & <g, Thefunction W:A —R is exponentially convex on A if
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-+, -0 1) (1) Y0 H

forall (u,,u,),(u;,u,)eA, aeR and £ €0,1].

An equivalent definition of the exponentially convex function definition in coordinates can be
done as follows:

Definition 3 (See [18]) The mapping ¥ : A —R is exponentially convex function on the co-
ordinates on A, if

lP(4/51 + (1_ 4/)52 8& + (1_ 5)54)

L R

forall (g,,&,),(¢,€,) (65,8 ) (6,,6,)e A, @ eR and £, £[0,1]
EXPONENTIALLY P-FUNCTIONS ON THE CO-ORDINATES

Definition 4 Let us consider the bidimensional interval A =[a,b]xc,d] in R? with a<b and
c<d. The mapping f:A— R is exponential P—function on the co-ordinates on A, if the
following inequality holds

f(x, f(z,w
flix0-tty+-tw)s - e o 20

forall (x,y),(z,w) €A, eR and te[0,1]

An equivalent definition of the exponential P —convex function definition in co-ordinates can
be done as follows:

Definition 5 The mapping f :A — R is exponential P —convex on the co-ordinates on A, if
the following inequality holds,

f(ta+(1—t)b,sc+(1—s)d)§f(a’C) f(a,d) f(b,c) f(b,d)

pe(a+o) pe(ard) " galbie) T qalbed)

forall (a,c),(a,d) (b,c)(b,d)eA acR and t,s€[0,]]

Lemma 2 A function f :A — R will be called exponential P— function on the co-ordinates
on A, if the partial mappings f,:[a,b] >R , f (u)=e”f(u,y) and f, :[c,d]>R ,
f, (V) =e”f(x,v) are exponential P —function on the co-ordinates on A, where defined for
all y € [c,d] and x € [a, b].
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Proof. From the definition of partial mapping f,, we can write

f (v, + (1_t)vz) =e”f(xtv, +(1—t)\/2)
= e f (tx+ (1-t)X, v, + (1—t)v,)
< e"‘x[ f(x,v,) N f(X,Vz)}

ea(x+v1) eoc(x-*—vz)
_foow) |, Fixw)

e™ g2

_H0w) | fw)

g™ e™2

Similarly,
f,(tu, +(@—th,) =e” f (tu, +(L—t),, y)
=e” f (tu, + (1 —t)u,, ty + (1-1)y)
Sew{f(ul,y)+ f(uz,y)}

eo:(u1+y) eoc(u2+y)
_fuy)  fu,.y)
e™ e™2
— fy(ul) + fy(UZ) .
e e™2
Proof is completed.

oty

Theorem 8 Let f :A=[a,b]xc,d]— R be partial differentiable mapping on A =[a,b]xc,d]
and f eL(A), aaeR. If T isexponential P—function on the co-ordinates on A, then the

following inequality holds;
1 b pd f(a,c) f(a,d) f(b,c) f(b,d)
—LL f(x, y)dxdy< pa(arc) go(ard) + e (b+0) ge(brd)

(b—a)d—c)

Proof. By the definition of the exponential P —function on the co-ordinates on A, we can
write

f(ac) f(ad) f(bc) f(bd)
flta+ (-t sc+(1-9)d)< =G5+ G +mepm * gt

By integrating both sides of the above inequality with respect to t,s on [0,1]*, we have

101 11 f(a,c) f(ad) f(b,c) f(b,d)
Jojof(ta+(1—t)b,sc+(1—s)d)dtds£UO a0 T e g0 T et dtds
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By computing the above integrals, we obtain the desired result.

Theorem 9 Let f :A=[a,b]xc,d]— R be partial differentiable mapping on A =[a,b]xc,d]
and f eL(A), aeR If |f| is exponential P —function on the co-ordinates on A then the
following inequality holds;

_ f(a,c)| |f(ad)| |f(o,c)| |f(b,d)
‘(b a)(d — I I f(X y)dXdy{ _I a(a+c) |+| eoz(a+d) |+| ea(b+c) |+| ea(b+d) I

Proof. By the definition of the exponential P —function on the co-ordinates on A, we can
write

f (ta+ (1—t)b,sc+(1-s)d)

f(a,c) f(ad) f(bc) f(b,d)
= pu(a+0) + ge(ard) + ge(b+o) + gu(b+d)

The absolute value property is used in integral and by integrating both sides of the above
inequality with respect to t,s on [0,1]° , we can write

‘ I ta+(1—t)b,sc+(1—s)d)dtds{
”1|f(a ©), fad), fbe) f, d)|dtd

| ea(a+c) a(a+d) ea(b+c) ea(b+d) |

By the triangle inequality for integrals
1 el
‘ [ ta+(l—t)b,sc+(1—s)d)dtds{
f(ac) c) f(a,d)
<[} s [ILES

a(a+d)
[rjte

a(b+c)

dtds

dtds.

(b+d)

dtds+ ”‘f(b d)

If we apply the Holder’s inequality to the right-hand side of the inequality, we get

‘WJ [T y)dxd%
(oo | 28 s
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Uol Joldtds) dtdle
(o {10 s
Uol Joldtds): i 2(23)) dtd Jl

By computing the above integrals, we obtain the desired result.

o |+~
=

f(a,d
.[:.[0 e"(‘?‘-“d ))

[N

Theorem 10 Let f:A=[a,b]xc,d]—>R be partial differentiable mapping on
A=[a,b]xc,d] and f eL(A), aeR. If |f| is exponential P—function on the co-ordinates

on A, p,q >1,£+1 =1, then the following inequality holds;
P q

‘W [['fex y)dxdy{
Uf(a O [f@ad) [fbo) |f(b,d)|q}
*p'q

|ea(a+c) | | ea(a+d) | |ea(b+c) | | ea(b+d) |

Proof. By the definition of the exponential P —function on the co-ordinates on A, we can
write

f (ta+ (1—-t)b,sc+(1-s)d)

< f(a,c) f(a,d)+ f(b,c) f(b,d)

- eoz(a+c) eoz(a+d) eoz(b+c) eoz(b+d) )

If the absolute value property is used in integral and by integrating both sides of the above
inequality with respect to t,s on [0,1]* , we can write
1 el
‘ [ ta+(1—t)b,sc+(1—s)d)dtds{
”1| f(a, c) f(a,d) N f(b,c)+ f(b’d)|dtds

| ea(a+c) a(a+d) ea(b+c) ea(b+d) |

By the triangle inequality for integrals

‘ [[[[f(ta+ (@-tb,sc+ (1- s)d)dtds(
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< [ o H\“&?dws
LIS s [0 Do

If we apply the Young’s inequality to the right-hand side of the inequality, we get

‘W j j f(x, y)dxdy{
101 1 f
<2 [fnee)o 2 11 e
I f(a,d

U jdtds) . L[ Eim? J
1/pap 1 1 f (b,

+B(J-0Ldtdsj a Ioj §(b+f)) j
o3 L) | 0 o

By computing the above mtegrals, we obtain the desired result.

Proposition 1 If f,g:A— R are two exponential P —function on the co-ordinates on A,
then f + g are exponential P —convex functions on the co-ordinates on A.

Proof. By the definition of the exponential P —function on the co-ordinates on A, we can
write

f (ta+(1-t)b,sc+(1-s)d )+ g(ta+(1-t)b,sc+(1-s)d)
s( flac) g(a,c)}{ fad) g(a,d)j

ea(a+c) ea(a+c) ea(a+d) ea(a+d)

(f(b,c) N g(b,c)j+[f(b,d) N g(b,d)]

ea(b+c) ea(b+c) ea(b+d) ea(b+d) :
Namely,
(f +g)ta+(1-t)b,sc+(1-s)d)

_(f+a)ac) (f+g)ad) (f+g)be) (f+g)b.d)
ea(a+c) ea(a+d) ea(b+c) ea(b+d) '

Therefore (f+g) is exponential p-function on the co-ordinates on A.

Proposition 2 If f:A— R is exponential p-function on the co-ordinates on A and k>0
then kf is exponential P —function on the co-ordinates on A.
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Proof. By the definition of the exponential P —function on the co-ordinates on A, we can
write
f (ta+ (1—t)b,sc+(1-s)d)

fa,c) f(ad) f(bc) f(bd)
= gu(aro) + gu(a+d) + ga(b+o) + gu(brd)

If both sides are multiplied by k , we have,

(kf Yta+ (1-t)b,sc+(1-s)d)
_ (kf)a,c) (kf)a,d) (kf)b.c) (kf)b.d)

= gaar) po(a+d) ge(b+c) e (b+d)

Therefore (kf) is exponential P —function on the co-ordinates on A .

RELATED RESULTS FOR EXPONENTIALLY P-FUNCTIONS ON THE CO-
ORDINATES

Theorem 11 Let f:AcR? —R be a partial differentiable mapping on A:=[a,b]x[c,d] in
2

R* with a<b and c<d.If % is a exponentially P-function on the co-ordinates on A,
S

then one has the inequality:

2 2 2 2
of (a,c% of (a,d)1 of (b,c){ ot (b,d){
< (b-a)d—c) ||otos otos otos otos

ea0) + oe(ard) + e+0) + RzC

where
- - f(a,c)+f(a,d)1f(b,c)+f(b,d)+(b a)l(d C)ﬁ f(x, y)dxdy
_%{bla Tr(x,c)+ f(x, d)]dx+—J' [f(a,y)+ f(b, Y)]dY}-

Proof. From Lemma 2, we have
(b-a)d-c) a)(d —¢)
[E|<—L—= J'J'| (1-2t)1- 23)| ta+ (1—t)o,sc+(1—s)d )dtds.

f is co-ordinated exponentially P-function on A , then one has:
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b—a)d-c
CRUIL
2 2
2tafs (a’c)1 Ztafs (a’d)(
1 el
X Io.[0|(1_ Zt)(l_ 28) ea(a+c) ea(a+d)

2 2
o] [ (o0
otos otos
+ oe®+0) + oe®+0) dtds.

By calculating the integral in above inequality, we have

E|
2 2 2 2
A 0% f (a’c)1 o2 f (a,d% o2 f (b,c)( o2 f (b’d){
_(b-a)d —c)x otos otos otos , lotes
- 16 eo:(a+c) eoz(a+d) eoz(b+c) ea(b+d) :

Theorem 12 Let f:AcR?*—R be a partial differentiable mapping on A:=[a,b]x[c,d] in

R? with a<b and c<d.If 0
otos

2 ¢ |

A, p,q> 1,£+1 =1 then one has the inequalities:
P q

IS a exponentially P-function on the co-ordinates on

) q ) q 2 a 2 d
(b 0% f (a1c o°f (a,d o f (b, o f (b,d
~a)d—c)| |otos otos otos otos
Bl g | T e g g
p

where

f(a,c)+ f(a,d)+ f(b,c)+ f(b,d)

E=

4

! (b—a)l(d _C)E [ (x, y)dxdy

%{é :[f(x,c)+ f(x,d)]dx+ﬁ.[:[f(a, y)+ (b, y)]dy}—.

Proof. From Lemma 2, we have
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|E|£(b_a)4(d_c)

<[ ] 2t)- 2s)|

ta+ (@—t)b,sc+(1—s)d )1dtds.
If we apply the Holder’s inequality to the right-hand side of the inequality, we get

e =2l =)

1
a q
U“l 2t)1-2s)" dtds (” ~——(ta+(1—t),sc+(1- s)d* dtds}
f is co-ordinated exponentially P-function on A , then one has:

o2 f Y2t ‘
o ~—(a,c ~—(a,d
a)d - c 1| 0tos otos
(p +1 J. J‘ eqa(a+c) + eqa(a+d)

<!

hence, it follows that

a
< _(b-a)d- c) otos N . )
(p +1) eQa(a+c) eQa(a+d) eqa(b+c) eqoc(b+d)

Theorem 13 Let f:AcR?*—R be a partial differentiable mapping on A:=[a,b]x[c,d] in

2 ¢ |

R? with a<b and c<d.If ot
otos

is a exponentially P-function on the co-ordinates on

A, p,q> 1,£+1 =1 then one has the inequalities:
P q
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where
E= f(a,c)+f(a,d)zf(b,c)+f(b,d) = a)l(d C)m f(x, y)dxdy
1[b—1a [f(x,c)+ f(x, d)]dx+—j [f(a,y)+ f(b, y)]dy}

Proof. From Lemma 2, we have

|E|SW

<[ ] 2t)- 2s)|

ta+ (@—-t)b,sc+(1- s)d){dtds.

If we apply the Young’s inequality to the right-hand side of the inequality, we get

SRS VIR

[ U_Hl 2t)1-2s) dtds {” (ta+(1-t),sc+(1- S)d)rdtdsﬂ

f is co-ordinated exponentially P-function on A , then one has:

q

2 2
) |2 (@)
gel-ald-ol 1 .1 [[as otos
4 p(p+1)° g| o g () ‘

ea(a+c) ‘

q q

2 2
6teaS(b+c) + otos dtds

ea(b+d) ‘

hence, it follows that
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2 q 2 q 2 q 2 q
af(a’cﬁ af(a'd* 81:(b,cﬁ af(b'd*

(b—a)d-c)] 1 otos otos otos otos
|E| < 4 p(p+1)2 + qeqa(a+c) + qeqa(a+d) + qeqa(b+c) + qeqa(b+d)
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ABSTRACT

In the present note, several novel estimations of Simpson’s type have been presented by using
an integral identity that includes Atangana-Baleanu fractional integral operators for quasi-
convex functions. We have used the basic definitions, some classical inequalities and
elementary analysis methods.

INTRODUCTION

Suppose f :[a,b] >R is a four times continuously differentiable mapping on (a,b) and
H f (4)H = sup‘ f@ (x)‘ < 0. The following inequality

1 f(a)+ f (b) a+h
A (75 L

< a0 -ay

2 2880‘

is well known in the literature as Simpson’s inequality.
For some recent results related to Simpson’s inequality see [1]-[5] and [7].

The function f :[a,b]—R, is said to be convex, if we have

f(tx+(1—t)y)<tf(x)+@-t)f(y)

forall x,y e[a,b] and t €[0,1]
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Convex functions play an important role in many branches of mathematics and the other sciences as
engineering, economics and optimization theory. Several extensions, generalizations and refinements
have been presented by researchers.

Definition 1. ([6]) A function f :[0,b]— (0,) is said to be m—logarithmically convex if the
inequality

f (b mL-t)y)<[F GO LF (V)™ (LD

holds for all x,y €[0,b], me (0,1],and t € 0,1].
Obviously, if we set m=1 in Definition 1, then f is just the ordinary logarithmically convex
function on [0,b].

Definition 2. ([6]) A function f :[0,b] — (0,0) is said to be (a, m)— logarithmically convex if
£ (tx+ m—t)y) < [f O] [f (y)]=) (12)
holds for all x,y €0,b], (@, m)e(0,1]x(0,1}, and t € 0,1].

Clearly, when taking « =1 in Definition 2, then f becomes the standard m — logarithmically convex
function on [0,b].

Definition 3. (Atangana-Baleanu Fractional Derivative) f e L' (¢,0), <o, £€[01],
then the fractional derivative can be defined as

o0t (K)ZTE—Z)I f'(k)E, _—g(a:z); _dk
i1 () =3 P (0)E _—e(f[_'?; 2

where B(¢) is normalization function and B(¢)>0, B(0)=B(1)=1 (Abdeljawad & Baleanu,
2017).
Definition 4. (Atangana-Baleunu Fractional Integral Operator) f e L1(¢, a)) p<w,

gE [0,1] , the associated fractional integral operator can be given as:

A:',f{f(’f)}:;;)f( ) W
1

1 f (k) == f (x

f(k)(x—k)" dk

+
&
e

)
B

f(k)(k—x)"dk

A Sy
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where B(¢) is normalization function and B(&)>0, B(0)=B(1)=1 (Abdeljawad & Baleanu,
2017).

NEW RESULTS

Lemma 1. Let f: [a,b] — R be a differentiable function on (a. b) with @ < b and f' € L[a, b].
Then, we have the following identity for Atangana-Baleanu fractional integral operators:

Lo B-a)f +257 0 - 9r()
3.25(b—a)B(&)r(¥)

b—a)t + 251 (1 - 8r(#) (a - b)

(
(fl@)+f®) + = =5 s 2

S T+ o)
T AT SO,
Z_Efﬂﬂmr(f)u 3 f'( > bt a)dr

iy SRR

where ¢ € (0,1],t € [0,1], B(¢) is the normalization function.

Proof. Integration by parts, we have

a(1—8)f =% 1+t 1—t
I1:J. { } fr( b+ ﬂ)fit
o

3 2 2

B 4 a+b 28+2f b - 2
__E{b—a]f( 5 )+3{b—a}‘r+1 $'[:-'.I—'{:,j lf{u}du_—'j(b—ajf{b]
2§+l¢- b a_-l-b £-1
+3{b—a]f+_1f$(1£_ 2 ) fu)du
and
ot -20-09f 1+ 1t
I:—L 3 f( 3 a+ b)dt

B 2 24 (Trath 4 a+b
__3{b—a]f(“j+3{b—a]€+1L (5 f(ujdu_E{b—a}f( )

athb

2 j * (u— @) fl)du
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(B—a)?

By adding /; and £; and multiplying the both sides — RO

, We get desired results.
Theorem 1. Let f: [a, b] = & pe a differentiable function on (@, b) with @ < b and f' € L[a, b].

If [f'] is a convex function, we have the following inequality for Atangana-Baleanu fractional integral
operators:

(b—a) + 251 - Hr()

(
3.25(b— a)B(E)T(&) [:f[ﬂ]+f[b])+

b—a) +25 11— I (&) (a+ b)
3.272(b — a)B(OI(2) 2

2
“30=a [ﬁrff(m + fwrffbf(a)]
1 A;; at+ b f_lEE a+b
_3[b—a][ ‘rbf( 2 )+ ol f( 2 )]
r 1 E+1 1 £+1
_al1- 12? 5 lz? i3
(b—a)f 25+1 28 +1 , ,
=B 3T D) (If' (@) + £ ()]

where ¢ € (0,1],B(_f) is the normalization function.

Proof. From the integral identity given in Lemma 1 and by using the properties of modulus, we have

1 o ([ P2 I (s 5 )
_|_J: tf_zgl_tje“f“(lgta—i-l;tb)‘dt)

By using convexity of |f'l, we get

_af 1 _oonE L F _
lniﬁgﬁﬁﬁﬁﬁj = ? (SR ®+ I @1 e
Hef —2(1—- 0% 1+t -t
+J; 3 ( 2 |f (ﬂ]H'Tlf [b]|)dt)
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R

-

B
2

_ (-a)f f (3(1—:)5—:5

1+t
= 2 BOrE) 3 )( If' {b‘j|+—|f {ﬂfj”)

. f (t‘f -2(1—- t]g)(l +tlf )l +—|f (a]l)

ra
e b

(5]
e

o1 o
o

-

L
£y

J (2(1— ¥ — t‘r)(l +t|f @I +—|f {b]I)

[3=]

3

+ f(tg‘zil‘tﬁ)(”ﬂft 1+ 211 ae

2
;5

ka

1
2E41
By computing the above integral, we obtain

1 F+1 1 F+1
: 41 1-— 12? —2 12? +3
(b—a) 2T+1 2T +1 \ :
U NG T (f' (@)l + If'(p)D)

Theorem 2. Let f: [a, b] = & pe a differentiable function on (a. b) with @ < b and f' € L[a, b].

If [f'I? is a convex function, we have the following inequality for Atangana-Baleanu fractional
integral operators:
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(b—a)f 2841 2F +1
27 1BEOrE | - 36+ 1)

Il <

(i@

+%|f'(aﬁlq)$+ Cirr@ie +5 17 @)’

wherep t+ g™t =1 ¢ € (0,1],9 > 1 and B(&) is the normalization function.

Proof. By using the identity that is given Lemma 1, we have

d ﬂ_szfajzg:(ﬂ(f miﬁ_t{ [ (e +ga)
+J: H_zil—tjf“fi(l‘:ra_l_1;rb)‘dt)

By applying Holder inequality, we have

1

([ ([ e 5 o)

By using convexity of |f'|?, we obtain

1 1

Gb-a)f |((2a-0 =" Vrtate 1=t e
7] EW (J; 3 fit) (J; (T|f(b]| +T|f (a)l )dt)
tf —2(1-1)f ; :

el
dt)

( j 1(%|f*(a}|q T If'(leq)dt)E

(I

Now using the fact that |47 < |p. A|

3
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1

dr)}; ( f 1 (1@l + =1 @l )dr)E

1

§_ —¢ Pl — %
e st o

2(1—0)f —¢f
' 3

(b-a)f '
s | P

(I

By calculating the integrals that is in the above inequalities, we get desired result.

3

Theorem 3. Let f: [a, b] = R be a differentiable function on (@, b) with @ < b and ' € L[a, b].
If If'I7 is a convex function, we have the following inequality for Atangana-Baleanu fractional
integral operators:

1 F+1 1 E+1 q
'3 E
—4(1-— lz — 12 +3
(b—a)f 2841 2841 (
Il < K, |f (B)]2
RTINS 3(¢+1) talF @)
1 1

+ KA @I + K, IF @I + Klf ()17

and
1 1 F+1 1 F+1 1 E+2
'3 '3 '3 E
4|1+ 12 1-— 12 -2 12 +3 1-2 13
X 2f 41 2f41 2811 N 2f 41
! 6(8+1) 6( +2)
1 E+2
E
1—2[1— 12
N 2T 41
3(6+1)(E+2)
1 £tz 1 E+2 1 E+1
—a1-— 12? +2 12? +1 1-2 12?
o - 2T +1 2E 41 2P 41
. 6(¢+ 2) 6(8+1)

where & € (0,1], g = 1 and B(£) is the normalization function.

Proof. By Lemma 1, we get
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lIlE%Ulzﬂ—f—tf ‘f'(l:tl}+l;ta’)‘dt
0
+J: r€_221—t)€“fi(1‘-2|-ta+1;tb)‘dt)

By applying power mean inequality, we get

1
(b—a)t La(a—)f =¢8] \Tof a0 —nf —¢f| | 1+t
lfliz“iﬂ{f}r(ﬂ (_L 3 dt) (_L 3 ‘f( 2 b
1
+1;ta)th)q
1
Hef —201=0f] \ a9/ =201 -0)f L+t
(/. «) (G
+£b) e é
2
By using convexity of |f'l?, we obtain
1
(b - a)f Haa-of —¢f] \afta-0f —¢f| 1+t
lflizﬂiﬂ{{}r(f} (_L 3 dt) (_L 3 ( 2 FB)If
+T|f{a]| )fit
tf —2(1-1)F

tf —2(1-0)f g/ 14+t
3 dt) UD 3 ( 2 IF(@)]

17
q

(I

1—1t ) .
+T|f (b)l )fit)

By computing the above integrals, the proof is completed.

Theorem 4. Let f: [a, b] — R be a differentiable function on (a. b) with @ < b and f' € L[a, b].
If 1’17 is a convex function, we have the following inequality for Atangana-Baleanu fractional
integral operators:
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1 Fr1 n £+l
6— 4 13? —-8|1-— 12?
1] < (b—a)f 241 2841 +|J"’(ﬂ]l“+If'{bjl‘I
~ 28MB(AI(@) 3(8+1) q

wherep ™+ g7t =1, £ € (0,1],q > 1 and B(£) is the normalization function.

Proof. By using identity that is given in Lemma 1, we get

b _szfﬂ_(;]:(f] U = ff — (e +ga)
+J;1 H_zil_t}g“f'(l‘:ta+l;tb)‘dt)

By using the Young inequality, we obtain

_aE _LE P _
ORI | S s il ) Y
~ 28BN J, p q
F_20-0ff 4, PN
+ {_b_“]E ' ‘t 3 : ‘+f(1;ta+13tb)‘ dt
25H1B(E)T(8) J, p

By using convexity of [f'|7, we have

]
2{1—r)f—rf| 1+t

11—t
- 3 Lt o+ 1L f (@))e
] EW . ’ + 7 dt
Fo20-0)f) _
L G-t ==  Br@e sz tironr)
281B(Ar () J, p q

Now using the fact that |47 = |p. A|

Proceedings Book of ICMRS 2022 118



5" INTERNATIONAL CONFERENCE
ON MATHEMATICAL AND RELATED SCIENCES
ICMRS 2022

27-30 OCTOBER, 2022

—AF _4f
e @-oF o th%wwu%wmw N
~281B(Or©) J, P q
f_201-1)f _
L G-af p. =250 \+%|f*(ajlﬁ+%lf*(bw N
281B(O(2) J, p q

By a simple computation, we have the desired result.
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ABSTRACT

In this presentation, we recalled the notion of quasi-convex functions which have become a
very popular topic in recent years and have been studied by many mathematicians. First, we
have given the definiton of exponentially quasi-convex functions on the co-ordinates as a new
concept. Then, we have proved some new Hermite-Hadamard type integral inequalities via
exponentially quasi-convex functions on the coordinates.

INTRODUCTION

In [1], Dragomir mentions an expansion of the concept of convex function, which is used in
many inequalities in the field of inequality theory and has applications in different fields of
mathematics, especially convex programming.

Definition 1 Let us consider the bidimensional interval A=[a,b]xc,d] in R? with a<b,
c<d. Afunction f:A— R will be called convex on the co-ordinates if the partial mappings
f,:[ab] >R, f,(u)=f(uy) and f, :[c,d] >R, f(v)=f(xv) are convex where defined
for all y € [c,d] and x € [a, b] Recall that the mapping f:A —>R is convex on A if the

following inequality holds,
fF(AX+(1-)z, Ay +(1-A)W) < Af (X, y)+ (1-2) T (z,w)

forall (x,y),(z,w)e A and 41€0,1].

Expressing convex functions in coordinates brought up the question that it is possible for
Hermite-Hadamard inequality to expand into coordinates. The answer to this motivating
question has been found in Dragomir’s paper (see [1]) and has taken its place in the literature

as the expansion of Hermite-Hadamard inequality to a rectangle from the plane R?. stated
below.
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Theorem 1 Suppose that f : A =[a,b]xc,d]— R is convex on the co-ordinates on A. Then
one has the inequalities;

a+b c+d
f[T’Tj (1)

1l 1 c+d 1 d.(a+b
<= — f| x d f y(d
z{b—aa (X 2 JHd—cL ( 2 yj y}
1 b ed
<—= || f(x y)dxd
TR ESL U
1 1

s-[— "F (x,C)dX+ —
4| (b-a) (b-a)

1 d d
+mjcf(a,y)dy+(d_c)jcf(b,y)dy}

_f@o)+ fad)+f(b,o)+ f(b,d)
< y .

[ f (x dyx

The above inequalities are sharp.
Numerous variants of this inequality were obtained for convexity and other types of convex
functions in coordinates (See the papers [2-11]).

EXPONENTIALLY QUASI-CONVEX FUNCTIONS ON THE CO-ORDINATES

Definition 2 Let us consider the bidimensional interval A =[a,b]xc,d] in R? with a<b and
c<d. The mapping f:A — R is exponential Quasi-convex function on the co-ordinates on
A, if the following inequality holds,

f(tx+(1—t)z,ty+(1-t)w)< max{ f(x,y) f(z,w)}

ea(x+y) ! ea(z+w)

forall (x,y),(z,w) €A, eR and te[0,1]

An equivalent definition of the exponential Quasi-convex function definition in co-ordinates
can be done as follows:

Definition 3 The mapping f : A — R is exponential Quasi-convex on the co-ordinates on A,
if the following inequality holds,

f(ta+(1—t)b,sc+(l—s)d)gmax{f(a’c) f(a,d) f(b,c) f(b,d)}.

pe(are) ' ga(ard) M ga(bre) ' ga(brd)

forall (a,c),(a,d) (b,c)(b,d)eA acR and t,s<[0,]]
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Lemma 1 A function f :A — R will be called exponential Quasi-convex function on the co-
ordinates on A, if the partial mappings f, :[ab]>R , f (u)=e”f(u,y) and
f,:[c,d] >R , f (v)=e™f(x,v) are exponential Quasi-convex function on the co-
ordinates on A, where defined for all y ec,d] and x €a,b].

Proof. From the definition of partial mapping f,, we can write
f v, +(1L—t),) =e™f (X tv, +(1—-t),)

= e f (tx+ (1— )X, tv; + (1—t),)

Sem{max {f(x,vl) f(x,vz)H

a(x+v) ! eoz(><+v2)

e
:mw{ﬂgwquyﬁ}
e! e ?
:max{ fngl), fx(Vz)}
e™ ™2

Similarly,
f,(tu, +@—th,) =e” f (tu, +(L—t),, y)

= e f (tu, + (1—t)u,, ty + (1-1)y)

Sea{mx{f(ul,y) f(uz,y)H

a(up+y) ! eoz(u2+y)

e
:mﬂ{ﬂﬁd[waW}
e 1 eauz
- max{—fygjl) ,—fySJJZ)}.
et g 2

Proof is completed.

Theorem 2 Let f :A=[a,b]xc,d]— R be partial differentiable mapping on A =[a,b]xc,d]
and f eL(A), aeR. If f isexponential Quasi-convex function on the co-ordinates on A,
then the following inequality holds;

1 b pd f(a,c) f(a,d) f(b,c) f(b,d)
(b—a)(d —C)L'[? F(x, y)dxdy< max{ pe(are) ' ga(ard) ' ga(br) ' ga(brd) [
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Proof. By the definition of the exponential Quasi-convex functions on the co-ordinates on A,
we can write

pe(are) ' ga(ard) M ga(bre) ' ga(brd)

f(ta+(1—t)b,sc+(1—s)d)gmax{f(a’c) f(a,d) f(b,c) f(b,d)}.

By integrating both sides of the above inequality with respect to t,s on [0,1]?, we have

[\ (ta+ (1-0b, sc+ (1-5)d )dtds

<” {f(ac) f(a,d) f(bc) f(bd)}dtds‘

a(arc) ' ga(ard) ' galbro) ' ga(bed)

By computing the above integrals, we obtain the desired result.

Theorem 3 Let f :A=[a,b]xc,d]— R be partial differentiable mapping on A =[a,b]xc,d]
and f eL(A),xeR.If |f| is exponential Quasi-convex function on the co-ordinates on A,

p,q> 1,£+E =1, then the following inequality holds;
P q

PR ax{|f(ac)| 1f(a,d) [fb.c)f |fb.d)f }
q

p eaq(a+c) ! eoeq(a+d) ! eaq(b+c) ! eaq(b+d)

Proof. By the definition of the exponential Quasi-convex functions on the co-ordinates on A,
we can write

f (ta+(1-t)b,sc+(1-s)d)
<max{:§2’+g) f(a,d) f(b,c) f(b,d)}_

! eoz(a+d) ! eoz(b+c) ! eoc(b+d)

If the absolute value property is used in integral and by integrating both sides of the above
inequality with respect to t,s on [0,1]* , we can write

‘ jol jjf(ta+(1—t)b,sc+(1—s)d)dtds(

dtds

{f(ac) f(a,d) f(bc) f(bd)}

a(a+c) ! eoz(a+d) ! eoz(b+c) ' eoz(b+d)

<” ax{|f(a )| | f(a,d)| | f(b,c)||f (b, d)|}dtds

| a(a+c) | | ea(a+d) | |ea(b+c) | | a(b+d) |
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If we apply the Young’s inequality to the right-hand side of the inequality, we get

il oo

1/pp 1 o f(a,0)|| f(a,d)| | (b,c)|| f (b,d)|
< E(J'Ojodtdsj+a[J'0I:‘max{| ea(a+c) |’| ea(a+d) |’| eoz(bJrc) |’| ea(b+d) |

By computing the above integrals, we obtain the desired result.

q
dtds}.

Proposition 1 If f:A — R is exponential Quasi-convex functions on the co-ordinates on A
and k >0 then kf is exponential Quasi-convex functions on the co-ordinates on A.

Proof. By the definition of the exponential Quasi-convex functions on the co-ordinates on A,
we can write

f (ta+ (1-t)b,sc+(1-s)d)
<max{f(a,c) f(a,d) f(b,c) f(b,d)}_

= pe(are) ' ga(ard) M ga(bro) ' gabrd)

If both sides are multiplied by k, we have,
(kf Yta+ (1-t)b,sc+(1-s)d)

kf(a,c) kf(a,d) kf(b,c) kf(b,d)
Smax{ pe(ate) ' gaard) " ga(bre) T galbid) (0

Therefore (kf) is exponential Quasi-convex functions on the co-ordinates on A.
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ABSTRACT

In this paper, we establish some new Hermite-Hadamard-type inequalities for s-convex
functions in the second sense via the proportional Caputo-hybrid operators. Holder and
Young’s inequalities were used to prove the new results obtained. In addition, it is seen that
the results obtained are reduced to the results obtained previously in the literature.

1. INTRODUCTION
In this section, we present the preliminaries and definitions.

Definition 1 [1] A function f :[0,00) > R, is said to be s -convex in the second sense if

f(ta+ (1-t)b)<t*f(a)+(1-t) f (b)
forall a,be[0,x), t0,1] and for some fixed s e (0,1].

Besides, the concept of convex function has many useful properties, it also forms the basis of
the Hermite-Hadamard (HH) inequality, one of the well-known fundamental and famous
inequalities in the literature. The HH inequality, which has the potential to produce lower and
upper bounds to the mean value of a convex function in the Cauchy sense, has inspired many
researchers in mathematical analysis with its applications. The statement of this inequality is
as follows.

If amapping f:1 cR—>R isaconvex functionon | and a,bel, a<b, then

a+b

1 b f(a)+ f(b)
f(T)smLf(x)dxsf.
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We recommend that readers refer to papers [2, 3, 4, 5, 6] for versions of the HH inequality for
different kinds of convex functions, its modification to co-ordinates, and its expansions with
the help of various new fractional integral operators.

The proportional Caputo hybrid operator, which was put forward as a non-local and singular
operator containing both derivative and integral operator parts in its definition, and which is a
simple linear combination of the Riemann-Liouville integral and the Caputo derivative
operators, is defined as follows (see [7]).

Definition 3 Let f:1 cR* —R be a differentiable function on 1°. Also let f,f € L, are
functions on 1. Then, the proportional Caputo-hybrid operator may be defined as

OCPC D f (t) = F(l;—a)j.(Kl(a)f (Z')+ Ko(a)f ' (z’)Xt —z-)_“dz-

0
where « €[0,1] and K, and K, are functions satisfying

lim Ko(@)=0; lim Ko(@)=1 K,(e)#0, ae(0,1] (1.1)
|in1K1(a)=0; limK,(@)=1% K(a)#0, acl01) (1.2)

Remark 1 (See [7])We originally wrote this paper using the specific case

K,(a,t)= at™
K,(a,t)= (1-a)t”

which is afforded special attention in [8].
In [9], Giirbiiz et al. established following identity for convex functions:

Lemma 1 Let f:1 cR" —>R be a twice differentiable function on 1°. Also let f and f
are L' functions on | . Then, the following equality holds:

(@)t £t (-t + K)o ta+ (1 e

Kyl £ (¢ (At Kye)Jo-e 1 bx+ @t

__Kia)f(a)+Ky(a)f (a) _Kyla)f (x)+Ky(a)f (x)
X—a b—x

CPC ya CPC o
+F(2—a{a D, 1E(X)+ x Dy f(b)j

(X _ a)Z—a (b N X)Zfa
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where a€[0,1] a<x<b and K, and K, are functions satisfing the conditions (1.1) and
(1.2).
The main purpose of this article is to prove new integral inequalities for the class of s-convex

functions that are differentiable with the help of proportional-Caputo hybrid operators and the
identity in [9] found in the literature.

2. MAIN RESULTS

Theorem 1 Let f:1 cR" —R be a twice differentiable function on 1°. Also let f,f € L,

are functionson | .If f and f" are s-convex in the second sense on I, then the following
inequality holds:

‘_ Ky(@)f (@)+Ky(@)f (a) _ Kif@)f (x)+ Ky(a)f (x)

X—a b—x

e —a{ D), )J

< Kl(aj f (aj + Ko(aj f (a)|

2+S—a
4Ky (@) f o)+ Kyl (bX{ﬁ(Z—a,s+l)+
(@) £ () + K] " (x))B@-a,s+1)

)
2+S—«a

where o e[O,l], se€(0,1] a<x<b and K, and K, are functions satisfying the conditions
(1.1) and (1.2).

Proof. From Lemma 1 and using properties of absolute value, we have

‘_ Ky(@)f (@)+Ky(@)f (a)  Kif@)f (x)+Ky(a)f (x)

X—a b—x

o] DL D)
e {<x—a>2-“ =i
fel

(ta+(1—t)x )(dt
e

+K,(a )jt““f (tx+ (- t)b)dt

0

(ta+(1—t)x )(dt
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afee

As f and f  are s-convex functions on | , we can write

‘_ Ky(@)f (a)+Ky(@)f (a) _ Kif@)f (x)+ Kq(a)f (%)

(tx+(1-t)o)dt. (2.1)

X—a b—x

+r<2_a{s;;5>§;_<;>+f{;?i;ff)J

I (e
U1 (x)
(bX)dt
IO}
f (0] + Kol x>(l-1t+tm)dt

0

(@) + Ky(a) f° (a)|) fsodt

(K] 0]+ K] O]ttt

The proof is completed by making the necessary calculations.

p—\

—
e
Q
—_

n_.._.o
—~+
e
Q
T+
»
—
—

-+

-
'?'o
L
Q
7 -+
w

—

o'—.r—\o
~—~+
e
Q
-
»

= (Kl(a

S N

+ (K1 (a

Theorem 2 Let f:1 cR" —R be a twice differentiable function on 1°. Also let f,f € L,

are functions on 1. If ‘f"q and ‘f"‘q are s-convex in the second sense on |, then the
following inequality holds:

‘_ Ky(@)f (a)+Kq(@)f (a) _ Kif@)f (x)+ Kq(a)f (%)

X—a b—x

CPC o CPC o
+F(2_a{a Dx f(X)+ X Db f(b)j

(x-af™  (b—x]"

< - 1[K1(a>(\f'(a)|q+\f'(xf)q

(1-a)p+1)p(s+1)°
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)Uf N+ (x )l
)Uf "+ (b ]l
)Uf x|+ (b )]

where ae[o,l), se(0,1], a<x<b, p,q>1 with i+1:1 and K, and K, are functions
P q
satisfying the conditions (1.1) and (1.2).

Proof. By applying Hélder’s inequality to (2.1), we get

‘_ Ki(@)f (a)+Kq(@)f (a) _ Kif@)f (x)+ Kq(a)f (%)

X—a b—x

wrie-a 2L 0D

1

1
<K,(a jt(l‘“)Pdt p hf'(taJr(l—t)x)(thJq

0 0

1
+K,(a jt(l‘“)Pdt ﬁf"(ta+(1—t)x)|“dtjq

0 0

+K, (o Gt““)pdtf@ f (tx+(1—t)b)(qo|tJq

1

+K,(a @t(“‘)pdtfﬁ‘f" (tx+(1—t)b)(qo|tJq .

0

Using s -convexity of ‘f"q and ‘f"‘q , we have

X—a b—x

orte-a 2100, 02 0)

‘_ Ky(@)f (a)+Kq(@)f (a) _ Kifa@)f (x)+ Kq(a)f (%)
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1

f'(qu]dtjq

£ @) + -ty

1 (s
e ol

£ () + -ty

f'(b]q)dtf
+ Ko(a)U[ts £ (x) +@-ty f”(b)‘q)dt]; :

0

With simple calculations, we get

‘_ Ky(@)f (@)+Ky(@)f (a)  Kif@)f (x)+Ky(a)f (x)

X—a b—x

CPC o CPC o
+F(2_a{a Dxf(x)+x Dbf(b)J

(x—af™ = (b—x)™

g;l Kl(a{‘fl(a)‘q +‘f'(x)‘QJ
)

Q-

(1-a)p+1)o s+1

S

ok
FoRE™

s+1 s+1

ifleL e

o

s+1

SRILEL

which is the desired result.

Theorem 3 Let f:1 cR" —R be a twice differentiable function on 1°. Also let f,f € L,

are functions on | . If ‘f"q and ‘f"‘q are s-convex in the second sense on |, then the
following inequality holds:

_ Kl(“)f (a)+ Ko(a)f'(a)_ Kl(a)f (X)+ Ko(a)f ‘ (X)

X—a b—x
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CPC a CPC a
2 a{ D, D, f(b)J‘x(Z—a)l_;

(b—x)y™

f'(a)’ N @
2‘+s—)'a+‘f (x) ﬁ(2a,s+1)]
+K0(a{‘2f+£aja+‘f X p2-a, s+1)}

o |

+ Kl(a)(M+\f'(b)(qﬁ(2a,s+1)]

+ KO(Q{‘ZZ iX)'a +‘f )‘ (2a,s+1)}

where ae(O,l], se€(0,1], a<x<b, q=1 and K, and K, are functions satisfying the
conditions (1.1) and (1.2).

Proof. By applying power mean inequality to (2.1), we get

‘_ Ki(@)f (a)+Kq(@)f (a) _ Kif@)f (x)+ Kq(a)f (%)

X—a b—x

CPC o CPC o
+F(2_a{a Dx f(X)+ X Db f(b)J

(x-af™  (b—x]"

tla

f'(ta+(1—t)x)|thJq

+

A
o
—_

K
/¥\
o':.»—‘

T
N

o

—
N——

T
Q|
7~ N\
"
1N
N

—

—+

x

+

=\
|
=
St
o
o
—
o
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Using s -convexity of ‘f"q and ‘f"‘q , we have

X—a b—x

vt 2;:?5;; 0, 2ot

(5 et (e
)Ut”(ﬁf a) +(1-t) ()mdtJq

‘_ Ky(@)f (a)+Ky(@)f (a) _ Kif@)f (x)+ Kq(a)f (x)

() +@-ty|f

0

el
)Ut“‘( (x| +@-ty

Making necessary calculations, we get

‘_ Kl(“)f (a)+ Ko(a)fl(a)_ Kl(a)f (X)+ Ko(a)f ‘ (X)

() + @ty

(qujdth

X—a b—x

+r(z—“)( e L )J

1 Y f'(a)’ ¢
S(Z—aj Kl(a)[z‘Jrs Xa+‘f )| (2—a,s+1)}
+ Ko(a{@ﬂf" (quﬂ(Z—a,s+l)J

+K1(a{‘f'(XX +|f( )(ﬁ(2a,s+1)]

o |
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+Ko(a)[m+\f"(quﬂ(z—a,sﬂ) .

So, the proof is completed.

Theorem 4 Let f:1 cR" —R be a twice differentiable function on 1°. Also let f,f € L,

) A w19 .
are functions on 1| . If ‘f ‘ and ‘f ‘ are s-convex in the second sense on |, then the

following inequality holds:

‘_ Kl(a)f (a)+ Ko(a)f'(a) Kl(a)f (X)+ Ko(a)f ‘ (X)

X—a b—x

m—“{ ( - g)fz(“x . <b - i;(f )j

L AK(@) Ko@), Kyfa) (17 @) +2 ()" 4|1 )"

p’l-a)+p  (s+1)q

+M(\f"(a)|“+z\f"(x)1“+\f"(b1q)

(s+1)q

where «e(0,1] se(0,1], a<x<b, i+1:1, g>1 and K, and K, are functions
P qQ

satisfying (1.1) and (1.2).

p q
Proof. Taking into account the Young inequality as mn < m (2.1), we get
P q

X—a b—x

CPC ha CPC a
+F(2_a{a Dx f(X)+ X Db f(b)j

(X _ a)ZﬂZ (b _ X)Zfa

‘_ Ki(@)f (a)+Kq(@)f (a) _ Kifa@)f (x)+ Kq(a)f (x)

<K,(a _ljt p(l“)dt+1'hf'(ta+(1—t)x]th}
L P% U9

+K, (e ljt p(1—°’>dt+1ﬁ f"(ta+ (1—t)x1th}
L Py a9

+ Kl(a){ij.t p(l‘“)dt+£h f (tx+(1—t)qudt}
P5 a9
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N Ko(a){i fee el L | (tx+(1—t)b)(th}.
p 0 q 0

Using s — convexity of ‘f"q and ‘f"‘q , we have

Ky(@)f (@)+Ky(@)f (a) _ Kifa)f (x)+ Ky(a)f (x)

+FQ—a{a

ER S T
<K,(a ﬁ el @ el o
IV T
+Kl<“: i a+p+ﬂ(tsf -0 0 o
+K0(a: e a+p+%i(t8f f"(bx‘*jdt}

X—a

eDr f(x) | °D; 1 (b)

By making necessary computations, we get

Kl(a)f (a)+ Ko(a)f'(a) Kl(a)f (X)+ Ko(a)f | (X)

|

b—x

+FQ—a{a

X—a

"°Dr1(x) | D! (b)

(x—af *

b—xF *

|

b—x

K o) 1 N f (ajqﬂf'(x)‘q
p’(l—a)+ p (s+1)q
PRy (@) () +[f(ef
p?(l-a)+p (s+1)q
+K(a) = L + f (X)‘q”f'(bxq
p’(l-a)+p (s+1)q
+Ko(a 2 L + f (X)‘qu‘f"(qu
p’(l-a)+ p (s+1)q
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which completes the proof.

Remark 2 Now, let us briefly consider some special case of the main results. In Theorem 1
Theorem 2, Theorem 3 and Theorem 4, if we choose s =1, then the main results are reduced
to Theorem 1, Theorem 2, Theorem 3 and Theorem 4 by Giirbiiz et al. [9].

Remark 3 Several special cases can be considered by choosing the functions Ko(a) and
K,(e) as in Remark 1.
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ABSTRACT

In the paper, we establish some new inequalities for differentiable convex functions, which
are connected with Hermite-Hadamard-Fejer integral inequalities, and we present new
generalized inequalities of trapezoidal type which cover the previously puplished results.

1. INTRODUCTION

Fractional calculus has been appealing to many researchers over the last decades ([4,7]).
Some researchers have found that different fractional derivatives with different singular or
nonsingular kernels need to be identified by real-world problems in different fields of
engineering and science ([8,9]). These different fractional operators are also used in integral
inequalities ([1,5,6]). Thus, fractional calculus plays an important role in the development of
inequality theory. One of the fractional operators obtained in the last years is so-called
Caputo-hybrid operator is given in the following:

Definition 1 (see [2]) Let f :1 cR"™ — R be a differentiable function on 1°. Also let f and
f are L' functions on | . Then, the proportional Caputo-hybrid operator may be defined as

CPC D f ) = ﬁ (K@) (x)+ Ko@) £ ()t —x)“ dx

where o €[0,1] and K, and K, are functions satisfing

lim Ko(e)=0;  limKy(@)=L  K(a)#0, ae(0,1} (1.1)
limKy(@)=1  limK(a)=0;  K,(a)#0, «a<[0,1) (1.2)

Giirbiiz (et. al) obtained the following lemma which we will use to prove some of our results:

Lemma 1 (see [5]) Let f : 1 =R be a twice differentiable function on 1°. Also let f and f
are L' functions on | . Then the following equality holds:
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Ky (@) £ (ta+ - t)x)dt+ Ko (o)t £ (ta+ (1-t)x)at
+ Kl(a)joltH f(tx+(@—t)o)dt+ Ko(a)joltH f'(tx+(@1—t)b)dt

__Kia)f(a)+Ky(a)f (a) _Ky(a)f (x)+Ky(a)f (x)
X—a b—x

CPC o CPC o
+F(2—a{a D, f(X)+ r Do f(b)J

(X N a)2fa (b N X)2fa
where « €[0,1], a<x<b and K, and K, are functions satisfying (1.1) and (1.2).

In this paper some new inequalities are obtained by using the proportional Caputo-hybrid
operator and the lemma given above.

2. SOME RESULTS OBTAINED BY USING A KERNEL

Theorem 1 Let f :1 R be a three times differentiable function on 1°. Also let f, f,
and f" are L' functions on 1. If ‘f‘ and ‘f‘ are convex on |, then the following
inequality holds:

(Z_Q)(_ Ky(@)f(a)+Ko(a)f (a) _ Ky(@)f(x)+Ky(a)f (%)

X—a b—x

CPC o CPC o
+F(2—a{a D, f(x)+ D f(b)j‘

(X _ a)Z—a (b _ X)Zfa

<K(a ‘f'(a)|+(x—a)[‘f"(a)‘+ () ﬂ

4—a (3—a)(4—a)

+Ko(a ‘f"(a1+(xa{‘ @) ]G ]

+Ko<a{\f"<x1+<b‘x{‘zZX*(B‘L;% J

where ¢ €[0,1], a,bel, a<x<b, K, and K, are functions satisfying (1.1) and (1.2).

Proof. Using Lemma 1 and integrating by parts we get
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CPC o CPC o
+1’*(2_a{ a Dx f(X)+ X Db f_(b)J

ztz_a f(ta+@-t)x )F —% j:t“f"(ta+(1—t)x)dtj

x)dt}
d

)
+K1(a{ t f'(tx+(1—t)b)( _(;%Z) [ £ o (- )t

—X) Loy em
— [t (fla+ (1t

+K0(a)( t f"(tx+(1—t)b)1t —% Et”f’“(tx+(1—t)b)dt}

which yields

X—a b—x

+r<2—“)( = i!;‘("k‘))j

= Kl(a)(ia) Itz “f"(ta+(1—t)x )dtJ

2—-a 2-a

+Ko(a(L(a) Itz “f"(ta+(1—t)x )dtJ

2—-a 2-a

+K1(a{lx) jt“f (tx+(1- t)b)dtj

2-a 22—«
+K(a{;—(xa) - ajt“f (tx+ (1 t)b)dtj

With the help of properties of modulus we have

‘_ Kl(a)f (a)+ Ko(a)f'(a) Kl(a)f (X)+ Ko(a)f ‘ (X)

X—a b—x

oo G L)
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f"(ta+(1-t)x jdt]

f" (ta+ (1t)x)|dtJ

+K1(a{‘fl(x +b_X 1o«

2—-a 2—-a¥°
f

+K0( {‘2 aj J.tZa

By using convexity of ‘f‘ and ‘f‘ we get

£ (tx+ (1—t)b)(dtJ

(tx+(1—t b)(dt} (2.1)

‘_ Ky(a)f(a )+K( )t'(a) Ki@)f (x)+Ky(a)f (x)

- b—x

o)
<K1<a>[-; o), x ol <x+<1—t1f"<xx>dt}
. Ko(a)[. ;"_(a)i g [l £ (@) + -] (x)q)dt]

ORI
Kol “"(Xtﬁjgﬂt“(t f"'<x1+<1—txf'"<bx)dt}

f(

+ Kl(a

With simple calculations we get

‘_ Ky(@)f (@)+Ky(@)f (a) _ Kif@)f (x)+ Ky(a)f (x)

X—a b—x

CPC o CPC o
+F(2—(Z{a Dx f(X)+ X Db f(b)J‘

(Y R
e fl@l xafl@) [0
- Kl(a){Za +2a( 4-—a +(3a)(4a)D
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4—a (3—a)(4—a)

{ ) bx(\f d. 16 }
2-«a b-a (3-a)d-a)

which completes the proof.

+K(a{‘;(x+b X{‘f"(xt ‘f"(bX }

. . 1
Corollary 1 Under the conditions of Theorem 1, if we choose « = 5 then we get

K29 el

(-afi  (b-x)
( \f'<ax+<x_a{1°\f"<a13;4\f"<xn
3 \f"<a1+<x_a{1qf"‘<a1;4\f'"<xx}
S (RRAWCIENTE)
)

+ KO(% [‘ £ (x)+(b- x)[lq fr (Xi;4‘ f" (b J

Theorem 2 Let f :1 R be a three times differentiable function on 1°. Also let f, f,

1 1
Az [ eDit(x) oD f<b>]
1
2

and f" are L' functions on | . If ‘f"‘q and ‘f""q are convex on |, then the following
inequality holds:
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CPC o CPC o
+I“(2_a{a Dx f(X)+ X Db f(b)j‘

(x—a)™  (b—x)y™

+ K, (e ‘f"(a)‘+C(x—a{ | > J

+K,(a ‘f(x)hC(b—x)(‘f"(X)1 jf(b)‘ ]q}

+ K, (e ‘f”(x)‘+C(b—x){ > J

where C:(;jp, a«e[0,1], p>1, 1,129 abel, a<x<b, K, and K, are
1+p(2-a) P q

functions satisfying (1.1) and (1.2).

Proof. Using (2.1) and Holder’s inequality we get

‘_ Kl(“)f (a)+ Ko(a)f'(a) Kl(a)f (X)+ Ko(a)f ‘ (X)

X—a b—x

+F(2_a{::m D2 (x) , & ex. (b)]
!

(x—af™  (b—xy"
1,
[ (ta+@-t)x ]
1
q

‘f'(a)‘ ,Xx-a (J':t(Za)pdtjl
1Ky (e ‘f"(a)LﬂU:t(Z“)pdt)p(jjf (ta+(1-t)x)’ dt

<K (e

2-a 2-a
2-a 2-a

J
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+ Kl(a{‘;})j + g:; (j:t(z-”pdtj;[j:\ £ (tx+(1t)b)|th)‘l‘J
+K,(a )(‘; a)( ;’:; U:t(z‘“)pdt);(j:‘f'" (tx+(1t)b)|th)‘l‘J

Using convexity of ‘f"‘q and ‘f""q we have

X—a b—x

‘_ Kl(“)f (a)+ Ko(a)f'(a) Kl(a)f (X)+ Ko(a)f ‘ (X)

CPC o CPC o
+F(2—(Z a Dx 2_(X)+ X Db z_(b)
(X —a)™  (b-x)

ciofef [0 xoaf 1 ’l)(ﬂ(t\f%d”(ltXf"Xﬁ"t)qJ

CEE S
Ky (a ){ L a(1+ o a)f ﬂ(t\f"(XX”(lt)“"(bmdt);]
8 g et o

By making necessary computations, we get

‘_ Ky(@)f (@)+Ky(@)f (a) _ Kif@)f (x)+ Ky(a)f (x)

X—a b—x

rrie-af 2R A )j‘

oA F@) xeal 1 B[R]
<Kyfa 2—a+2—a[1+p(2—a)J 2

+ Ko(a
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+Kola ‘f”(axﬂ‘a( 1 ji[\f"'(ajq+\f"‘(x)(‘1]3

2—-a 2-a\l1+p(2-a)

f'(x) b-x 1 o[£ ) +] £ () g
+K,(a ‘2—05)‘+2—a(1+ p(2—a)j {‘ | 2‘ | J }

FKola \f"(xm—x( 1 ji[\f"(xxu\f“(bﬂ

2—-a 22—«

which completes proof.

Theorem 3 Let f :1 R be a three times differentiable function on 1°. Also let f, f,
and f" are L functions on | . If ‘f"‘q and ‘f""q are convex on |, then the following

inequality holds:

(Z_Q)(_ Ky(@)f (@)+Ko(@)f'(a) _ Kyla)f (x)+Ky(@)f (x)

X—a b—x

- a)(CPCD“f() CPCD“f(b)J‘

b X2a

<Ky(a) | f'(@)+(x- a){DJf 2) +‘f 1}
+ K, (e ‘f"(aj+(x—a{D+f a) ;‘f X)‘ ]

Kl(a{‘fl(xer(bX{DJF(XX zz‘fll(bj ]

it
2q

1
here D=———— | 0,1, p>1,
" p+p*(2-a) aclod. p

functions satisfying (1.1) and (1.2).

+—=1, a,bel, a<x<b, K, and K, are

S |-
o |-
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Proof. Using (2.1) and Young’s inequality we get

‘_ Ky(e)f(a )+K( )f'(a) _ Ki@)f (x)+Ky(@)f ()

- b—x

)( cre Da cp; D:)]; (E)j‘
)[ — jt“pdt+ ”f (ta+(1-t)x B
|

)[ 1 te-agty = Hf (ta+(1—t)x dt]
pO

){ p t ey = Hf (tx+(@-th dtﬂ
b-x[1 i
oa{za - ;hjoz Pdt4 = ”f (tx+(1—t) dtﬂ

Using convexity of ‘f"‘q and ‘f""q we have

H

X—a b—x

CPC o CPC o
_I_l—*(z_a{a Dx f(X)+ X Db f(b)J‘

‘_ Kl(a)f (a)+ Ko(a)f'(a) Kl(a)f (X)+ Ko(a)f ‘ (X)

(x—af™  (b—xy"

<K,(a ‘f'(a)hx a[ L += r
2-a p+p’2-a) g

' (x)‘q]dt}

(41" (@) + - 1)
Kyla ‘f"(a)hg—a{ L G e o

2—«a —al| p+pi(2-a)

+Kl(a)[‘1a)‘ = X[|0+|01(2 ) g (t‘f )‘Jr(l_t)‘f"(b)'q)dt}
+K°(a{‘;(ﬁ+b XLrup(z o) qf(t‘f (b)(qjdt

By making necessary computations, we get

\_/

N——
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X—a b—x

CPC o CPC o
+F(2_a{a Dx f(X)+ X Db f(b)j‘

(x—a)™  (b—x)y™

‘_ Ki(@)f (a)+Kq(@)f (a) _ Kif@)f (x)+ Kq(a)f (%)

<K1(a{ f'(aj—i_xa_[ 21 ‘f (a1q+‘fll(qu:|

2-a 2-a|p+p(2-a) 2q

+K0(a)[ f"(aj x—a{ 21 ‘f (a)‘q+‘f (qu ]
2-a 2-a| p+p(2-a) 2q

+K1(a{\f'(%b—x[ 1 <X)|q+\f"(b>|“]
2-a 2—-a|p+p(2-a) 2q

which completes the proof.

3. SOME RESULTS OBTAINED FOR BOUNDED FUNCTIONS

Theorem 4 Let f:1 cR" —R be a differentiable function on 1°. Also let f, f, g, and
g, are L functions on | such that

a(t)< flt)<g,(t) (3.1)
g, (t)< f(t)<g,(t)

Then, the following inequality holds:

(572 1 W) [0 0cHu =) g, (xu—x)
> (Ko(a)+ Kl(a)) L”gl(x)(u _ X)_“ dXI:gz(XXu _ X)—a dx

F(l—a)
+ FT{ECQ)U: f(x)u—x)“ dx)
+ FT{’E“J)U: f(x)u—x)“ dx)z. (3.2)

where o e [0,1] with K, and K, are functions satisfing the conditions (1.1) and (1.2).
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Proof. From (3.1) for all x>0, y >0 we have

(gz(x)_ f (X))(f (Y)_ gl(y)) >0

9,()f (y)+ F(x)a(y)= g,(y)g, (x)+ F () (y)

(3.3)

and
(3.4)

Multiplying (3.3) by Ky(a)u=x) and (3.4) by Ko(a)u=x). then adding the resulting
F(l—a) F(l—a)

inequalities we get

Ki@hu=X)" 10 )¢ (y)+ £ (¥)au ()]

rl-a)

+%[gz(x)f'(y)+ £ (x)g,(y)
KR o (), (0+ 1001 (]

+%[gl(y)gz(><)+ £ (0 (v) 49

which yields

gz(ﬁé‘i‘a’;)_a [Ky (@) (y)+ Ko () (y)]

SO [ @)1 (0 ko) (1)

N gl(y)grz((li)(;)— 9 (K, @)+ Ky(a)

. (EQ_XZ (K, (e} () (y)+ Ko@) () () (49

Integrating with respect to x from 0 to u

Ky(a)f (ﬁzf_rz)(a)f'(y)ﬁ o)

+a, (5D f ()
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—qu'(x)(u —x) “dx. (3.7)

Multiplying (3.7) by (u—y)™ and integrating with respect to y from 0 to u

(¢ D f (u J.ug2 x)(u—x)‘“dx
+(sPepy I 91 (YNu—-y)
>(K1( atl jg X)(U—X’“dXI”g (yNu—-y)“dy
[l-a) $*7° 0™t

R af s
) g ) 69

p1

N—"

By rearranging (3.8) we get
(e pp £ (u X j“gl xNu-x)“de+ ['g, x)(u—x)“dx)
> Ul ) g o], 0 0
(10000
)( [ f (Hu- X)‘“dX)Z- (3.9)

a)+K
-
Kl(a)
+F(1—a [
n KO(O‘)
F@—a

So the proof is completed.

.\ . 1
Corollary 2 Under the conditions of Theorem 4 if we choose o = > we get

o4 e
LGl g

- J.\/uxJ.\/ux
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"=
1
Ml

Theorem 5 Let f:1 cR" —R be a differentiable function on 1°. Alsolet f, f', h, h', g,
, 0,, v, and v, are L functions on | satisfying

v, (t)<h(t)<v,(t) (3.10)
v,(t)<h(t)<v,(t)

and condition (3.1). Then, the following inequality holds:
(¢ Dg f(u )Xj:gz (x)u—x)dx+ Luvl(x)(u —x)“ dx)
K +K u T _
> ( 1(?()1_0[0)(0!)) _[0 g, (x)u—x) dxjovl(qu —x)“dx

Kl(a) ! o gy " o
+ (1_a)Lf(qu—x) dx.[oh(x)(u—x) dx

e o) oK)

y—J

—

—

where « e [0,1] with K, and K, are functions satisfing the conditions (1.1) and (1.2).

Proof. From (3.1) and (3.10) forall x>0, y >0 we have

(92(x)— F (x)Xh(y)-w(y))= 0 (3.11)
9, ((y)+vi(y) f (x)2 v, (y)g, (x)+ f (x)n(y)

and
(9,(0)- £ ()0 (y)-w(y))=0 (3.12)
' f

9, (N (y)+wu(y) (%)= vi(y)g, (x)+ £ () (y)

Multiplying (3.11) by Kl(lof()l(%’)‘) and (3.12) by Ko(g()l(‘i;’)‘)_ then adding the resulting

inequalities we get
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e LRI @13
e ORI
KL= (), 0 1ol
AR ), 0+ 00 )
which yields
gz%éu__a);)a [Ky(@h(y)+Ko()'(v) (3.14)

rl-a)
T @) )+ a1 G0N ()
Integrating with respect to x from 0 to u

k(@) (1+ 0)(“ ) j g,(xNu—x) (3.15)
~u(y)FeD; (u)
. V1<y>(*§(<f_>;)Ko<“>> [/, (0u—x) “ox

K;Ef}*g) [ F(x)u—x) “ax

Klg(g_h;()y) ['F (x)u—x) “

Multiplying (3.15) by (u—y)™ and integrating with respect to y from 0 to u
(¢ D f (u _|.g2 (x)u—x)“dx (3.16)

+(Fe Dy F(u)fvalyNu-y) “dy
2 (e g, ) e )

Proceedings Book of ICMRS 2022 150



5" INTERNATIONAL CONFERENCE
ON MATHEMATICAL AND RELATED SCIENCES
ICMRS 2022

T(aaz)f (x)u—x)“dx[ h(y)u-y)“dy
Kl (96 (o -0 (N —y) <o

"

v

which completes the proof.
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ABSTRACT

In this paper we obtained some new fractional inequalities for different kinds of convex
functions using the proportional Caputo-hybrid operator with fairly elementary analysis.
Since the proportional Caputo-hybrid operator is important in that its special cases gives a
linear combination of Riemann—Liouville integral and a Caputo derivative, it was deemed
appropriate to be used in this study.

1. INTRODUCTION

Fractional calculus was first suggested for consideration by Leibnitz in his letter to
: : : - 1 .
L’Hospital which dealt with derivatives of order o = 5 (see [1]). Hereupon, this theory has

been used in many fields of science such as economics, biology, engineering, physics and
mathematics for sure. Many types of fractional derivatives and integrals were studied by
Hadamard, Caputo, Riemann-Liouville, Gronwald- Letnikov, etc. Various properties of these
operators have been summarized in [9]. For the last decades, this theory has been used in
inequality theory frequently because it enables scientists to obtain integral inequalities for also
non-integer orders. One of the most famous inequality is Ostrowski’s which has lead to gain
many practical inequalities with fractional calculus as well.

Fractional calculus has been appealing to many researchers over the last decades ([4],
[6]).Some researchers have found that different fractional derivatives with different singular
or nonsingular kernels need to be identified by real-world problems in different fields of
engineering and science ([8], [7]). These different fractional operators are also used in integral
inequalities ([5]). Thus, fractional calculus plays an important role in the development of
inequality theory. One of the fractional operators obtained in the last years is so-called
Caputo-hybrid operator is given in the following:

Definition 1 (see [2]) Let f: 1 cR™ — R be a differentiable function on 1°. Also let f and
f are L' functions on | . Then, the proportional Caputo-hybrid operator may be defined as
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(Ku(@) ()+ Kol (o)) dx

0

TR 0)=

where o €[0,1] and K, and K, are functions satisfing

lim Ko(@)=0;  limKy(a)=L  K(a)#0, ae(01] (1.1)
limKy(2)=1  limK(a)=0;  K,(a)#0, «a<[0,1) (1.2)

Erdelyi et. al deeply involved in hypergeometric functions which Whittaker discovered in
1904 and gave the definition of iti in [9] as:

,F(ab;c;z)= %C).[:tb‘l(l—t)c“(l— zt)*dt, c>b>0, |7<1.

Alb,

In this paper some new inequalities for different kinds of convex functions are obtained by
using the proportional Caputo-hybrid operator.

2. SOME RESULTS FOR DIFFERENT KINDS OF CONVEX FUNCTIONS

Theorem 1 Let f:1 cR* —R be a differentiable function on 1°. Also let f and f are L'
functionson | . If f and f" are convex on |, then the following inequality holds

oD f(u)

boal (1 boalo-uhi)

u
rl-a)\2-«a l-«a
+

s (b _ a)afl ul—a u2—a (b _ U)Jl_a ]

where o €[0,1] with K, and K, are functions satisfing the conditions (1.1) and (1.2).

Proof. By using definition of the proportional Caputo-hybrid operator, properties of modulus
and changing variables as x =ta+(1—t)b we get

oD f(u)

= 1K, (@) 0+ Ky(a)t (x))u—x)“dx

rl-a)®
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_ b-a o Ki(a)f(ta+(1-t)h) y
_F(l—a)IE__Z(JF Ko(a)f (ta+@- t)b)J(u—(ta+(1_t)b)) dt

F(l—a') b—;
+% jb:f (ta+ (1—t)b)u—(ta+ 1—t))) “dt (2.1)

Using convexity of f and f we get
o D f(u)
< AN [ )+ (-1 (o)~ + - 0) o

rl-o

)
' %L’bb (1" (a)+ @-1)F (o)u—(ta-+@—th)) “dt.
By simple calculation we have

PCD* f (u)

<l f 2 )

e |
Sl et

+ f'(b)[(b—a;l—:(l—a)_ (b—a;:;Z—a)_ b fba‘>53?ifa>ﬂ

which is the desired result.

Theorem 2 Let f:1 cR" — R be a differentiable function on 1°. Also let f and f are L}
functionson | . If f and f  are s—convex (in the second sense) on |, then the following

inequality holds
o DI f(u)
(b—u)ut

< r2-a)b-a)p™ (2 Fl{_s’l_a;z _a;Wl:)—U)D
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x|Ky(@)f (@)+Ky(a)f (a)

(u—a)u™

"Te—a)b-af " (2 Fl{_s'l_a;z_a;m}j
x[K(@)f (b)+Ky(@)f (b))

where se(0,1], a<[0,1] with K, and K, are functions satisfing the conditions (1.1) and
(1.2).

Proof. Using 2.1 and s— convexity of f and f we get

()
_ % jf (ta+ (1—t)b)u — (ta+ (1—t)b)) “ it
+ (b ;a)_KOOl()a)E%f (ta+(@1-t)b)u—(ta+(L—t)o))“dt.

< b2l s £ (a) @ o) -+ (- to)) o
O 8K) [t ) (1) £ 0)u— (ras (- 1)0)) .

By simple calculation we get

oD f(u)

LR o]

(u-ajut

(b—a)zs-wl(l—a)@F{‘S’l‘“z‘“;—m—aiu—a)m
e e R
g0 _(:)‘a)“(l_ a)(z F{—s,l—a;Z—a;mD}

Theorem 3 Let f:1 cR" — R be a differentiable function on 1°. Also let f and f are L'
functionson | . If f and f" are m—convex on | , then the following inequality holds

+ f(b)

oD f(u)
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—a)” L (b= a)(b u)ul”‘]

Fl a)\ 2 a
X[Kl f(a)+Ko(a ]

+(r [ u> bb u j
-a ~a) a)l-a)
{Kl(a)mf (%} Ko(a)mf (%ﬂ

where (o, m)e[0,1]" with K, and K, are functions satisfing the conditions (1.1) and (1.2).
Proof. Using 2.1 and m—convexity of f and f we get

CPC D f(U)
1

_b- K(“)j -+ (- b)u—(ta+ @—t))

(—a)
+( ;()a [t (ta+ - b)u—(ta+ @~ t)p) “d
_(b-a)K,(a) ()K;()a)j (tf()+m(1—t)f(%n( u—(ta+ (-t “dt
) ()K;()a) s (tf (a )+m(1—t)f(%D(u—(ta+(1—t)b))‘“dt

By simple calculation we have

Lol o L Lol )

o (% (b~ a;l_:(l— a) (b- a;Z; (2—-a) (b Eba_)suzlzl__ “)H
+(b_a)K°(“){f'(a){( L (Uz_aJr(b—a)(b—u)ul‘“j]

22—« 1-«

mf (%) - a;j:(l_ R a;:a(z “o) (o Eba_)sllezi_j a)ﬂ
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